fork of https://github.com/oxigraph/rocksdb and https://github.com/facebook/rocksdb for nextgraph and oxigraph
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
476 lines
17 KiB
476 lines
17 KiB
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved
|
|
// This source code is licensed under both the GPLv2 (found in the
|
|
// COPYING file in the root directory) and Apache 2.0 License
|
|
// (found in the LICENSE.Apache file in the root directory).
|
|
//
|
|
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file. See the AUTHORS file for names of contributors.
|
|
#pragma once
|
|
|
|
#include <array>
|
|
#include <memory>
|
|
#include <string>
|
|
|
|
#include "cache/cache_key.h"
|
|
#include "cache/sharded_cache.h"
|
|
#include "port/lang.h"
|
|
#include "port/malloc.h"
|
|
#include "port/port.h"
|
|
#include "rocksdb/secondary_cache.h"
|
|
#include "util/autovector.h"
|
|
#include "util/distributed_mutex.h"
|
|
|
|
namespace ROCKSDB_NAMESPACE {
|
|
|
|
namespace fast_lru_cache {
|
|
|
|
// Forward declaration of friend class.
|
|
class FastLRUCacheTest;
|
|
|
|
// LRU cache implementation using an open-address hash table.
|
|
//
|
|
// Every slot in the hash table is an LRUHandle. Because handles can be
|
|
// referenced externally, we can't discard them immediately once they are
|
|
// deleted (via a delete or an LRU eviction) or replaced by a new version
|
|
// (via an insert of the same key). The state of an element is defined by
|
|
// the following two properties:
|
|
// (R) Referenced: An element can be referenced externally (refs > 0), or not.
|
|
// Importantly, an element can be evicted if and only if it's not
|
|
// referenced. In particular, when an element becomes referenced, it's
|
|
// temporarily taken out of the LRU list until all references to it
|
|
// are dropped.
|
|
// (V) Visible: An element can visible for lookups (IS_VISIBLE set), or not.
|
|
// Initially, every element is visible. An element that is not visible is
|
|
// called a ghost.
|
|
// These properties induce 4 different states, with transitions defined as
|
|
// follows:
|
|
// - V --> not V: When a visible element is deleted or replaced by a new
|
|
// version.
|
|
// - Not V --> V: This cannot happen. A ghost remains in that state until it's
|
|
// not referenced any more, at which point it's ready to be removed from the
|
|
// hash table. (A ghost simply waits to transition to the afterlife---it will
|
|
// never be visible again.)
|
|
// - R --> not R: When all references to an element are dropped.
|
|
// - Not R --> R: When an unreferenced element becomes referenced. This can only
|
|
// happen if the element is V, since references to an element can only be
|
|
// created when it's visible.
|
|
//
|
|
// Internally, the cache uses an open-addressed hash table to index the handles.
|
|
// We use tombstone counters to keep track of displacements.
|
|
// Because of the tombstones and the two possible visibility states of an
|
|
// element, the table slots can be in 4 different states:
|
|
// 1. Visible element (IS_ELEMENT set and IS_VISIBLE set): The slot contains a
|
|
// key-value element.
|
|
// 2. Ghost element (IS_ELEMENT set and IS_VISIBLE unset): The slot contains an
|
|
// element that has been removed, but it's still referenced. It's invisible
|
|
// to lookups.
|
|
// 3. Tombstone (IS_ELEMENT unset and displacements > 0): The slot contains a
|
|
// tombstone.
|
|
// 4. Empty (IS_ELEMENT unset and displacements == 0): The slot is unused.
|
|
// A slot that is an element can further have IS_VISIBLE set or not.
|
|
// When a ghost is removed from the table, it can either transition to being a
|
|
// tombstone or an empty slot, depending on the number of displacements of the
|
|
// slot. In any case, the slot becomes available. When a handle is inserted
|
|
// into that slot, it becomes a visible element again.
|
|
|
|
// The load factor p is a real number in (0, 1) such that at all
|
|
// times at most a fraction p of all slots, without counting tombstones,
|
|
// are occupied by elements. This means that the probability that a
|
|
// random probe hits an empty slot is at most p, and thus at most 1/p probes
|
|
// are required on average. For example, p = 70% implies that between 1 and 2
|
|
// probes are needed on average (bear in mind that this reasoning doesn't
|
|
// consider the effects of clustering over time).
|
|
// Because the size of the hash table is always rounded up to the next
|
|
// power of 2, p is really an upper bound on the actual load factor---the
|
|
// actual load factor is anywhere between p/2 and p. This is a bit wasteful,
|
|
// but bear in mind that slots only hold metadata, not actual values.
|
|
// Since space cost is dominated by the values (the LSM blocks),
|
|
// overprovisioning the table with metadata only increases the total cache space
|
|
// usage by a tiny fraction.
|
|
constexpr double kLoadFactor = 0.35;
|
|
|
|
// The user can exceed kLoadFactor if the sizes of the inserted values don't
|
|
// match estimated_value_size, or if strict_capacity_limit == false. To
|
|
// avoid performance to plunge, we set a strict upper bound on the load factor.
|
|
constexpr double kStrictLoadFactor = 0.7;
|
|
|
|
// Arbitrary seeds.
|
|
constexpr uint32_t kProbingSeed1 = 0xbc9f1d34;
|
|
constexpr uint32_t kProbingSeed2 = 0x7a2bb9d5;
|
|
|
|
// An experimental (under development!) alternative to LRUCache
|
|
|
|
struct LRUHandle {
|
|
void* value;
|
|
Cache::DeleterFn deleter;
|
|
LRUHandle* next;
|
|
LRUHandle* prev;
|
|
size_t total_charge; // TODO(opt): Only allow uint32_t?
|
|
// The hash of key(). Used for fast sharding and comparisons.
|
|
uint32_t hash;
|
|
// The number of external refs to this entry.
|
|
uint32_t refs;
|
|
|
|
enum Flags : uint8_t {
|
|
// Whether the handle is visible to Lookups.
|
|
IS_VISIBLE = (1 << 0),
|
|
// Whether the slot is in use by an element.
|
|
IS_ELEMENT = (1 << 1),
|
|
};
|
|
uint8_t flags;
|
|
|
|
// The number of elements that hash to this slot or a lower one,
|
|
// but wind up in a higher slot.
|
|
uint32_t displacements;
|
|
|
|
std::array<char, kCacheKeySize> key_data;
|
|
|
|
LRUHandle() {
|
|
value = nullptr;
|
|
deleter = nullptr;
|
|
next = nullptr;
|
|
prev = nullptr;
|
|
total_charge = 0;
|
|
hash = 0;
|
|
refs = 0;
|
|
flags = 0;
|
|
displacements = 0;
|
|
key_data.fill(0);
|
|
}
|
|
|
|
Slice key() const { return Slice(key_data.data(), kCacheKeySize); }
|
|
|
|
// For HandleImpl concept
|
|
uint32_t GetHash() const { return hash; }
|
|
|
|
// Increase the reference count by 1.
|
|
void Ref() { refs++; }
|
|
|
|
// Just reduce the reference count by 1. Return true if it was last reference.
|
|
bool Unref() {
|
|
assert(refs > 0);
|
|
refs--;
|
|
return refs == 0;
|
|
}
|
|
|
|
// Return true if there are external refs, false otherwise.
|
|
bool HasRefs() const { return refs > 0; }
|
|
|
|
bool IsVisible() const { return flags & IS_VISIBLE; }
|
|
|
|
void SetIsVisible(bool is_visible) {
|
|
if (is_visible) {
|
|
flags |= IS_VISIBLE;
|
|
} else {
|
|
flags &= ~IS_VISIBLE;
|
|
}
|
|
}
|
|
|
|
bool IsElement() const { return flags & IS_ELEMENT; }
|
|
|
|
void SetIsElement(bool is_element) {
|
|
if (is_element) {
|
|
flags |= IS_ELEMENT;
|
|
} else {
|
|
flags &= ~IS_ELEMENT;
|
|
}
|
|
}
|
|
|
|
void FreeData() {
|
|
assert(refs == 0);
|
|
if (deleter) {
|
|
(*deleter)(key(), value);
|
|
}
|
|
}
|
|
|
|
// Calculate the memory usage by metadata.
|
|
inline size_t CalcMetaCharge(
|
|
CacheMetadataChargePolicy metadata_charge_policy) const {
|
|
if (metadata_charge_policy != kFullChargeCacheMetadata) {
|
|
return 0;
|
|
} else {
|
|
// #ifdef ROCKSDB_MALLOC_USABLE_SIZE
|
|
// return malloc_usable_size(
|
|
// const_cast<void*>(static_cast<const void*>(this)));
|
|
// #else
|
|
// TODO(Guido) malloc_usable_size only works when we call it on
|
|
// a pointer allocated with malloc. Because our handles are all
|
|
// allocated in a single shot as an array, the user can't call
|
|
// CalcMetaCharge (or CalcTotalCharge or GetCharge) on a handle
|
|
// pointer returned by the cache. Moreover, malloc_usable_size
|
|
// expects a heap-allocated handle, but sometimes in our code we
|
|
// wish to pass a stack-allocated handle (this is only a performance
|
|
// concern).
|
|
// What is the right way to compute metadata charges with pre-allocated
|
|
// handles?
|
|
return sizeof(LRUHandle);
|
|
// #endif
|
|
}
|
|
}
|
|
|
|
inline void CalcTotalCharge(
|
|
size_t charge, CacheMetadataChargePolicy metadata_charge_policy) {
|
|
total_charge = charge + CalcMetaCharge(metadata_charge_policy);
|
|
}
|
|
|
|
inline size_t GetCharge(
|
|
CacheMetadataChargePolicy metadata_charge_policy) const {
|
|
size_t meta_charge = CalcMetaCharge(metadata_charge_policy);
|
|
assert(total_charge >= meta_charge);
|
|
return total_charge - meta_charge;
|
|
}
|
|
|
|
inline bool IsEmpty() {
|
|
return !this->IsElement() && this->displacements == 0;
|
|
}
|
|
|
|
inline bool IsTombstone() {
|
|
return !this->IsElement() && this->displacements > 0;
|
|
}
|
|
|
|
inline bool Matches(const Slice& some_key, uint32_t some_hash) {
|
|
return this->IsElement() && this->hash == some_hash &&
|
|
this->key() == some_key;
|
|
}
|
|
};
|
|
|
|
class LRUHandleTable {
|
|
public:
|
|
explicit LRUHandleTable(int hash_bits);
|
|
~LRUHandleTable();
|
|
|
|
// Returns a pointer to a visible element matching the key/hash, or
|
|
// nullptr if not present.
|
|
LRUHandle* Lookup(const Slice& key, uint32_t hash);
|
|
|
|
// Inserts a copy of h into the hash table.
|
|
// Returns a pointer to the inserted handle, or nullptr if no slot
|
|
// available was found. If an existing visible element matching the
|
|
// key/hash is already present in the hash table, the argument old
|
|
// is set to pointe to it; otherwise, it's set to nullptr.
|
|
LRUHandle* Insert(LRUHandle* h, LRUHandle** old);
|
|
|
|
// Removes h from the hash table. The handle must already be off
|
|
// the LRU list.
|
|
void Remove(LRUHandle* h);
|
|
|
|
// Turns a visible element h into a ghost (i.e., not visible).
|
|
void Exclude(LRUHandle* h);
|
|
|
|
// Assigns a copy of h to the given slot.
|
|
void Assign(int slot, LRUHandle* h);
|
|
|
|
template <typename T>
|
|
void ApplyToEntriesRange(T func, size_t index_begin, size_t index_end) {
|
|
for (size_t i = index_begin; i < index_end; i++) {
|
|
LRUHandle* h = &array_[i];
|
|
if (h->IsVisible()) {
|
|
func(h);
|
|
}
|
|
}
|
|
}
|
|
|
|
uint32_t GetTableSize() const { return uint32_t{1} << length_bits_; }
|
|
|
|
int GetLengthBits() const { return length_bits_; }
|
|
|
|
uint32_t GetOccupancyLimit() const { return occupancy_limit_; }
|
|
|
|
uint32_t GetOccupancy() const { return occupancy_; }
|
|
|
|
// Returns x mod 2^{length_bits_}.
|
|
uint32_t ModTableSize(uint32_t x) { return x & length_bits_mask_; }
|
|
|
|
private:
|
|
int FindVisibleElement(const Slice& key, uint32_t hash, int& probe,
|
|
int displacement);
|
|
|
|
int FindAvailableSlot(const Slice& key, int& probe, int displacement);
|
|
|
|
int FindVisibleElementOrAvailableSlot(const Slice& key, uint32_t hash,
|
|
int& probe, int displacement);
|
|
|
|
// Returns the index of the first slot probed (hashing with
|
|
// the given key) with a handle e such that cond(e) is true.
|
|
// Otherwise, if no match is found, returns -1.
|
|
// For every handle e probed except the final slot, updates
|
|
// e->displacements += displacement.
|
|
// The argument probe is modified such that consecutive calls
|
|
// to FindSlot continue probing right after where the previous
|
|
// call left.
|
|
int FindSlot(const Slice& key, std::function<bool(LRUHandle*)> cond,
|
|
int& probe, int displacement);
|
|
|
|
// Number of hash bits used for table index.
|
|
// The size of the table is 1 << length_bits_.
|
|
int length_bits_;
|
|
|
|
const uint32_t length_bits_mask_;
|
|
|
|
// Number of elements in the table.
|
|
uint32_t occupancy_;
|
|
|
|
// Maximum number of elements the user can store in the table.
|
|
uint32_t occupancy_limit_;
|
|
|
|
std::unique_ptr<LRUHandle[]> array_;
|
|
};
|
|
|
|
// A single shard of sharded cache.
|
|
class ALIGN_AS(CACHE_LINE_SIZE) LRUCacheShard final : public CacheShardBase {
|
|
public:
|
|
LRUCacheShard(size_t capacity, size_t estimated_value_size,
|
|
bool strict_capacity_limit,
|
|
CacheMetadataChargePolicy metadata_charge_policy);
|
|
|
|
// For CacheShard concept
|
|
using HandleImpl = LRUHandle;
|
|
|
|
// Keep 32-bit hashing for now (FIXME: upgrade to 64-bit)
|
|
using HashVal = uint32_t;
|
|
using HashCref = uint32_t;
|
|
static inline HashVal ComputeHash(const Slice& key) {
|
|
return Lower32of64(GetSliceNPHash64(key));
|
|
}
|
|
static inline uint32_t HashPieceForSharding(HashCref hash) { return hash; }
|
|
|
|
// Separate from constructor so caller can easily make an array of LRUCache
|
|
// if current usage is more than new capacity, the function will attempt to
|
|
// free the needed space.
|
|
void SetCapacity(size_t capacity);
|
|
|
|
// Set the flag to reject insertion if cache if full.
|
|
void SetStrictCapacityLimit(bool strict_capacity_limit);
|
|
|
|
// Like Cache methods, but with an extra "hash" parameter.
|
|
// Insert an item into the hash table and, if handle is null, insert into
|
|
// the LRU list. Older items are evicted as necessary. If the cache is full
|
|
// and free_handle_on_fail is true, the item is deleted and handle is set to
|
|
// nullptr.
|
|
Status Insert(const Slice& key, uint32_t hash, void* value, size_t charge,
|
|
Cache::DeleterFn deleter, LRUHandle** handle,
|
|
Cache::Priority priority);
|
|
|
|
Status Insert(const Slice& key, uint32_t hash, void* value,
|
|
const Cache::CacheItemHelper* helper, size_t charge,
|
|
LRUHandle** handle, Cache::Priority priority) {
|
|
return Insert(key, hash, value, charge, helper->del_cb, handle, priority);
|
|
}
|
|
|
|
LRUHandle* Lookup(const Slice& key, uint32_t hash,
|
|
const Cache::CacheItemHelper* /*helper*/,
|
|
const Cache::CreateCallback& /*create_cb*/,
|
|
Cache::Priority /*priority*/, bool /*wait*/,
|
|
Statistics* /*stats*/) {
|
|
return Lookup(key, hash);
|
|
}
|
|
LRUHandle* Lookup(const Slice& key, uint32_t hash);
|
|
|
|
bool Release(LRUHandle* handle, bool /*useful*/, bool erase_if_last_ref) {
|
|
return Release(handle, erase_if_last_ref);
|
|
}
|
|
bool IsReady(LRUHandle* /*handle*/) { return true; }
|
|
void Wait(LRUHandle* /*handle*/) {}
|
|
|
|
bool Ref(LRUHandle* handle);
|
|
bool Release(LRUHandle* handle, bool erase_if_last_ref = false);
|
|
void Erase(const Slice& key, uint32_t hash);
|
|
|
|
size_t GetUsage() const;
|
|
size_t GetPinnedUsage() const;
|
|
size_t GetOccupancyCount() const;
|
|
size_t GetTableAddressCount() const;
|
|
|
|
void ApplyToSomeEntries(
|
|
const std::function<void(const Slice& key, void* value, size_t charge,
|
|
DeleterFn deleter)>& callback,
|
|
size_t average_entries_per_lock, size_t* state);
|
|
|
|
void EraseUnRefEntries();
|
|
|
|
private:
|
|
friend class LRUCache;
|
|
friend class FastLRUCacheTest;
|
|
|
|
void LRU_Remove(LRUHandle* e);
|
|
void LRU_Insert(LRUHandle* e);
|
|
|
|
// Free some space following strict LRU policy until enough space
|
|
// to hold (usage_ + charge) is freed or the LRU list is empty
|
|
// This function is not thread safe - it needs to be executed while
|
|
// holding the mutex_.
|
|
void EvictFromLRU(size_t charge, autovector<LRUHandle>* deleted);
|
|
|
|
// Returns the charge of a single handle.
|
|
static size_t CalcEstimatedHandleCharge(
|
|
size_t estimated_value_size,
|
|
CacheMetadataChargePolicy metadata_charge_policy);
|
|
|
|
// Returns the number of bits used to hash an element in the hash
|
|
// table.
|
|
static int CalcHashBits(size_t capacity, size_t estimated_value_size,
|
|
CacheMetadataChargePolicy metadata_charge_policy);
|
|
|
|
// Initialized before use.
|
|
size_t capacity_;
|
|
|
|
// Whether to reject insertion if cache reaches its full capacity.
|
|
bool strict_capacity_limit_;
|
|
|
|
// Dummy head of LRU list.
|
|
// lru.prev is newest entry, lru.next is oldest entry.
|
|
// LRU contains items which can be evicted, ie reference only by cache
|
|
LRUHandle lru_;
|
|
|
|
// Pointer to head of low-pri pool in LRU list.
|
|
LRUHandle* lru_low_pri_;
|
|
|
|
// ------------^^^^^^^^^^^^^-----------
|
|
// Not frequently modified data members
|
|
// ------------------------------------
|
|
//
|
|
// We separate data members that are updated frequently from the ones that
|
|
// are not frequently updated so that they don't share the same cache line
|
|
// which will lead into false cache sharing
|
|
//
|
|
// ------------------------------------
|
|
// Frequently modified data members
|
|
// ------------vvvvvvvvvvvvv-----------
|
|
LRUHandleTable table_;
|
|
|
|
// Memory size for entries residing in the cache.
|
|
size_t usage_;
|
|
|
|
// Memory size for entries residing only in the LRU list.
|
|
size_t lru_usage_;
|
|
|
|
// mutex_ protects the following state.
|
|
// We don't count mutex_ as the cache's internal state so semantically we
|
|
// don't mind mutex_ invoking the non-const actions.
|
|
mutable DMutex mutex_;
|
|
};
|
|
|
|
class LRUCache
|
|
#ifdef NDEBUG
|
|
final
|
|
#endif
|
|
: public ShardedCache<LRUCacheShard> {
|
|
public:
|
|
LRUCache(size_t capacity, size_t estimated_value_size, int num_shard_bits,
|
|
bool strict_capacity_limit,
|
|
CacheMetadataChargePolicy metadata_charge_policy =
|
|
kDontChargeCacheMetadata);
|
|
const char* Name() const override { return "LRUCache"; }
|
|
void* Value(Handle* handle) override;
|
|
size_t GetCharge(Handle* handle) const override;
|
|
DeleterFn GetDeleter(Handle* handle) const override;
|
|
};
|
|
} // namespace fast_lru_cache
|
|
|
|
std::shared_ptr<Cache> NewFastLRUCache(
|
|
size_t capacity, size_t estimated_value_size, int num_shard_bits,
|
|
bool strict_capacity_limit,
|
|
CacheMetadataChargePolicy metadata_charge_policy);
|
|
|
|
} // namespace ROCKSDB_NAMESPACE
|
|
|