You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
rocksdb/file/file_prefetch_buffer.cc

545 lines
21 KiB

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include "file/file_prefetch_buffer.h"
#include <algorithm>
#include "file/random_access_file_reader.h"
#include "monitoring/histogram.h"
#include "monitoring/iostats_context_imp.h"
#include "port/port.h"
#include "test_util/sync_point.h"
#include "util/random.h"
#include "util/rate_limiter.h"
namespace ROCKSDB_NAMESPACE {
void FilePrefetchBuffer::CalculateOffsetAndLen(size_t alignment,
uint64_t offset,
size_t roundup_len, size_t index,
bool refit_tail,
uint64_t& chunk_len) {
uint64_t chunk_offset_in_buffer = 0;
bool copy_data_to_new_buffer = false;
// Check if requested bytes are in the existing buffer_.
// If only a few bytes exist -- reuse them & read only what is really needed.
// This is typically the case of incremental reading of data.
// If no bytes exist in buffer -- full pread.
if (bufs_[index].buffer_.CurrentSize() > 0 &&
offset >= bufs_[index].offset_ &&
offset <= bufs_[index].offset_ + bufs_[index].buffer_.CurrentSize()) {
// Only a few requested bytes are in the buffer. memmove those chunk of
// bytes to the beginning, and memcpy them back into the new buffer if a
// new buffer is created.
chunk_offset_in_buffer = Rounddown(
static_cast<size_t>(offset - bufs_[index].offset_), alignment);
chunk_len = static_cast<uint64_t>(bufs_[index].buffer_.CurrentSize()) -
chunk_offset_in_buffer;
assert(chunk_offset_in_buffer % alignment == 0);
// assert(chunk_len % alignment == 0);
assert(chunk_offset_in_buffer + chunk_len <=
bufs_[index].offset_ + bufs_[index].buffer_.CurrentSize());
if (chunk_len > 0) {
copy_data_to_new_buffer = true;
} else {
// this reset is not necessary, but just to be safe.
chunk_offset_in_buffer = 0;
}
}
// Create a new buffer only if current capacity is not sufficient, and memcopy
// bytes from old buffer if needed (i.e., if chunk_len is greater than 0).
if (bufs_[index].buffer_.Capacity() < roundup_len) {
bufs_[index].buffer_.Alignment(alignment);
bufs_[index].buffer_.AllocateNewBuffer(
static_cast<size_t>(roundup_len), copy_data_to_new_buffer,
chunk_offset_in_buffer, static_cast<size_t>(chunk_len));
} else if (chunk_len > 0 && refit_tail) {
// New buffer not needed. But memmove bytes from tail to the beginning since
// chunk_len is greater than 0.
bufs_[index].buffer_.RefitTail(static_cast<size_t>(chunk_offset_in_buffer),
static_cast<size_t>(chunk_len));
} else if (chunk_len > 0) {
// For async prefetching, it doesn't call RefitTail with chunk_len > 0.
// Allocate new buffer if needed because aligned buffer calculate remaining
// buffer as capacity_ - cursize_ which might not be the case in this as we
// are not refitting.
// TODO akanksha: Update the condition when asynchronous prefetching is
// stable.
bufs_[index].buffer_.Alignment(alignment);
bufs_[index].buffer_.AllocateNewBuffer(
static_cast<size_t>(roundup_len), copy_data_to_new_buffer,
chunk_offset_in_buffer, static_cast<size_t>(chunk_len));
}
}
Status FilePrefetchBuffer::Read(const IOOptions& opts,
RandomAccessFileReader* reader,
Env::IOPriority rate_limiter_priority,
uint64_t read_len, uint64_t chunk_len,
uint64_t rounddown_start, uint32_t index) {
Slice result;
Status s = reader->Read(opts, rounddown_start + chunk_len, read_len, &result,
bufs_[index].buffer_.BufferStart() + chunk_len,
nullptr, rate_limiter_priority);
#ifndef NDEBUG
if (result.size() < read_len) {
// Fake an IO error to force db_stress fault injection to ignore
// truncated read errors
IGNORE_STATUS_IF_ERROR(Status::IOError());
}
#endif
if (!s.ok()) {
return s;
}
// Update the buffer offset and size.
bufs_[index].offset_ = rounddown_start;
bufs_[index].buffer_.Size(static_cast<size_t>(chunk_len) + result.size());
return s;
}
Status FilePrefetchBuffer::ReadAsync(const IOOptions& opts,
RandomAccessFileReader* reader,
Env::IOPriority rate_limiter_priority,
uint64_t read_len, uint64_t chunk_len,
uint64_t rounddown_start, uint32_t index) {
// callback for async read request.
auto fp = std::bind(&FilePrefetchBuffer::PrefetchAsyncCallback, this,
std::placeholders::_1, std::placeholders::_2);
FSReadRequest req;
Slice result;
req.len = read_len;
req.offset = rounddown_start + chunk_len;
req.result = result;
req.scratch = bufs_[index].buffer_.BufferStart() + chunk_len;
Status s = reader->ReadAsync(req, opts, fp, nullptr /*cb_arg*/, &io_handle_,
&del_fn_, rate_limiter_priority);
req.status.PermitUncheckedError();
if (s.ok()) {
async_read_in_progress_ = true;
}
return s;
}
Status FilePrefetchBuffer::Prefetch(const IOOptions& opts,
RandomAccessFileReader* reader,
uint64_t offset, size_t n,
Env::IOPriority rate_limiter_priority) {
if (!enable_ || reader == nullptr) {
return Status::OK();
}
TEST_SYNC_POINT("FilePrefetchBuffer::Prefetch:Start");
if (offset + n <= bufs_[curr_].offset_ + bufs_[curr_].buffer_.CurrentSize()) {
// All requested bytes are already in the curr_ buffer. So no need to Read
// again.
return Status::OK();
}
size_t alignment = reader->file()->GetRequiredBufferAlignment();
size_t offset_ = static_cast<size_t>(offset);
uint64_t rounddown_offset = Rounddown(offset_, alignment);
uint64_t roundup_end = Roundup(offset_ + n, alignment);
uint64_t roundup_len = roundup_end - rounddown_offset;
assert(roundup_len >= alignment);
assert(roundup_len % alignment == 0);
uint64_t chunk_len = 0;
CalculateOffsetAndLen(alignment, offset, roundup_len, curr_,
true /*refit_tail*/, chunk_len);
size_t read_len = static_cast<size_t>(roundup_len - chunk_len);
Status s = Read(opts, reader, rate_limiter_priority, read_len, chunk_len,
rounddown_offset, curr_);
return s;
}
// Copy data from src to third buffer.
void FilePrefetchBuffer::CopyDataToBuffer(uint32_t src, uint64_t& offset,
size_t& length) {
if (length == 0) {
return;
}
uint64_t copy_offset = (offset - bufs_[src].offset_);
size_t copy_len = 0;
if (offset + length <=
bufs_[src].offset_ + bufs_[src].buffer_.CurrentSize()) {
// All the bytes are in src.
copy_len = length;
} else {
copy_len = bufs_[src].buffer_.CurrentSize() - copy_offset;
}
memcpy(bufs_[2].buffer_.BufferStart() + bufs_[2].buffer_.CurrentSize(),
bufs_[src].buffer_.BufferStart() + copy_offset, copy_len);
bufs_[2].buffer_.Size(bufs_[2].buffer_.CurrentSize() + copy_len);
// Update offset and length.
offset += copy_len;
length -= copy_len;
// length > 0 indicates it has consumed all data from the src buffer and it
// still needs to read more other buffer.
if (length > 0) {
bufs_[src].buffer_.Clear();
}
}
// If async_read = true:
// async_read is enabled in case of sequential reads. So when
// buffers are switched, we clear the curr_ buffer as we assume the data has
// been consumed because of sequential reads.
//
// Scenarios for prefetching asynchronously:
// Case1: If both buffers are empty, prefetch n bytes
// synchronously in curr_
// and prefetch readahead_size_/2 async in second buffer.
// Case2: If second buffer has partial or full data, make it current and
// prefetch readahead_size_/2 async in second buffer. In case of
// partial data, prefetch remaining bytes from size n synchronously to
// fulfill the requested bytes request.
// Case3: If curr_ has partial data, prefetch remaining bytes from size n
// synchronously in curr_ to fulfill the requested bytes request and
// prefetch readahead_size_/2 bytes async in second buffer.
// Case4: If data is in both buffers, copy requested data from curr_ and second
// buffer to third buffer. If all requested bytes have been copied, do
// the asynchronous prefetching in second buffer.
Status FilePrefetchBuffer::PrefetchAsync(const IOOptions& opts,
RandomAccessFileReader* reader,
uint64_t offset, size_t length,
size_t readahead_size,
Env::IOPriority rate_limiter_priority,
bool& copy_to_third_buffer) {
if (!enable_) {
return Status::OK();
}
if (async_read_in_progress_ && fs_ != nullptr) {
// Wait for prefetch data to complete.
// No mutex is needed as PrefetchAsyncCallback updates the result in second
// buffer and FilePrefetchBuffer should wait for Poll before accessing the
// second buffer.
std::vector<void*> handles;
handles.emplace_back(io_handle_);
fs_->Poll(handles, 1).PermitUncheckedError();
}
// Reset and Release io_handle_ after the Poll API as request has been
// completed.
async_read_in_progress_ = false;
if (io_handle_ != nullptr && del_fn_ != nullptr) {
del_fn_(io_handle_);
io_handle_ = nullptr;
del_fn_ = nullptr;
}
TEST_SYNC_POINT("FilePrefetchBuffer::PrefetchAsync:Start");
Status s;
size_t prefetch_size = length + readahead_size;
size_t alignment = reader->file()->GetRequiredBufferAlignment();
// Index of second buffer.
uint32_t second = curr_ ^ 1;
// First clear the buffers if it contains outdated data. Outdated data can be
// because previous sequential reads were read from the cache instead of these
// buffer.
{
if (bufs_[curr_].buffer_.CurrentSize() > 0 &&
offset >= bufs_[curr_].offset_ + bufs_[curr_].buffer_.CurrentSize()) {
bufs_[curr_].buffer_.Clear();
}
if (bufs_[second].buffer_.CurrentSize() > 0 &&
offset >= bufs_[second].offset_ + bufs_[second].buffer_.CurrentSize()) {
bufs_[second].buffer_.Clear();
}
}
// If data is in second buffer, make it curr_. Second buffer can be either
// partial filled or full.
if (bufs_[second].buffer_.CurrentSize() > 0 &&
offset >= bufs_[second].offset_ &&
offset < bufs_[second].offset_ + bufs_[second].buffer_.CurrentSize()) {
// Clear the curr_ as buffers have been swapped and curr_ contains the
// outdated data and switch the buffers.
bufs_[curr_].buffer_.Clear();
curr_ = curr_ ^ 1;
second = curr_ ^ 1;
}
// After swap check if all the requested bytes are in curr_, it will go for
// async prefetching only.
if (bufs_[curr_].buffer_.CurrentSize() > 0 &&
offset + length <=
bufs_[curr_].offset_ + bufs_[curr_].buffer_.CurrentSize()) {
offset += length;
length = 0;
prefetch_size -= length;
}
// Data is overlapping i.e. some of the data is in curr_ buffer and remaining
// in second buffer.
if (bufs_[curr_].buffer_.CurrentSize() > 0 &&
bufs_[second].buffer_.CurrentSize() > 0 &&
offset >= bufs_[curr_].offset_ &&
offset < bufs_[curr_].offset_ + bufs_[curr_].buffer_.CurrentSize() &&
offset + length > bufs_[second].offset_) {
// Allocate new buffer to third buffer;
bufs_[2].buffer_.Clear();
bufs_[2].buffer_.Alignment(alignment);
bufs_[2].buffer_.AllocateNewBuffer(length);
bufs_[2].offset_ = offset;
copy_to_third_buffer = true;
// Move data from curr_ buffer to third.
CopyDataToBuffer(curr_, offset, length);
if (length == 0) {
// Requested data has been copied and curr_ still has unconsumed data.
return s;
}
CopyDataToBuffer(second, offset, length);
// Length == 0: All the requested data has been copied to third buffer. It
// should go for only async prefetching.
// Length > 0: More data needs to be consumed so it will continue async and
// sync prefetching and copy the remaining data to third buffer in the end.
// swap the buffers.
curr_ = curr_ ^ 1;
prefetch_size -= length;
}
// Update second again if swap happened.
second = curr_ ^ 1;
size_t _offset = static_cast<size_t>(offset);
// offset and size alignment for curr_ buffer with synchronous prefetching
uint64_t rounddown_start1 = Rounddown(_offset, alignment);
uint64_t roundup_end1 = Roundup(_offset + prefetch_size, alignment);
uint64_t roundup_len1 = roundup_end1 - rounddown_start1;
assert(roundup_len1 >= alignment);
assert(roundup_len1 % alignment == 0);
uint64_t chunk_len1 = 0;
uint64_t read_len1 = 0;
// For length == 0, skip the synchronous prefetching. read_len1 will be 0.
if (length > 0) {
CalculateOffsetAndLen(alignment, offset, roundup_len1, curr_,
false /*refit_tail*/, chunk_len1);
assert(roundup_len1 >= chunk_len1);
read_len1 = static_cast<size_t>(roundup_len1 - chunk_len1);
}
{
// offset and size alignment for second buffer for asynchronous
// prefetching
uint64_t rounddown_start2 = roundup_end1;
uint64_t roundup_end2 =
Roundup(rounddown_start2 + readahead_size, alignment);
// For length == 0, do the asynchronous prefetching in second instead of
// synchronous prefetching in curr_.
if (length == 0) {
rounddown_start2 =
bufs_[curr_].offset_ + bufs_[curr_].buffer_.CurrentSize();
roundup_end2 = Roundup(rounddown_start2 + prefetch_size, alignment);
}
uint64_t roundup_len2 = roundup_end2 - rounddown_start2;
uint64_t chunk_len2 = 0;
CalculateOffsetAndLen(alignment, rounddown_start2, roundup_len2, second,
false /*refit_tail*/, chunk_len2);
// Update the buffer offset.
bufs_[second].offset_ = rounddown_start2;
assert(roundup_len2 >= chunk_len2);
uint64_t read_len2 = static_cast<size_t>(roundup_len2 - chunk_len2);
ReadAsync(opts, reader, rate_limiter_priority, read_len2, chunk_len2,
rounddown_start2, second)
.PermitUncheckedError();
}
if (read_len1 > 0) {
s = Read(opts, reader, rate_limiter_priority, read_len1, chunk_len1,
rounddown_start1, curr_);
if (!s.ok()) {
return s;
}
}
// Copy remaining requested bytes to third_buffer.
if (copy_to_third_buffer && length > 0) {
CopyDataToBuffer(curr_, offset, length);
}
return s;
}
bool FilePrefetchBuffer::TryReadFromCache(const IOOptions& opts,
RandomAccessFileReader* reader,
uint64_t offset, size_t n,
Slice* result, Status* status,
Env::IOPriority rate_limiter_priority,
bool for_compaction /* = false */) {
if (track_min_offset_ && offset < min_offset_read_) {
min_offset_read_ = static_cast<size_t>(offset);
}
if (!enable_ || (offset < bufs_[curr_].offset_)) {
return false;
}
// If the buffer contains only a few of the requested bytes:
// If readahead is enabled: prefetch the remaining bytes + readahead bytes
// and satisfy the request.
// If readahead is not enabled: return false.
TEST_SYNC_POINT_CALLBACK("FilePrefetchBuffer::TryReadFromCache",
&readahead_size_);
if (offset + n > bufs_[curr_].offset_ + bufs_[curr_].buffer_.CurrentSize()) {
if (readahead_size_ > 0) {
Status s;
assert(reader != nullptr);
assert(max_readahead_size_ >= readahead_size_);
if (for_compaction) {
s = Prefetch(opts, reader, offset, std::max(n, readahead_size_),
rate_limiter_priority);
} else {
if (implicit_auto_readahead_) {
if (!IsEligibleForPrefetch(offset, n)) {
// Ignore status as Prefetch is not called.
s.PermitUncheckedError();
return false;
}
}
s = Prefetch(opts, reader, offset, n + readahead_size_,
rate_limiter_priority);
}
if (!s.ok()) {
if (status) {
*status = s;
}
#ifndef NDEBUG
IGNORE_STATUS_IF_ERROR(s);
#endif
return false;
}
readahead_size_ = std::min(max_readahead_size_, readahead_size_ * 2);
} else {
return false;
}
}
UpdateReadPattern(offset, n, false /*decrease_readaheadsize*/);
uint64_t offset_in_buffer = offset - bufs_[curr_].offset_;
*result = Slice(bufs_[curr_].buffer_.BufferStart() + offset_in_buffer, n);
return true;
}
// TODO akanksha: Merge this function with TryReadFromCache once async
// functionality is stable.
bool FilePrefetchBuffer::TryReadFromCacheAsync(
const IOOptions& opts, RandomAccessFileReader* reader, uint64_t offset,
size_t n, Slice* result, Status* status,
Env::IOPriority rate_limiter_priority, bool for_compaction /* = false */
) {
if (track_min_offset_ && offset < min_offset_read_) {
min_offset_read_ = static_cast<size_t>(offset);
}
if (!enable_ || (offset < bufs_[curr_].offset_)) {
return false;
}
bool prefetched = false;
bool copy_to_third_buffer = false;
// If the buffer contains only a few of the requested bytes:
// If readahead is enabled: prefetch the remaining bytes + readahead bytes
// and satisfy the request.
// If readahead is not enabled: return false.
TEST_SYNC_POINT_CALLBACK("FilePrefetchBuffer::TryReadFromCache",
&readahead_size_);
if (offset + n > bufs_[curr_].offset_ + bufs_[curr_].buffer_.CurrentSize()) {
if (readahead_size_ > 0) {
Status s;
assert(reader != nullptr);
assert(max_readahead_size_ >= readahead_size_);
if (for_compaction) {
s = Prefetch(opts, reader, offset, std::max(n, readahead_size_),
rate_limiter_priority);
} else {
if (implicit_auto_readahead_) {
if (!IsEligibleForPrefetch(offset, n)) {
// Ignore status as Prefetch is not called.
s.PermitUncheckedError();
return false;
}
}
// async prefetching is enabled if it's implicit_auto_readahead_ or
// explicit readahead_size_ is passed along with ReadOptions.async_io =
// true.
if (async_io_) {
// Prefetch n + readahead_size_/2 synchronously as remaining
// readahead_size_/2 will be prefetched asynchronously.
s = PrefetchAsync(opts, reader, offset, n, readahead_size_ / 2,
rate_limiter_priority, copy_to_third_buffer);
} else {
s = Prefetch(opts, reader, offset, n + readahead_size_,
rate_limiter_priority);
}
}
if (!s.ok()) {
if (status) {
*status = s;
}
#ifndef NDEBUG
IGNORE_STATUS_IF_ERROR(s);
#endif
return false;
}
prefetched = true;
} else {
return false;
}
}
UpdateReadPattern(offset, n, false /*decrease_readaheadsize*/);
uint32_t index = curr_;
if (copy_to_third_buffer) {
index = 2;
}
uint64_t offset_in_buffer = offset - bufs_[index].offset_;
*result = Slice(bufs_[index].buffer_.BufferStart() + offset_in_buffer, n);
if (prefetched) {
readahead_size_ = std::min(max_readahead_size_, readahead_size_ * 2);
}
return true;
}
void FilePrefetchBuffer::PrefetchAsyncCallback(const FSReadRequest& req,
void* /*cb_arg*/) {
uint32_t index = curr_ ^ 1;
#ifndef NDEBUG
if (req.result.size() < req.len) {
// Fake an IO error to force db_stress fault injection to ignore
// truncated read errors
IGNORE_STATUS_IF_ERROR(Status::IOError());
}
IGNORE_STATUS_IF_ERROR(req.status);
#endif
if (req.status.ok()) {
if (req.offset + req.result.size() <=
bufs_[index].offset_ + bufs_[index].buffer_.CurrentSize()) {
// All requested bytes are already in the buffer. So no need to update.
return;
}
if (req.offset < bufs_[index].offset_) {
// Next block to be read has changed (Recent read was not a sequential
// read). So ignore this read.
return;
}
size_t current_size = bufs_[index].buffer_.CurrentSize();
bufs_[index].buffer_.Size(current_size + req.result.size());
}
}
} // namespace ROCKSDB_NAMESPACE