//! Utilities for distributed key generation: uni- and bivariate polynomials and commitments. //! //! If `G` is a group of prime order `r` (written additively), and `g` is a generator, then //! multiplication by integers factors through `r`, so the map `x -> x * g` (the sum of `x` //! copies of `g`) is a homomorphism from the field `Fr` of integers modulo `r` to `G`. If the //! _discrete logarithm_ is hard, i.e. it is infeasible to reverse this map, then `x * g` can be //! considered a _commitment_ to `x`: By publishing it, you can guarantee to others that you won't //! change your mind about the value `x`, without revealing it. //! //! This concept extends to polynomials: If you have a polynomial `f` over `Fr`, defined as //! `a * X * X + b * X + c`, you can publish `a * g`, `b * g` and `c * g`. Then others will be able //! to verify any single value `f(x)` of the polynomial without learning the original polynomial, //! because `f(x) * g == x * x * (a * g) + x * (b * g) + (c * g)`. Only after learning three (in //! general `degree + 1`) values, they can interpolate `f` itself. //! //! This module defines univariate polynomials (in one variable) and _symmetric_ bivariate //! polynomials (in two variables) over a field `Fr`, as well as their _commitments_ in `G`. use std::borrow::Borrow; use std::fmt::{self, Debug, Formatter}; use std::hash::{Hash, Hasher}; use std::mem::size_of_val; use std::{cmp, iter, ops}; use pairing::{CurveAffine, CurveProjective, Field}; use rand::Rng; use serde_derive::{Deserialize, Serialize}; use crate::error::{Error, Result}; use crate::into_fr::IntoFr; use crate::secret::{clear_fr, ContainsSecret, MemRange, Safe}; use crate::{Fr, G1Affine, G1}; /// A univariate polynomial in the prime field. #[derive(Serialize, Deserialize, PartialEq, Eq)] pub struct Poly { /// The coefficients of a polynomial. #[serde(with = "super::serde_impl::field_vec")] pub(super) coeff: Vec, } /// Creates a new `Poly` with the same coefficients as another polynomial. impl Clone for Poly { fn clone(&self) -> Self { Poly::from(self.coeff.clone()) } } /// A debug statement where the `coeff` vector of prime field elements has been redacted. impl Debug for Poly { fn fmt(&self, f: &mut Formatter) -> fmt::Result { f.debug_struct("Poly").field("coeff", &"...").finish() } } #[allow(clippy::suspicious_op_assign_impl)] impl> ops::AddAssign for Poly { fn add_assign(&mut self, rhs: B) { let len = self.coeff.len(); let rhs_len = rhs.borrow().coeff.len(); if rhs_len > len { self.coeff.resize(rhs_len, Fr::zero()); } for (self_c, rhs_c) in self.coeff.iter_mut().zip(&rhs.borrow().coeff) { Field::add_assign(self_c, rhs_c); } self.remove_zeros(); } } impl<'a, B: Borrow> ops::Add for &'a Poly { type Output = Poly; fn add(self, rhs: B) -> Poly { (*self).clone() + rhs } } impl> ops::Add for Poly { type Output = Poly; fn add(mut self, rhs: B) -> Poly { self += rhs; self } } impl<'a> ops::Add for Poly { type Output = Poly; fn add(mut self, rhs: Fr) -> Self::Output { if self.is_zero() && !rhs.is_zero() { self.coeff.push(rhs); } else { self.coeff[0].add_assign(&rhs); self.remove_zeros(); } self } } impl<'a> ops::Add for Poly { type Output = Poly; fn add(self, rhs: u64) -> Self::Output { self + rhs.into_fr() } } impl> ops::SubAssign for Poly { fn sub_assign(&mut self, rhs: B) { let len = self.coeff.len(); let rhs_len = rhs.borrow().coeff.len(); if rhs_len > len { self.coeff.resize(rhs_len, Fr::zero()); } for (self_c, rhs_c) in self.coeff.iter_mut().zip(&rhs.borrow().coeff) { Field::sub_assign(self_c, rhs_c); } self.remove_zeros(); } } impl<'a, B: Borrow> ops::Sub for &'a Poly { type Output = Poly; fn sub(self, rhs: B) -> Poly { (*self).clone() - rhs } } impl> ops::Sub for Poly { type Output = Poly; fn sub(mut self, rhs: B) -> Poly { self -= rhs; self } } // Clippy thinks using `+` in a `Sub` implementation is suspicious. #[allow(clippy::suspicious_arithmetic_impl)] impl<'a> ops::Sub for Poly { type Output = Poly; fn sub(self, mut rhs: Fr) -> Self::Output { rhs.negate(); self + rhs } } impl<'a> ops::Sub for Poly { type Output = Poly; fn sub(self, rhs: u64) -> Self::Output { self - rhs.into_fr() } } // Clippy thinks using any `+` and `-` in a `Mul` implementation is suspicious. #[allow(clippy::suspicious_arithmetic_impl)] impl<'a, B: Borrow> ops::Mul for &'a Poly { type Output = Poly; fn mul(self, rhs: B) -> Self::Output { let rhs = rhs.borrow(); if rhs.is_zero() || self.is_zero() { return Poly::zero(); } let n_coeffs = self.coeff.len() + rhs.coeff.len() - 1; let mut coeffs = vec![Fr::zero(); n_coeffs]; let mut tmp = Safe::new(Box::new(Fr::zero())); for (i, ca) in self.coeff.iter().enumerate() { for (j, cb) in rhs.coeff.iter().enumerate() { *tmp = *ca; tmp.mul_assign(cb); coeffs[i + j].add_assign(&*tmp); } } Poly::from(coeffs) } } impl> ops::Mul for Poly { type Output = Poly; fn mul(self, rhs: B) -> Self::Output { &self * rhs } } impl> ops::MulAssign for Poly { fn mul_assign(&mut self, rhs: B) { *self = &*self * rhs; } } impl ops::MulAssign for Poly { fn mul_assign(&mut self, rhs: Fr) { if rhs.is_zero() { self.zero_secret(); self.coeff.clear(); } else { for c in &mut self.coeff { Field::mul_assign(c, &rhs); } } } } impl<'a> ops::Mul<&'a Fr> for Poly { type Output = Poly; fn mul(mut self, rhs: &Fr) -> Self::Output { if rhs.is_zero() { self.zero_secret(); self.coeff.clear(); } else { self.coeff.iter_mut().for_each(|c| c.mul_assign(rhs)); } self } } impl ops::Mul for Poly { type Output = Poly; fn mul(self, rhs: Fr) -> Self::Output { let rhs = &rhs; self * rhs } } impl<'a> ops::Mul<&'a Fr> for &'a Poly { type Output = Poly; fn mul(self, rhs: &Fr) -> Self::Output { (*self).clone() * rhs } } impl<'a> ops::Mul for &'a Poly { type Output = Poly; fn mul(self, rhs: Fr) -> Self::Output { (*self).clone() * rhs } } impl ops::Mul for Poly { type Output = Poly; fn mul(self, rhs: u64) -> Self::Output { self * rhs.into_fr() } } impl Drop for Poly { fn drop(&mut self) { self.zero_secret(); } } /// Creates a new `Poly` instance from a vector of prime field elements representing the /// coefficients of the polynomial. impl From> for Poly { fn from(coeff: Vec) -> Self { Poly { coeff } } } impl ContainsSecret for Poly { fn secret_memory(&self) -> MemRange { let ptr = self.coeff.as_ptr() as *mut u8; let n_bytes = size_of_val(self.coeff.as_slice()); MemRange { ptr, n_bytes } } } impl Poly { /// Creates a random polynomial. /// /// # Panics /// /// Panics if the `degree` is too large for the coefficients to fit into a `Vec`. pub fn random(degree: usize, rng: &mut R) -> Self { Poly::try_random(degree, rng) .unwrap_or_else(|e| panic!("Failed to create random `Poly`: {}", e)) } /// Creates a random polynomial. This constructor is identical to the `Poly::random()` /// constructor in every way except that this constructor will return an `Err` where /// `try_random` would return an error. pub fn try_random(degree: usize, rng: &mut R) -> Result { if degree == usize::max_value() { return Err(Error::DegreeTooHigh); } let coeff: Vec = (0..=degree).map(|_| rng.gen()).collect(); Ok(Poly::from(coeff)) } /// Returns the polynomial with constant value `0`. pub fn zero() -> Self { Poly { coeff: vec![] } } /// Returns `true` if the polynomial is the constant value `0`. pub fn is_zero(&self) -> bool { self.coeff.iter().all(|coeff| coeff.is_zero()) } /// Returns the polynomial with constant value `1`. pub fn one() -> Self { Poly::constant(Fr::one()) } /// Returns the polynomial with constant value `c`. pub fn constant(c: Fr) -> Self { // We create a raw pointer to the field element within this method's stack frame so we can // overwrite that portion of memory with zeros once we have copied the element onto the // heap as part of the vector of polynomial coefficients. let fr_ptr = &c as *const Fr; let poly = Poly::from(vec![c]); clear_fr(fr_ptr); poly } /// Returns the identity function, i.e. the polynomial "`x`". pub fn identity() -> Self { Poly::monomial(1) } /// Returns the (monic) monomial: `x.pow(degree)`. pub fn monomial(degree: usize) -> Self { let coeff: Vec = iter::repeat(Fr::zero()) .take(degree) .chain(iter::once(Fr::one())) .collect(); Poly::from(coeff) } /// Returns the unique polynomial `f` of degree `samples.len() - 1` with the given values /// `(x, f(x))`. pub fn interpolate(samples_repr: I) -> Self where I: IntoIterator, T: IntoFr, U: IntoFr, { let convert = |(x, y): (T, U)| (x.into_fr(), y.into_fr()); let samples: Vec<(Fr, Fr)> = samples_repr.into_iter().map(convert).collect(); Poly::compute_interpolation(&samples) } /// Returns the degree. pub fn degree(&self) -> usize { self.coeff.len().saturating_sub(1) } /// Returns the value at the point `i`. pub fn evaluate(&self, i: T) -> Fr { let mut result = match self.coeff.last() { None => return Fr::zero(), Some(c) => *c, }; let x = i.into_fr(); for c in self.coeff.iter().rev().skip(1) { result.mul_assign(&x); result.add_assign(c); } result } /// Returns the corresponding commitment. pub fn commitment(&self) -> Commitment { let to_g1 = |c: &Fr| G1Affine::one().mul(*c); Commitment { coeff: self.coeff.iter().map(to_g1).collect(), } } /// Removes all trailing zero coefficients. fn remove_zeros(&mut self) { let zeros = self.coeff.iter().rev().take_while(|c| c.is_zero()).count(); let len = self.coeff.len() - zeros; self.coeff.truncate(len); } /// Returns the unique polynomial `f` of degree `samples.len() - 1` with the given values /// `(x, f(x))`. fn compute_interpolation(samples: &[(Fr, Fr)]) -> Self { if samples.is_empty() { return Poly::zero(); } // Interpolates on the first `i` samples. let mut poly = Poly::constant(samples[0].1); let mut minus_s0 = samples[0].0; minus_s0.negate(); // Is zero on the first `i` samples. let mut base = Poly::from(vec![minus_s0, Fr::one()]); // We update `base` so that it is always zero on all previous samples, and `poly` so that // it has the correct values on the previous samples. for (ref x, ref y) in &samples[1..] { // Scale `base` so that its value at `x` is the difference between `y` and `poly`'s // current value at `x`: Adding it to `poly` will then make it correct for `x`. let mut diff = *y; diff.sub_assign(&poly.evaluate(x)); let base_val = base.evaluate(x); diff.mul_assign(&base_val.inverse().expect("sample points must be distinct")); base *= diff; poly += &base; // Finally, multiply `base` by X - x, so that it is zero at `x`, too, now. let mut minus_x = *x; minus_x.negate(); base *= Poly::from(vec![minus_x, Fr::one()]); } poly } /// Generates a non-redacted debug string. This method differs from /// the `Debug` implementation in that it *does* leak the secret prime /// field elements. pub fn reveal(&self) -> String { format!("Poly {{ coeff: {:?} }}", self.coeff) } } /// A commitment to a univariate polynomial. #[derive(Debug, Clone, Serialize, Deserialize, PartialEq, Eq)] pub struct Commitment { /// The coefficients of the polynomial. #[serde(with = "super::serde_impl::projective_vec")] pub(super) coeff: Vec, } impl Hash for Commitment { fn hash(&self, state: &mut H) { self.coeff.len().hash(state); for c in &self.coeff { c.into_affine().into_compressed().as_ref().hash(state); } } } impl> ops::AddAssign for Commitment { fn add_assign(&mut self, rhs: B) { let len = cmp::max(self.coeff.len(), rhs.borrow().coeff.len()); self.coeff.resize(len, G1::zero()); for (self_c, rhs_c) in self.coeff.iter_mut().zip(&rhs.borrow().coeff) { self_c.add_assign(rhs_c); } self.remove_zeros(); } } impl<'a, B: Borrow> ops::Add for &'a Commitment { type Output = Commitment; fn add(self, rhs: B) -> Commitment { (*self).clone() + rhs } } impl> ops::Add for Commitment { type Output = Commitment; fn add(mut self, rhs: B) -> Commitment { self += rhs; self } } impl Commitment { /// Returns the polynomial's degree. pub fn degree(&self) -> usize { self.coeff.len() - 1 } /// Returns the `i`-th public key share. pub fn evaluate(&self, i: T) -> G1 { let mut result = match self.coeff.last() { None => return G1::zero(), Some(c) => *c, }; let x = i.into_fr(); for c in self.coeff.iter().rev().skip(1) { result.mul_assign(x); result.add_assign(c); } result } /// Removes all trailing zero coefficients. fn remove_zeros(&mut self) { let zeros = self.coeff.iter().rev().take_while(|c| c.is_zero()).count(); let len = self.coeff.len() - zeros; self.coeff.truncate(len) } } /// A symmetric bivariate polynomial in the prime field. /// /// This can be used for Verifiable Secret Sharing and Distributed Key Generation. See the module /// documentation for details. pub struct BivarPoly { /// The polynomial's degree in each of the two variables. degree: usize, /// The coefficients of the polynomial. Coefficient `(i, j)` for `i <= j` is in position /// `j * (j + 1) / 2 + i`. coeff: Vec, } impl Clone for BivarPoly { fn clone(&self) -> Self { BivarPoly { degree: self.degree, coeff: self.coeff.clone(), } } } impl Drop for BivarPoly { fn drop(&mut self) { self.zero_secret(); } } /// A debug statement where the `coeff` vector has been redacted. impl Debug for BivarPoly { fn fmt(&self, f: &mut Formatter) -> fmt::Result { f.debug_struct("BivarPoly") .field("degree", &self.degree) .field("coeff", &"...") .finish() } } impl ContainsSecret for BivarPoly { fn secret_memory(&self) -> MemRange { let ptr = self.coeff.as_ptr() as *const Fr as *mut u8; let n_bytes = size_of_val(self.coeff.as_slice()); MemRange { ptr, n_bytes } } } impl BivarPoly { /// Creates a random polynomial. /// /// # Panics /// /// Panics if the degree is too high for the coefficients to fit into a `Vec`. pub fn random(degree: usize, rng: &mut R) -> Self { BivarPoly::try_random(degree, rng).unwrap_or_else(|e| { panic!( "Failed to create random `BivarPoly` of degree {}: {}", degree, e ) }) } /// Creates a random polynomial. pub fn try_random(degree: usize, rng: &mut R) -> Result { let len = coeff_pos(degree, degree) .and_then(|l| l.checked_add(1)) .ok_or(Error::DegreeTooHigh)?; let poly = BivarPoly { degree, coeff: (0..len).map(|_| rng.gen()).collect(), }; Ok(poly) } /// Returns the polynomial's degree; which is the same in both variables. pub fn degree(&self) -> usize { self.degree } /// Returns the polynomial's value at the point `(x, y)`. pub fn evaluate(&self, x: T, y: T) -> Fr { let x_pow = self.powers(x); let y_pow = self.powers(y); // TODO: Can we save a few multiplication steps here due to the symmetry? let mut result = Fr::zero(); for (i, x_pow_i) in x_pow.into_iter().enumerate() { for (j, y_pow_j) in y_pow.iter().enumerate() { let index = coeff_pos(i, j).expect("polynomial degree too high"); let mut summand = self.coeff[index]; summand.mul_assign(&x_pow_i); summand.mul_assign(y_pow_j); result.add_assign(&summand); } } result } /// Returns the `x`-th row, as a univariate polynomial. pub fn row(&self, x: T) -> Poly { let x_pow = self.powers(x); let coeff: Vec = (0..=self.degree) .map(|i| { // TODO: clear these secrets from the stack. let mut result = Fr::zero(); for (j, x_pow_j) in x_pow.iter().enumerate() { let index = coeff_pos(i, j).expect("polynomial degree too high"); let mut summand = self.coeff[index]; summand.mul_assign(x_pow_j); result.add_assign(&summand); } result }) .collect(); Poly::from(coeff) } /// Returns the corresponding commitment. That information can be shared publicly. pub fn commitment(&self) -> BivarCommitment { let to_pub = |c: &Fr| G1Affine::one().mul(*c); BivarCommitment { degree: self.degree, coeff: self.coeff.iter().map(to_pub).collect(), } } /// Returns the `0`-th to `degree`-th power of `x`. fn powers(&self, x: T) -> Vec { powers(x, self.degree) } /// Generates a non-redacted debug string. This method differs from the /// `Debug` implementation in that it *does* leak the the struct's /// internal state. pub fn reveal(&self) -> String { format!( "BivarPoly {{ degree: {}, coeff: {:?} }}", self.degree, self.coeff ) } } /// A commitment to a symmetric bivariate polynomial. #[derive(Debug, Clone, Eq, PartialEq)] pub struct BivarCommitment { /// The polynomial's degree in each of the two variables. pub(crate) degree: usize, /// The commitments to the coefficients. pub(crate) coeff: Vec, } impl Hash for BivarCommitment { fn hash(&self, state: &mut H) { self.degree.hash(state); for c in &self.coeff { c.into_affine().into_compressed().as_ref().hash(state); } } } impl BivarCommitment { /// Returns the polynomial's degree: It is the same in both variables. pub fn degree(&self) -> usize { self.degree } /// Returns the commitment's value at the point `(x, y)`. pub fn evaluate(&self, x: T, y: T) -> G1 { let x_pow = self.powers(x); let y_pow = self.powers(y); // TODO: Can we save a few multiplication steps here due to the symmetry? let mut result = G1::zero(); for (i, x_pow_i) in x_pow.into_iter().enumerate() { for (j, y_pow_j) in y_pow.iter().enumerate() { let index = coeff_pos(i, j).expect("polynomial degree too high"); let mut summand = self.coeff[index]; summand.mul_assign(x_pow_i); summand.mul_assign(*y_pow_j); result.add_assign(&summand); } } result } /// Returns the `x`-th row, as a commitment to a univariate polynomial. pub fn row(&self, x: T) -> Commitment { let x_pow = self.powers(x); let coeff: Vec = (0..=self.degree) .map(|i| { let mut result = G1::zero(); for (j, x_pow_j) in x_pow.iter().enumerate() { let index = coeff_pos(i, j).expect("polynomial degree too high"); let mut summand = self.coeff[index]; summand.mul_assign(*x_pow_j); result.add_assign(&summand); } result }) .collect(); Commitment { coeff } } /// Returns the `0`-th to `degree`-th power of `x`. fn powers(&self, x: T) -> Vec { powers(x, self.degree) } } /// Returns the `0`-th to `degree`-th power of `x`. fn powers(into_x: T, degree: usize) -> Vec { let x = into_x.into_fr(); let mut x_pow_i = Fr::one(); iter::once(x_pow_i) .chain((0..degree).map(|_| { x_pow_i.mul_assign(&x); x_pow_i })) .collect() } /// Returns the position of coefficient `(i, j)` in the vector describing a symmetric bivariate /// polynomial. If `i` or `j` are too large to represent the position as a `usize`, `None` is /// returned. pub(crate) fn coeff_pos(i: usize, j: usize) -> Option { // Since the polynomial is symmetric, we can order such that `j >= i`. let (j, i) = if j >= i { (j, i) } else { (i, j) }; i.checked_add(j.checked_mul(j.checked_add(1)?)? / 2) } #[cfg(test)] mod tests { use std::collections::BTreeMap; use super::{coeff_pos, BivarPoly, IntoFr, Poly}; use super::{Fr, G1Affine}; use pairing::{CurveAffine, Field}; use rand; #[test] fn test_coeff_pos() { let mut i = 0; let mut j = 0; for n in 0..100 { assert_eq!(Some(n), coeff_pos(i, j)); if i >= j { j += 1; i = 0; } else { i += 1; } } let too_large = 1 << (0usize.count_zeros() / 2); assert_eq!(None, coeff_pos(0, too_large)); } #[test] fn poly() { // The polynomial 5 X³ + X - 2. let x_pow_3 = Poly::monomial(3); let x_pow_1 = Poly::monomial(1); let poly = x_pow_3 * 5 + x_pow_1 - 2; let coeff: Vec<_> = [-2, 1, 0, 5].into_iter().map(IntoFr::into_fr).collect(); assert_eq!(Poly { coeff }, poly); let samples = vec![(-1, -8), (2, 40), (3, 136), (5, 628)]; for &(x, y) in &samples { assert_eq!(y.into_fr(), poly.evaluate(x)); } let interp = Poly::interpolate(samples); assert_eq!(interp, poly); } #[test] fn distributed_key_generation() { let mut rng = rand::thread_rng(); let dealer_num = 3; let node_num = 5; let faulty_num = 2; // For distributed key generation, a number of dealers, only one of who needs to be honest, // generates random bivariate polynomials and publicly commits to them. In partice, the // dealers can e.g. be any `faulty_num + 1` nodes. let bi_polys: Vec = (0..dealer_num) .map(|_| BivarPoly::random(faulty_num, &mut rng)) .collect(); let pub_bi_commits: Vec<_> = bi_polys.iter().map(BivarPoly::commitment).collect(); let mut sec_keys = vec![Fr::zero(); node_num]; // Each dealer sends row `m` to node `m`, where the index starts at `1`. Don't send row `0` // to anyone! The nodes verify their rows, and send _value_ `s` on to node `s`. They again // verify the values they received, and collect them. for (bi_poly, bi_commit) in bi_polys.iter().zip(&pub_bi_commits) { for m in 1..=node_num { // Node `m` receives its row and verifies it. let row_poly = bi_poly.row(m); let row_commit = bi_commit.row(m); assert_eq!(row_poly.commitment(), row_commit); // Node `s` receives the `s`-th value and verifies it. for s in 1..=node_num { let val = row_poly.evaluate(s); let val_g1 = G1Affine::one().mul(val); assert_eq!(bi_commit.evaluate(m, s), val_g1); // The node can't verify this directly, but it should have the correct value: assert_eq!(bi_poly.evaluate(m, s), val); } // A cheating dealer who modified the polynomial would be detected. let x_pow_2 = Poly::monomial(2); let five = Poly::constant(5.into_fr()); let wrong_poly = row_poly.clone() + x_pow_2 * five; assert_ne!(wrong_poly.commitment(), row_commit); // If `2 * faulty_num + 1` nodes confirm that they received a valid row, then at // least `faulty_num + 1` honest ones did, and sent the correct values on to node // `s`. So every node received at least `faulty_num + 1` correct entries of their // column/row (remember that the bivariate polynomial is symmetric). They can // reconstruct the full row and in particular value `0` (which no other node knows, // only the dealer). E.g. let's say nodes `1`, `2` and `4` are honest. Then node // `m` received three correct entries from that row: let received: BTreeMap<_, _> = [1, 2, 4] .iter() .map(|&i| (i, bi_poly.evaluate(m, i))) .collect(); let my_row = Poly::interpolate(received); assert_eq!(bi_poly.evaluate(m, 0), my_row.evaluate(0)); assert_eq!(row_poly, my_row); // The node sums up all values number `0` it received from the different dealer. No // dealer and no other node knows the sum in the end. sec_keys[m - 1].add_assign(&my_row.evaluate(Fr::zero())); } } // Each node now adds up all the first values of the rows it received from the different // dealers (excluding the dealers where fewer than `2 * faulty_num + 1` nodes confirmed). // The whole first column never gets added up in practice, because nobody has all the // information. We do it anyway here; entry `0` is the secret key that is not known to // anyone, neither a dealer, nor a node: let mut sec_key_set = Poly::zero(); for bi_poly in &bi_polys { sec_key_set += bi_poly.row(0); } for m in 1..=node_num { assert_eq!(sec_key_set.evaluate(m), sec_keys[m - 1]); } // The sum of the first rows of the public commitments is the commitment to the secret key // set. let mut sum_commit = Poly::zero().commitment(); for bi_commit in &pub_bi_commits { sum_commit += bi_commit.row(0); } assert_eq!(sum_commit, sec_key_set.commitment()); } }