//! Utilities for distributed key generation: uni- and bivariate polynomials and commitments. //! //! If `G` is a group of prime order `r` (written additively), and `g` is a generator, then //! multiplication by integers factors through `r`, so the map `x -> x * g` (the sum of `x` //! copies of `g`) is a homomorphism from the field `Fr` of integers modulo `r` to `G`. If the //! _discrete logarithm_ is hard, i.e. it is infeasible to reverse this map, then `x * g` can be //! considered a _commitment_ to `x`: By publishing it, you can guarantee to others that you won't //! change your mind about the value `x`, without revealing it. //! //! This concept extends to polynomials: If you have a polynomial `f` over `Fr`, defined as //! `a * X * X + b * X + c`, you can publish `a * g`, `b * g` and `c * g`. Then others will be able //! to verify any single value `f(x)` of the polynomial without learning the original polynomial, //! because `f(x) * g == x * x * (a * g) + x * (b * g) + (c * g)`. Only after learning three (in //! general `degree + 1`) values, they can interpolate `f` itself. //! //! This module defines univariate polynomials (in one variable) and _symmetric_ bivariate //! polynomials (in two variables) over a field `Fr`, as well as their _commitments_ in `G`. use std::borrow::Borrow; use std::hash::{Hash, Hasher}; use std::{cmp, iter, ops}; use pairing::bls12_381::{Fr, FrRepr, G1, G1Affine}; use pairing::{CurveAffine, CurveProjective, Field, PrimeField}; use rand::Rng; /// A univariate polynomial in the prime field. #[derive(Clone, Debug, Serialize, Deserialize, PartialEq, Eq)] pub struct Poly { /// The coefficients of a polynomial. #[serde(with = "super::serde_impl::field_vec")] pub(super) coeff: Vec, } impl> ops::AddAssign for Poly { fn add_assign(&mut self, rhs: B) { let len = cmp::max(self.coeff.len(), rhs.borrow().coeff.len()); self.coeff.resize(len, Fr::zero()); for (self_c, rhs_c) in self.coeff.iter_mut().zip(&rhs.borrow().coeff) { self_c.add_assign(rhs_c); } self.remove_zeros(); } } impl<'a, B: Borrow> ops::Add for &'a Poly { type Output = Poly; fn add(self, rhs: B) -> Poly { (*self).clone() + rhs } } impl> ops::Add for Poly { type Output = Poly; fn add(mut self, rhs: B) -> Poly { self += rhs; self } } impl> ops::SubAssign for Poly { fn sub_assign(&mut self, rhs: B) { let len = cmp::max(self.coeff.len(), rhs.borrow().coeff.len()); self.coeff.resize(len, Fr::zero()); for (self_c, rhs_c) in self.coeff.iter_mut().zip(&rhs.borrow().coeff) { self_c.sub_assign(rhs_c); } self.remove_zeros(); } } impl<'a, B: Borrow> ops::Sub for &'a Poly { type Output = Poly; fn sub(self, rhs: B) -> Poly { (*self).clone() - rhs } } impl> ops::Sub for Poly { type Output = Poly; fn sub(mut self, rhs: B) -> Poly { self -= rhs; self } } // Clippy thinks using any `+` and `-` in a `Mul` implementation is suspicious. #[cfg_attr(feature = "cargo-clippy", allow(suspicious_arithmetic_impl))] impl<'a, B: Borrow> ops::Mul for &'a Poly { type Output = Poly; fn mul(self, rhs: B) -> Self::Output { let coeff = (0..(self.coeff.len() + rhs.borrow().coeff.len() - 1)) .map(|i| { let mut c = Fr::zero(); for j in i.saturating_sub(rhs.borrow().degree())..(1 + cmp::min(i, self.degree())) { let mut s = self.coeff[j]; s.mul_assign(&rhs.borrow().coeff[i - j]); c.add_assign(&s); } c }) .collect(); Poly { coeff } } } impl> ops::Mul for Poly { type Output = Poly; fn mul(self, rhs: B) -> Self::Output { &self * rhs } } impl> ops::MulAssign for Poly { fn mul_assign(&mut self, rhs: B) { *self = &*self * rhs; } } impl Poly { /// Creates a random polynomial. pub fn random(degree: usize, rng: &mut R) -> Self { Poly { coeff: (0..(degree + 1)).map(|_| rng.gen()).collect(), } } /// Returns the polynomial with constant value `0`. pub fn zero() -> Self { Poly { coeff: Vec::new() } } /// Returns the polynomial with constant value `1`. pub fn one() -> Self { Self::monomial(0) } /// Returns the polynomial with constant value `c`. pub fn constant(c: Fr) -> Self { Poly { coeff: vec![c] } } /// Returns the identity function, i.e. the polynomial "`x`". pub fn identity() -> Self { Self::monomial(1) } /// Returns the (monic) monomial "`x.pow(degree)`". pub fn monomial(degree: usize) -> Self { Poly { coeff: iter::repeat(Fr::zero()) .take(degree) .chain(iter::once(Fr::one())) .collect(), } } /// Returns the unique polynomial `f` of degree `samples.len() - 1` with the given values /// `(x, f(x))`. pub fn interpolate<'a, T, I>(samples_repr: I) -> Self where I: IntoIterator, T: Into + Clone + 'a, { let convert = |(x_repr, y): (&T, &Fr)| { let x = Fr::from_repr(x_repr.clone().into()).expect("invalid index"); (x, *y) }; let samples: Vec<(Fr, Fr)> = samples_repr.into_iter().map(convert).collect(); Self::compute_interpolation(&samples) } /// Returns the degree. pub fn degree(&self) -> usize { self.coeff.len() - 1 } /// Returns the value at the point `i`. pub fn evaluate>(&self, i: T) -> Fr { let mut result = match self.coeff.last() { None => return Fr::zero(), Some(c) => *c, }; let x = Fr::from_repr(i.into()).expect("invalid index"); for c in self.coeff.iter().rev().skip(1) { result.mul_assign(&x); result.add_assign(c); } result } /// Returns the corresponding commitment. pub fn commitment(&self) -> Commitment { let to_g1 = |c: &Fr| G1Affine::one().mul(*c); Commitment { coeff: self.coeff.iter().map(to_g1).collect(), } } /// Removes all trailing zero coefficients. fn remove_zeros(&mut self) { let zeros = self.coeff.iter().rev().take_while(|c| c.is_zero()).count(); let len = self.coeff.len() - zeros; self.coeff.truncate(len) } /// Returns the unique polynomial `f` of degree `samples.len() - 1` with the given values /// `(x, f(x))`. fn compute_interpolation(samples: &[(Fr, Fr)]) -> Self { if samples.is_empty() { return Poly::zero(); } else if samples.len() == 1 { return Poly::constant(samples[0].1); } // The degree is at least 1 now. let degree = samples.len() - 1; // Interpolate all but the last sample. let prev = Self::compute_interpolation(&samples[..degree]); let (x, mut y) = samples[degree]; // The last sample. y.sub_assign(&prev.evaluate(x)); let step = Self::lagrange(x, &samples[..degree]); prev + step * Self::constant(y) } /// Returns the Lagrange base polynomial that is `1` in `p` and `0` in every `samples[i].0`. fn lagrange(p: Fr, samples: &[(Fr, Fr)]) -> Self { let mut result = Self::one(); for &(sx, _) in samples { let mut denom = p; denom.sub_assign(&sx); denom = denom.inverse().expect("sample points must be distinct"); result *= (Self::identity() - Self::constant(sx)) * Self::constant(denom); } result } } /// A commitment to a univariate polynomial. #[derive(Debug, Clone, Serialize, Deserialize, PartialEq, Eq)] pub struct Commitment { /// The coefficients of the polynomial. #[serde(with = "super::serde_impl::projective_vec")] pub(super) coeff: Vec, } impl Hash for Commitment { fn hash(&self, state: &mut H) { self.coeff.len().hash(state); for c in &self.coeff { c.into_affine().into_compressed().as_ref().hash(state); } } } impl> ops::AddAssign for Commitment { fn add_assign(&mut self, rhs: B) { let len = cmp::max(self.coeff.len(), rhs.borrow().coeff.len()); self.coeff.resize(len, G1::zero()); for (self_c, rhs_c) in self.coeff.iter_mut().zip(&rhs.borrow().coeff) { self_c.add_assign(rhs_c); } self.remove_zeros(); } } impl<'a, B: Borrow> ops::Add for &'a Commitment { type Output = Commitment; fn add(self, rhs: B) -> Commitment { (*self).clone() + rhs } } impl> ops::Add for Commitment { type Output = Commitment; fn add(mut self, rhs: B) -> Commitment { self += rhs; self } } impl Commitment { /// Returns the polynomial's degree. pub fn degree(&self) -> usize { self.coeff.len() - 1 } /// Returns the `i`-th public key share. pub fn evaluate>(&self, i: T) -> G1 { let mut result = match self.coeff.last() { None => return G1::zero(), Some(c) => *c, }; let x = Fr::from_repr(i.into()).expect("invalid index"); for c in self.coeff.iter().rev().skip(1) { result.mul_assign(x); result.add_assign(c); } result } /// Removes all trailing zero coefficients. fn remove_zeros(&mut self) { let zeros = self.coeff.iter().rev().take_while(|c| c.is_zero()).count(); let len = self.coeff.len() - zeros; self.coeff.truncate(len) } } /// A symmetric bivariate polynomial in the prime field. /// /// This can be used for Verifiable Secret Sharing and Distributed Key Generation. See the module /// documentation for details. #[derive(Debug, Clone)] pub struct BivarPoly { /// The polynomial's degree in each of the two variables. degree: usize, /// The coefficients of the polynomial. Coefficient `(i, j)` for `i <= j` is in position /// `j * (j + 1) / 2 + i`. coeff: Vec, } impl BivarPoly { /// Creates a random polynomial. pub fn random(degree: usize, rng: &mut R) -> Self { BivarPoly { degree, coeff: (0..coeff_pos(degree + 1, 0)).map(|_| rng.gen()).collect(), } } /// Returns the polynomial's degree: It is the same in both variables. pub fn degree(&self) -> usize { self.degree } /// Returns the polynomial's value at the point `(x, y)`. pub fn evaluate>(&self, x: T, y: T) -> Fr { let x_pow = self.powers(x); let y_pow = self.powers(y); // TODO: Can we save a few multiplication steps here due to the symmetry? let mut result = Fr::zero(); for (i, x_pow_i) in x_pow.into_iter().enumerate() { for (j, y_pow_j) in y_pow.iter().enumerate() { let mut summand = self.coeff[coeff_pos(i, j)]; summand.mul_assign(&x_pow_i); summand.mul_assign(y_pow_j); result.add_assign(&summand); } } result } /// Returns the `x`-th row, as a univariate polynomial. pub fn row>(&self, x: T) -> Poly { let x_pow = self.powers(x); let coeff: Vec = (0..=self.degree) .map(|i| { let mut result = Fr::zero(); for (j, x_pow_j) in x_pow.iter().enumerate() { let mut summand = self.coeff[coeff_pos(i, j)]; summand.mul_assign(x_pow_j); result.add_assign(&summand); } result }) .collect(); Poly { coeff } } /// Returns the corresponding commitment. That information can be shared publicly. pub fn commitment(&self) -> BivarCommitment { let to_pub = |c: &Fr| G1Affine::one().mul(*c); BivarCommitment { degree: self.degree, coeff: self.coeff.iter().map(to_pub).collect(), } } /// Returns the `0`-th to `degree`-th power of `x`. fn powers>(&self, x_repr: T) -> Vec { powers(x_repr, self.degree) } } /// A commitment to a symmetric bivariate polynomial. #[derive(Debug, Clone, Serialize, Deserialize, Eq, PartialEq)] pub struct BivarCommitment { /// The polynomial's degree in each of the two variables. degree: usize, /// The commitments to the coefficients. #[serde(with = "super::serde_impl::projective_vec")] coeff: Vec, } impl Hash for BivarCommitment { fn hash(&self, state: &mut H) { self.degree.hash(state); for c in &self.coeff { c.into_affine().into_compressed().as_ref().hash(state); } } } impl BivarCommitment { /// Returns the polynomial's degree: It is the same in both variables. pub fn degree(&self) -> usize { self.degree } /// Returns the commitment's value at the point `(x, y)`. pub fn evaluate>(&self, x: T, y: T) -> G1 { let x_pow = self.powers(x); let y_pow = self.powers(y); // TODO: Can we save a few multiplication steps here due to the symmetry? let mut result = G1::zero(); for (i, x_pow_i) in x_pow.into_iter().enumerate() { for (j, y_pow_j) in y_pow.iter().enumerate() { let mut summand = self.coeff[coeff_pos(i, j)]; summand.mul_assign(x_pow_i); summand.mul_assign(*y_pow_j); result.add_assign(&summand); } } result } /// Returns the `x`-th row, as a commitment to a univariate polynomial. pub fn row>(&self, x: T) -> Commitment { let x_pow = self.powers(x); let coeff: Vec = (0..=self.degree) .map(|i| { let mut result = G1::zero(); for (j, x_pow_j) in x_pow.iter().enumerate() { let mut summand = self.coeff[coeff_pos(i, j)]; summand.mul_assign(*x_pow_j); result.add_assign(&summand); } result }) .collect(); Commitment { coeff } } /// Returns the `0`-th to `degree`-th power of `x`. fn powers>(&self, x_repr: T) -> Vec { powers(x_repr, self.degree) } } /// Returns the `0`-th to `degree`-th power of `x`. fn powers>(x_repr: T, degree: usize) -> Vec

{ let x = &P::from_repr(x_repr.into()).expect("invalid index"); let mut x_pow_i = P::one(); iter::once(x_pow_i) .chain((0..degree).map(|_| { x_pow_i.mul_assign(x); x_pow_i })) .collect() } /// Returns the position of coefficient `(i, j)` in the vector describing a symmetric bivariate /// polynomial. fn coeff_pos(i: usize, j: usize) -> usize { // Since the polynomial is symmetric, we can order such that `j >= i`. if j >= i { j * (j + 1) / 2 + i } else { i * (i + 1) / 2 + j } } #[cfg(test)] mod tests { use std::collections::BTreeMap; use super::{coeff_pos, BivarPoly, Poly}; use pairing::bls12_381::{Fr, G1Affine}; use pairing::{CurveAffine, Field, PrimeField}; use rand; fn fr(x: i64) -> Fr { let mut result = Fr::from_repr((x.abs() as u64).into()).unwrap(); if x < 0 { result.negate(); } result } #[test] fn test_coeff_pos() { let mut i = 0; let mut j = 0; for n in 0..100 { assert_eq!(n, coeff_pos(i, j)); if i >= j { j += 1; i = 0; } else { i += 1; } } } #[test] fn poly() { // The polynomial "`5 * x.pow(3) + x.pow(1) - 2`". let poly = Poly::monomial(3) * Poly::constant(fr(5)) + Poly::monomial(1) - Poly::constant(fr(2)); let coeff = vec![fr(-2), fr(1), fr(0), fr(5)]; assert_eq!(Poly { coeff }, poly); let samples = vec![ (fr(-1), fr(-8)), (fr(2), fr(40)), (fr(3), fr(136)), (fr(5), fr(628)), ]; for &(x, y) in &samples { assert_eq!(y, poly.evaluate(x)); } let sample_iter = samples.iter().map(|&(ref x, ref y)| (x, y)); assert_eq!(Poly::interpolate(sample_iter), poly); } #[test] fn distributed_key_generation() { let mut rng = rand::thread_rng(); let dealer_num = 3; let node_num = 5; let faulty_num = 2; // For distributed key generation, a number of dealers, only one of who needs to be honest, // generates random bivariate polynomials and publicly commits to them. In partice, the // dealers can e.g. be any `faulty_num + 1` nodes. let bi_polys: Vec = (0..dealer_num) .map(|_| BivarPoly::random(faulty_num, &mut rng)) .collect(); let pub_bi_commits: Vec<_> = bi_polys.iter().map(BivarPoly::commitment).collect(); let mut sec_keys = vec![fr(0); node_num]; // Each dealer sends row `m` to node `m`, where the index starts at `1`. Don't send row `0` // to anyone! The nodes verify their rows, and send _value_ `s` on to node `s`. They again // verify the values they received, and collect them. for (bi_poly, bi_commit) in bi_polys.iter().zip(&pub_bi_commits) { for m in 1..=node_num { // Node `m` receives its row and verifies it. let row_poly = bi_poly.row(m as u64); let row_commit = bi_commit.row(m as u64); assert_eq!(row_poly.commitment(), row_commit); // Node `s` receives the `s`-th value and verifies it. for s in 1..=node_num { let val = row_poly.evaluate(s as u64); let val_g1 = G1Affine::one().mul(val); assert_eq!(bi_commit.evaluate(m as u64, s as u64), val_g1); // The node can't verify this directly, but it should have the correct value: assert_eq!(bi_poly.evaluate(m as u64, s as u64), val); } // A cheating dealer who modified the polynomial would be detected. let wrong_poly = row_poly.clone() + Poly::monomial(2) * Poly::constant(fr(5)); assert_ne!(wrong_poly.commitment(), row_commit); // If `2 * faulty_num + 1` nodes confirm that they received a valid row, then at // least `faulty_num + 1` honest ones did, and sent the correct values on to node // `s`. So every node received at least `faulty_num + 1` correct entries of their // column/row (remember that the bivariate polynomial is symmetric). They can // reconstruct the full row and in particular value `0` (which no other node knows, // only the dealer). E.g. let's say nodes `1`, `2` and `4` are honest. Then node // `m` received three correct entries from that row: let received: BTreeMap<_, _> = [1, 2, 4] .iter() .map(|&i| (i, bi_poly.evaluate(m as u64, i as u64))) .collect(); let my_row = Poly::interpolate(&received); assert_eq!(bi_poly.evaluate(m as u64, 0), my_row.evaluate(0)); assert_eq!(row_poly, my_row); // The node sums up all values number `0` it received from the different dealer. No // dealer and no other node knows the sum in the end. sec_keys[m - 1].add_assign(&my_row.evaluate(0)); } } // Each node now adds up all the first values of the rows it received from the different // dealers (excluding the dealers where fewer than `2 * faulty_num + 1` nodes confirmed). // The whole first column never gets added up in practice, because nobody has all the // information. We do it anyway here; entry `0` is the secret key that is not known to // anyone, neither a dealer, nor a node: let mut sec_key_set = Poly::zero(); for bi_poly in &bi_polys { sec_key_set += bi_poly.row(0); } for m in 1..=node_num { assert_eq!(sec_key_set.evaluate(m as u64), sec_keys[m - 1]); } // The sum of the first rows of the public commitments is the commitment to the secret key // set. let mut sum_commit = Poly::zero().commitment(); for bi_commit in &pub_bi_commits { sum_commit += bi_commit.row(0); } assert_eq!(sum_commit, sec_key_set.commitment()); } }