fork of https://github.com/poanetwork/threshold_crypto for the needs of nextgraph.org
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
613 lines
22 KiB
613 lines
22 KiB
//! Utilities for distributed key generation.
|
|
//!
|
|
//! A `BivarPoly` can be used for Verifiable Secret Sharing (VSS) and for key generation by a
|
|
//! trusted dealer. In a perfectly synchronous setting, e.g. on a blockchain or other agreed
|
|
//! transaction log, it works like this:
|
|
//!
|
|
//! The dealer generates a `BivarPoly` of degree `t` and publishes the `BivariateCommitment`,
|
|
//! with which the polynomial's values can be publicly verified. They then send _row_ `m > 0` to
|
|
//! node number `m`. Node `m`, in turn, sends _value_ `s` to node number `s`. Then if `2 * t + 1`
|
|
//! nodes confirm that they received a valid row, and there are at most `t` faulty nodes, then at
|
|
//! least `t + 1` honest nodes sent on an entry of every other node's column to that node. So we
|
|
//! know that every node can now reconstruct its column and the value at `0` of its column. These
|
|
//! values all lie on a univariate polynomial of degree `t`, so they can be used as secret keys.
|
|
//!
|
|
//! For Distributed Key Generation (DKG), every node proposes a polynomial via VSS. After a fixed
|
|
//! number (at least `N - 2 * t` if there are `N` nodes and up to `t` faulty ones) of them have
|
|
//! successfully been distributed, every node adds up the resulting secrets. Since the sum of
|
|
//! polynomials of degree `t` is itself a polynomial of degree `t`, these sums are still valid
|
|
//! secret keys, but now nobody knows the master key (number `0`).
|
|
// TODO: Expand this explanation and add examples, once the API is complete and stable.
|
|
|
|
use std::borrow::Borrow;
|
|
use std::{cmp, iter, ops};
|
|
|
|
use pairing::{CurveAffine, CurveProjective, Engine, Field, PrimeField};
|
|
use rand::Rng;
|
|
|
|
/// A univariate polynomial in the prime field.
|
|
#[derive(Clone, Debug)]
|
|
pub struct Poly<E: Engine> {
|
|
/// The coefficients of a polynomial.
|
|
coeff: Vec<E::Fr>,
|
|
}
|
|
|
|
impl<E: Engine> PartialEq for Poly<E> {
|
|
fn eq(&self, other: &Self) -> bool {
|
|
self.coeff == other.coeff
|
|
}
|
|
}
|
|
|
|
impl<B: Borrow<Poly<E>>, E: Engine> ops::AddAssign<B> for Poly<E> {
|
|
fn add_assign(&mut self, rhs: B) {
|
|
let len = cmp::max(self.coeff.len(), rhs.borrow().coeff.len());
|
|
self.coeff.resize(len, E::Fr::zero());
|
|
for (self_c, rhs_c) in self.coeff.iter_mut().zip(&rhs.borrow().coeff) {
|
|
self_c.add_assign(rhs_c);
|
|
}
|
|
self.remove_zeros();
|
|
}
|
|
}
|
|
|
|
impl<'a, B: Borrow<Poly<E>>, E: Engine> ops::Add<B> for &'a Poly<E> {
|
|
type Output = Poly<E>;
|
|
|
|
fn add(self, rhs: B) -> Poly<E> {
|
|
(*self).clone() + rhs
|
|
}
|
|
}
|
|
|
|
impl<B: Borrow<Poly<E>>, E: Engine> ops::Add<B> for Poly<E> {
|
|
type Output = Poly<E>;
|
|
|
|
fn add(mut self, rhs: B) -> Poly<E> {
|
|
self += rhs;
|
|
self
|
|
}
|
|
}
|
|
|
|
impl<B: Borrow<Poly<E>>, E: Engine> ops::SubAssign<B> for Poly<E> {
|
|
fn sub_assign(&mut self, rhs: B) {
|
|
let len = cmp::max(self.coeff.len(), rhs.borrow().coeff.len());
|
|
self.coeff.resize(len, E::Fr::zero());
|
|
for (self_c, rhs_c) in self.coeff.iter_mut().zip(&rhs.borrow().coeff) {
|
|
self_c.sub_assign(rhs_c);
|
|
}
|
|
self.remove_zeros();
|
|
}
|
|
}
|
|
|
|
impl<'a, B: Borrow<Poly<E>>, E: Engine> ops::Sub<B> for &'a Poly<E> {
|
|
type Output = Poly<E>;
|
|
|
|
fn sub(self, rhs: B) -> Poly<E> {
|
|
(*self).clone() - rhs
|
|
}
|
|
}
|
|
|
|
impl<B: Borrow<Poly<E>>, E: Engine> ops::Sub<B> for Poly<E> {
|
|
type Output = Poly<E>;
|
|
|
|
fn sub(mut self, rhs: B) -> Poly<E> {
|
|
self -= rhs;
|
|
self
|
|
}
|
|
}
|
|
|
|
// Clippy thinks using any `+` and `-` in a `Mul` implementation is suspicious.
|
|
#[cfg_attr(feature = "cargo-clippy", allow(suspicious_arithmetic_impl))]
|
|
impl<'a, B: Borrow<Poly<E>>, E: Engine> ops::Mul<B> for &'a Poly<E> {
|
|
type Output = Poly<E>;
|
|
|
|
fn mul(self, rhs: B) -> Self::Output {
|
|
let coeff = (0..(self.coeff.len() + rhs.borrow().coeff.len() - 1))
|
|
.map(|i| {
|
|
let mut c = E::Fr::zero();
|
|
for j in i.saturating_sub(rhs.borrow().degree())..(1 + cmp::min(i, self.degree())) {
|
|
let mut s = self.coeff[j];
|
|
s.mul_assign(&rhs.borrow().coeff[i - j]);
|
|
c.add_assign(&s);
|
|
}
|
|
c
|
|
})
|
|
.collect();
|
|
Poly { coeff }
|
|
}
|
|
}
|
|
|
|
impl<B: Borrow<Poly<E>>, E: Engine> ops::Mul<B> for Poly<E> {
|
|
type Output = Poly<E>;
|
|
|
|
fn mul(self, rhs: B) -> Self::Output {
|
|
&self * rhs
|
|
}
|
|
}
|
|
|
|
impl<B: Borrow<Self>, E: Engine> ops::MulAssign<B> for Poly<E> {
|
|
fn mul_assign(&mut self, rhs: B) {
|
|
*self = &*self * rhs;
|
|
}
|
|
}
|
|
|
|
impl<E: Engine> Poly<E> {
|
|
/// Creates a random polynomial.
|
|
pub fn random<R: Rng>(degree: usize, rng: &mut R) -> Self {
|
|
Poly {
|
|
coeff: (0..(degree + 1)).map(|_| rng.gen()).collect(),
|
|
}
|
|
}
|
|
|
|
/// Returns the polynomial with constant value `0`.
|
|
pub fn zero() -> Self {
|
|
Poly { coeff: Vec::new() }
|
|
}
|
|
|
|
/// Returns the polynomial with constant value `1`.
|
|
pub fn one() -> Self {
|
|
Self::monomial(0)
|
|
}
|
|
|
|
/// Returns the polynomial with constant value `c`.
|
|
pub fn constant(c: E::Fr) -> Self {
|
|
Poly { coeff: vec![c] }
|
|
}
|
|
|
|
/// Returns the identity function, i.e. the polynomial "`x`".
|
|
pub fn identity() -> Self {
|
|
Self::monomial(1)
|
|
}
|
|
|
|
/// Returns the (monic) monomial "`x.pow(degree)`".
|
|
pub fn monomial(degree: usize) -> Self {
|
|
Poly {
|
|
coeff: iter::repeat(E::Fr::zero())
|
|
.take(degree)
|
|
.chain(iter::once(E::Fr::one()))
|
|
.collect(),
|
|
}
|
|
}
|
|
|
|
/// Returns the unique polynomial `f` of degree `samples.len() - 1` with the given values
|
|
/// `(x, f(x))`.
|
|
pub fn interpolate<'a, T, I>(samples_repr: I) -> Self
|
|
where
|
|
I: IntoIterator<Item = (&'a T, &'a E::Fr)>,
|
|
T: Into<<E::Fr as PrimeField>::Repr> + Clone + 'a,
|
|
{
|
|
let convert = |(x_repr, y): (&T, &E::Fr)| {
|
|
let x = E::Fr::from_repr(x_repr.clone().into()).expect("invalid index");
|
|
(x, *y)
|
|
};
|
|
let samples: Vec<(E::Fr, E::Fr)> = samples_repr.into_iter().map(convert).collect();
|
|
Self::compute_interpolation(&samples)
|
|
}
|
|
|
|
/// Returns the degree.
|
|
pub fn degree(&self) -> usize {
|
|
self.coeff.len() - 1
|
|
}
|
|
|
|
/// Returns the value at the point `i`.
|
|
pub fn evaluate<T: Into<<E::Fr as PrimeField>::Repr>>(&self, i: T) -> E::Fr {
|
|
let mut result = match self.coeff.last() {
|
|
None => return E::Fr::zero(),
|
|
Some(c) => *c,
|
|
};
|
|
let x = E::Fr::from_repr(i.into()).expect("invalid index");
|
|
for c in self.coeff.iter().rev().skip(1) {
|
|
result.mul_assign(&x);
|
|
result.add_assign(c);
|
|
}
|
|
result
|
|
}
|
|
|
|
/// Returns the corresponding commitment.
|
|
pub fn commitment(&self) -> Commitment<E> {
|
|
let to_g1 = |c: &E::Fr| E::G1Affine::one().mul(*c);
|
|
Commitment {
|
|
coeff: self.coeff.iter().map(to_g1).collect(),
|
|
}
|
|
}
|
|
|
|
/// Removes all trailing zero coefficients.
|
|
fn remove_zeros(&mut self) {
|
|
let zeros = self.coeff.iter().rev().take_while(|c| c.is_zero()).count();
|
|
let len = self.coeff.len() - zeros;
|
|
self.coeff.truncate(len)
|
|
}
|
|
|
|
/// Returns the unique polynomial `f` of degree `samples.len() - 1` with the given values
|
|
/// `(x, f(x))`.
|
|
fn compute_interpolation(samples: &[(E::Fr, E::Fr)]) -> Self {
|
|
if samples.is_empty() {
|
|
return Poly::zero();
|
|
} else if samples.len() == 1 {
|
|
return Poly::constant(samples[0].1);
|
|
}
|
|
// The degree is at least 1 now.
|
|
let degree = samples.len() - 1;
|
|
// Interpolate all but the last sample.
|
|
let prev = Self::compute_interpolation(&samples[..degree]);
|
|
let (x, mut y) = samples[degree]; // The last sample.
|
|
y.sub_assign(&prev.evaluate(x));
|
|
let step = Self::lagrange(x, &samples[..degree]);
|
|
prev + step * Self::constant(y)
|
|
}
|
|
|
|
/// Returns the Lagrange base polynomial that is `1` in `p` and `0` in every `samples[i].0`.
|
|
fn lagrange(p: E::Fr, samples: &[(E::Fr, E::Fr)]) -> Self {
|
|
let mut result = Self::one();
|
|
for &(sx, _) in samples {
|
|
let mut denom = p;
|
|
denom.sub_assign(&sx);
|
|
denom = denom.inverse().expect("sample points must be distinct");
|
|
result *= (Self::identity() - Self::constant(sx)) * Self::constant(denom);
|
|
}
|
|
result
|
|
}
|
|
}
|
|
|
|
/// A commitment to a univariate polynomial.
|
|
#[derive(Debug, Clone)]
|
|
#[cfg_attr(feature = "serialization-serde", derive(Serialize, Deserialize))]
|
|
pub struct Commitment<E: Engine> {
|
|
/// The coefficients of the polynomial.
|
|
#[cfg_attr(feature = "serialization-serde", serde(with = "super::serde_impl::projective_vec"))]
|
|
coeff: Vec<E::G1>,
|
|
}
|
|
|
|
impl<E: Engine> PartialEq for Commitment<E> {
|
|
fn eq(&self, other: &Self) -> bool {
|
|
self.coeff == other.coeff
|
|
}
|
|
}
|
|
|
|
impl<B: Borrow<Commitment<E>>, E: Engine> ops::AddAssign<B> for Commitment<E> {
|
|
fn add_assign(&mut self, rhs: B) {
|
|
let len = cmp::max(self.coeff.len(), rhs.borrow().coeff.len());
|
|
self.coeff.resize(len, E::G1::zero());
|
|
for (self_c, rhs_c) in self.coeff.iter_mut().zip(&rhs.borrow().coeff) {
|
|
self_c.add_assign(rhs_c);
|
|
}
|
|
self.remove_zeros();
|
|
}
|
|
}
|
|
|
|
impl<'a, B: Borrow<Commitment<E>>, E: Engine> ops::Add<B> for &'a Commitment<E> {
|
|
type Output = Commitment<E>;
|
|
|
|
fn add(self, rhs: B) -> Commitment<E> {
|
|
(*self).clone() + rhs
|
|
}
|
|
}
|
|
|
|
impl<B: Borrow<Commitment<E>>, E: Engine> ops::Add<B> for Commitment<E> {
|
|
type Output = Commitment<E>;
|
|
|
|
fn add(mut self, rhs: B) -> Commitment<E> {
|
|
self += rhs;
|
|
self
|
|
}
|
|
}
|
|
|
|
impl<E: Engine> Commitment<E> {
|
|
/// Returns the polynomial's degree.
|
|
pub fn degree(&self) -> usize {
|
|
self.coeff.len() - 1
|
|
}
|
|
|
|
/// Returns the `i`-th public key share.
|
|
pub fn evaluate<T: Into<<E::Fr as PrimeField>::Repr>>(&self, i: T) -> E::G1 {
|
|
let mut result = match self.coeff.last() {
|
|
None => return E::G1::zero(),
|
|
Some(c) => *c,
|
|
};
|
|
let x = E::Fr::from_repr(i.into()).expect("invalid index");
|
|
for c in self.coeff.iter().rev().skip(1) {
|
|
result.mul_assign(x);
|
|
result.add_assign(c);
|
|
}
|
|
result
|
|
}
|
|
|
|
/// Removes all trailing zero coefficients.
|
|
fn remove_zeros(&mut self) {
|
|
let zeros = self.coeff.iter().rev().take_while(|c| c.is_zero()).count();
|
|
let len = self.coeff.len() - zeros;
|
|
self.coeff.truncate(len)
|
|
}
|
|
}
|
|
|
|
/// A symmetric bivariate polynomial in the prime field.
|
|
///
|
|
/// This can be used for Verifiable Secret Sharing and Distributed Key Generation. See the module
|
|
/// documentation for details.
|
|
#[derive(Debug, Clone)]
|
|
pub struct BivarPoly<E: Engine> {
|
|
/// The polynomial's degree in each of the two variables.
|
|
degree: usize,
|
|
/// The coefficients of the polynomial. Coefficient `(i, j)` for `i <= j` is in position
|
|
/// `j * (j + 1) / 2 + i`.
|
|
coeff: Vec<E::Fr>,
|
|
}
|
|
|
|
impl<E: Engine> BivarPoly<E> {
|
|
/// Creates a random polynomial.
|
|
pub fn random<R: Rng>(degree: usize, rng: &mut R) -> Self {
|
|
BivarPoly {
|
|
degree,
|
|
coeff: (0..coeff_pos(degree + 1, 0)).map(|_| rng.gen()).collect(),
|
|
}
|
|
}
|
|
|
|
/// Returns the polynomial's degree: It is the same in both variables.
|
|
pub fn degree(&self) -> usize {
|
|
self.degree
|
|
}
|
|
|
|
/// Returns the polynomial's value at the point `(x, y)`.
|
|
pub fn evaluate<T: Into<<E::Fr as PrimeField>::Repr>>(&self, x: T, y: T) -> E::Fr {
|
|
let x_pow = self.powers(x);
|
|
let y_pow = self.powers(y);
|
|
// TODO: Can we save a few multiplication steps here due to the symmetry?
|
|
let mut result = E::Fr::zero();
|
|
for (i, x_pow_i) in x_pow.into_iter().enumerate() {
|
|
for (j, y_pow_j) in y_pow.iter().enumerate() {
|
|
let mut summand = self.coeff[coeff_pos(i, j)];
|
|
summand.mul_assign(&x_pow_i);
|
|
summand.mul_assign(y_pow_j);
|
|
result.add_assign(&summand);
|
|
}
|
|
}
|
|
result
|
|
}
|
|
|
|
/// Returns the `x`-th row, as a univariate polynomial.
|
|
pub fn row<T: Into<<E::Fr as PrimeField>::Repr>>(&self, x: T) -> Poly<E> {
|
|
let x_pow = self.powers(x);
|
|
let coeff: Vec<E::Fr> = (0..=self.degree)
|
|
.map(|i| {
|
|
let mut result = E::Fr::zero();
|
|
for (j, x_pow_j) in x_pow.iter().enumerate() {
|
|
let mut summand = self.coeff[coeff_pos(i, j)];
|
|
summand.mul_assign(x_pow_j);
|
|
result.add_assign(&summand);
|
|
}
|
|
result
|
|
})
|
|
.collect();
|
|
Poly { coeff }
|
|
}
|
|
|
|
/// Returns the corresponding commitment. That information can be shared publicly.
|
|
pub fn commitment(&self) -> BivarCommitment<E> {
|
|
let to_pub = |c: &E::Fr| E::G1Affine::one().mul(*c);
|
|
BivarCommitment {
|
|
degree: self.degree,
|
|
coeff: self.coeff.iter().map(to_pub).collect(),
|
|
}
|
|
}
|
|
|
|
/// Returns the `0`-th to `degree`-th power of `x`.
|
|
fn powers<T: Into<<E::Fr as PrimeField>::Repr>>(&self, x_repr: T) -> Vec<E::Fr> {
|
|
powers(x_repr, self.degree)
|
|
}
|
|
}
|
|
|
|
/// A commitment to a bivariate polynomial.
|
|
#[derive(Debug, Clone)]
|
|
#[cfg_attr(feature = "serialization-serde", derive(Serialize, Deserialize))]
|
|
pub struct BivarCommitment<E: Engine> {
|
|
/// The polynomial's degree in each of the two variables.
|
|
degree: usize,
|
|
/// The commitments to the coefficients.
|
|
#[cfg_attr(feature = "serialization-serde", serde(with = "super::serde_impl::projective_vec"))]
|
|
coeff: Vec<E::G1>,
|
|
}
|
|
|
|
impl<E: Engine> BivarCommitment<E> {
|
|
/// Returns the polynomial's degree: It is the same in both variables.
|
|
pub fn degree(&self) -> usize {
|
|
self.degree
|
|
}
|
|
|
|
/// Returns the commitment's value at the point `(x, y)`.
|
|
pub fn evaluate<T: Into<<E::Fr as PrimeField>::Repr>>(&self, x: T, y: T) -> E::G1 {
|
|
let x_pow = self.powers(x);
|
|
let y_pow = self.powers(y);
|
|
// TODO: Can we save a few multiplication steps here due to the symmetry?
|
|
let mut result = E::G1::zero();
|
|
for (i, x_pow_i) in x_pow.into_iter().enumerate() {
|
|
for (j, y_pow_j) in y_pow.iter().enumerate() {
|
|
let mut summand = self.coeff[coeff_pos(i, j)];
|
|
summand.mul_assign(x_pow_i);
|
|
summand.mul_assign(*y_pow_j);
|
|
result.add_assign(&summand);
|
|
}
|
|
}
|
|
result
|
|
}
|
|
|
|
/// Returns the `x`-th row, as a commitment to a univariate polynomial.
|
|
pub fn row<T: Into<<E::Fr as PrimeField>::Repr>>(&self, x: T) -> Commitment<E> {
|
|
let x_pow = self.powers(x);
|
|
let coeff: Vec<E::G1> = (0..=self.degree)
|
|
.map(|i| {
|
|
let mut result = E::G1::zero();
|
|
for (j, x_pow_j) in x_pow.iter().enumerate() {
|
|
let mut summand = self.coeff[coeff_pos(i, j)];
|
|
summand.mul_assign(*x_pow_j);
|
|
result.add_assign(&summand);
|
|
}
|
|
result
|
|
})
|
|
.collect();
|
|
Commitment { coeff }
|
|
}
|
|
|
|
/// Returns the `0`-th to `degree`-th power of `x`.
|
|
fn powers<T: Into<<E::Fr as PrimeField>::Repr>>(&self, x_repr: T) -> Vec<E::Fr> {
|
|
powers(x_repr, self.degree)
|
|
}
|
|
}
|
|
|
|
/// Returns the `0`-th to `degree`-th power of `x`.
|
|
fn powers<P: PrimeField, T: Into<P::Repr>>(x_repr: T, degree: usize) -> Vec<P> {
|
|
let x = &P::from_repr(x_repr.into()).expect("invalid index");
|
|
let mut x_pow_i = P::one();
|
|
iter::once(x_pow_i)
|
|
.chain((0..degree).map(|_| {
|
|
x_pow_i.mul_assign(x);
|
|
x_pow_i
|
|
}))
|
|
.collect()
|
|
}
|
|
|
|
/// Returns the position of coefficient `(i, j)` in the vector describing a symmetric bivariate
|
|
/// polynomial.
|
|
fn coeff_pos(i: usize, j: usize) -> usize {
|
|
// Since the polynomial is symmetric, we can order such that `j >= i`.
|
|
if j >= i {
|
|
j * (j + 1) / 2 + i
|
|
} else {
|
|
i * (i + 1) / 2 + j
|
|
}
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use std::collections::BTreeMap;
|
|
|
|
use super::{coeff_pos, BivarPoly, Poly};
|
|
|
|
use pairing::bls12_381::Bls12;
|
|
use pairing::{CurveAffine, Engine, Field, PrimeField};
|
|
use rand;
|
|
|
|
type Fr = <Bls12 as Engine>::Fr;
|
|
|
|
fn fr(x: i64) -> Fr {
|
|
let mut result = Fr::from_repr((x.abs() as u64).into()).unwrap();
|
|
if x < 0 {
|
|
result.negate();
|
|
}
|
|
result
|
|
}
|
|
|
|
#[test]
|
|
fn test_coeff_pos() {
|
|
let mut i = 0;
|
|
let mut j = 0;
|
|
for n in 0..100 {
|
|
assert_eq!(n, coeff_pos(i, j));
|
|
if i >= j {
|
|
j += 1;
|
|
i = 0;
|
|
} else {
|
|
i += 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
#[test]
|
|
fn poly() {
|
|
// The polynomial "`5 * x.pow(3) + x.pow(1) - 2`".
|
|
let poly: Poly<Bls12> =
|
|
Poly::monomial(3) * Poly::constant(fr(5)) + Poly::monomial(1) - Poly::constant(fr(2));
|
|
let coeff = vec![fr(-2), fr(1), fr(0), fr(5)];
|
|
assert_eq!(Poly { coeff }, poly);
|
|
let samples = vec![
|
|
(fr(-1), fr(-8)),
|
|
(fr(2), fr(40)),
|
|
(fr(3), fr(136)),
|
|
(fr(5), fr(628)),
|
|
];
|
|
for &(x, y) in &samples {
|
|
assert_eq!(y, poly.evaluate(x));
|
|
}
|
|
let sample_iter = samples.iter().map(|&(ref x, ref y)| (x, y));
|
|
assert_eq!(Poly::interpolate(sample_iter), poly);
|
|
}
|
|
|
|
#[test]
|
|
fn distributed_key_generation() {
|
|
let mut rng = rand::thread_rng();
|
|
let dealer_num = 3;
|
|
let node_num = 5;
|
|
let faulty_num = 2;
|
|
|
|
// For distributed key generation, a number of dealers, only one of who needs to be honest,
|
|
// generates random bivariate polynomials and publicly commits to them. In partice, the
|
|
// dealers can e.g. be any `faulty_num + 1` nodes.
|
|
let bi_polys: Vec<BivarPoly<Bls12>> = (0..dealer_num)
|
|
.map(|_| BivarPoly::random(faulty_num, &mut rng))
|
|
.collect();
|
|
let pub_bi_commits: Vec<_> = bi_polys.iter().map(BivarPoly::commitment).collect();
|
|
|
|
let mut sec_keys = vec![fr(0); node_num];
|
|
|
|
// Each dealer sends row `m` to node `m`, where the index starts at `1`. Don't send row `0`
|
|
// to anyone! The nodes verify their rows, and send _value_ `s` on to node `s`. They again
|
|
// verify the values they received, and collect them.
|
|
for (bi_poly, bi_commit) in bi_polys.iter().zip(&pub_bi_commits) {
|
|
for m in 1..=node_num {
|
|
// Node `m` receives its row and verifies it.
|
|
let row_poly = bi_poly.row(m as u64);
|
|
let row_commit = bi_commit.row(m as u64);
|
|
assert_eq!(row_poly.commitment(), row_commit);
|
|
// Node `s` receives the `s`-th value and verifies it.
|
|
for s in 1..=node_num {
|
|
let val = row_poly.evaluate(s as u64);
|
|
let val_g1 = <Bls12 as Engine>::G1Affine::one().mul(val);
|
|
assert_eq!(bi_commit.evaluate(m as u64, s as u64), val_g1);
|
|
// The node can't verify this directly, but it should have the correct value:
|
|
assert_eq!(bi_poly.evaluate(m as u64, s as u64), val);
|
|
}
|
|
|
|
// A cheating dealer who modified the polynomial would be detected.
|
|
let wrong_poly = row_poly.clone() + Poly::monomial(2) * Poly::constant(fr(5));
|
|
assert_ne!(wrong_poly.commitment(), row_commit);
|
|
|
|
// If `2 * faulty_num + 1` nodes confirm that they received a valid row, then at
|
|
// least `faulty_num + 1` honest ones did, and sent the correct values on to node
|
|
// `s`. So every node received at least `faulty_num + 1` correct entries of their
|
|
// column/row (remember that the bivariate polynomial is symmetric). They can
|
|
// reconstruct the full row and in particular value `0` (which no other node knows,
|
|
// only the dealer). E.g. let's say nodes `1`, `2` and `4` are honest. Then node
|
|
// `m` received three correct entries from that row:
|
|
let received: BTreeMap<_, _> = [1, 2, 4]
|
|
.iter()
|
|
.map(|&i| (i, bi_poly.evaluate(m as u64, i as u64)))
|
|
.collect();
|
|
let my_row = Poly::interpolate(&received);
|
|
assert_eq!(bi_poly.evaluate(m as u64, 0), my_row.evaluate(0));
|
|
assert_eq!(row_poly, my_row);
|
|
|
|
// The node sums up all values number `0` it received from the different dealer. No
|
|
// dealer and no other node knows the sum in the end.
|
|
sec_keys[m - 1].add_assign(&my_row.evaluate(0));
|
|
}
|
|
}
|
|
|
|
// Each node now adds up all the first values of the rows it received from the different
|
|
// dealers (excluding the dealers where fewer than `2 * faulty_num + 1` nodes confirmed).
|
|
// The whole first column never gets added up in practice, because nobody has all the
|
|
// information. We do it anyway here; entry `0` is the secret key that is not known to
|
|
// anyone, neither a dealer, nor a node:
|
|
let mut sec_key_set = Poly::zero();
|
|
for bi_poly in &bi_polys {
|
|
sec_key_set += bi_poly.row(0);
|
|
}
|
|
for m in 1..=node_num {
|
|
assert_eq!(sec_key_set.evaluate(m as u64), sec_keys[m - 1]);
|
|
}
|
|
|
|
// The sum of the first rows of the public commitments is the commitment to the secret key
|
|
// set.
|
|
let mut sum_commit = Poly::zero().commitment();
|
|
for bi_commit in &pub_bi_commits {
|
|
sum_commit += bi_commit.row(0);
|
|
}
|
|
assert_eq!(sum_commit, sec_key_set.commitment());
|
|
}
|
|
}
|
|
|