fork of https://github.com/poanetwork/threshold_crypto for the needs of nextgraph.org
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
threshold_crypto/src/lib.rs

960 lines
34 KiB

// Clippy warns that it's dangerous to derive `PartialEq` and explicitly implement `Hash`, but the
// `pairing::bls12_381` types don't implement `Hash`, so we can't derive it.
#![cfg_attr(feature = "cargo-clippy", allow(derive_hash_xor_eq))]
#[cfg(test)]
extern crate bincode;
extern crate byteorder;
extern crate errno;
#[macro_use]
extern crate failure;
extern crate init_with;
#[macro_use]
extern crate lazy_static;
#[macro_use]
extern crate log;
extern crate memsec;
extern crate pairing;
extern crate rand;
#[macro_use]
extern crate rand_derive;
extern crate serde;
#[macro_use]
extern crate serde_derive;
extern crate tiny_keccak;
pub mod error;
mod into_fr;
pub mod poly;
mod secret;
pub mod serde_impl;
use std::fmt;
use std::hash::{Hash, Hasher};
use std::ptr::copy_nonoverlapping;
use byteorder::{BigEndian, ByteOrder};
use init_with::InitWith;
use pairing::bls12_381::{Bls12, Fr, G1Affine, G2Affine, G1, G2};
use pairing::{CurveAffine, CurveProjective, Engine, Field};
use rand::{ChaChaRng, OsRng, Rand, Rng, SeedableRng};
use tiny_keccak::sha3_256;
use error::{Error, Result};
use into_fr::IntoFr;
use poly::{Commitment, Poly};
use secret::{clear_fr, ContainsSecret, MemRange, FR_SIZE};
/// Wrapper for a byte array, whose `Debug` implementation outputs shortened hexadecimal strings.
pub struct HexBytes<'a>(pub &'a [u8]);
impl<'a> fmt::Debug for HexBytes<'a> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
if self.0.len() > 6 {
for byte in &self.0[..3] {
write!(f, "{:02x}", byte)?;
}
write!(f, "..")?;
for byte in &self.0[(self.0.len() - 3)..] {
write!(f, "{:02x}", byte)?;
}
} else {
for byte in self.0 {
write!(f, "{:02x}", byte)?;
}
}
Ok(())
}
}
/// The number of words (`u32`) in a ChaCha RNG seed.
const CHACHA_RNG_SEED_SIZE: usize = 8;
const ERR_OS_RNG: &str = "could not initialize the OS random number generator";
/// A public key.
#[derive(Deserialize, Serialize, Copy, Clone, PartialEq, Eq)]
pub struct PublicKey(#[serde(with = "serde_impl::projective")] G1);
impl Hash for PublicKey {
fn hash<H: Hasher>(&self, state: &mut H) {
self.0.into_affine().into_compressed().as_ref().hash(state);
}
}
impl fmt::Debug for PublicKey {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let uncomp = self.0.into_affine().into_uncompressed();
let bytes = uncomp.as_ref();
f.debug_tuple("PublicKey").field(&HexBytes(bytes)).finish()
}
}
impl PublicKey {
/// Returns `true` if the signature matches the element of `G2`.
pub fn verify_g2<H: Into<G2Affine>>(&self, sig: &Signature, hash: H) -> bool {
Bls12::pairing(self.0, hash) == Bls12::pairing(G1Affine::one(), sig.0)
}
/// Returns `true` if the signature matches the message.
pub fn verify<M: AsRef<[u8]>>(&self, sig: &Signature, msg: M) -> bool {
self.verify_g2(sig, hash_g2(msg))
}
/// Encrypts the message using the OS random number generator.
///
/// Uses the `OsRng` by default. To pass in a custom random number generator, use
/// `encrypt_with_rng()`.
pub fn encrypt<M: AsRef<[u8]>>(&self, msg: M) -> Ciphertext {
self.encrypt_with_rng(&mut OsRng::new().expect(ERR_OS_RNG), msg)
}
/// Encrypts the message.
pub fn encrypt_with_rng<R: Rng, M: AsRef<[u8]>>(&self, rng: &mut R, msg: M) -> Ciphertext {
let r: Fr = rng.gen();
let u = G1Affine::one().mul(r);
let v: Vec<u8> = {
let g = self.0.into_affine().mul(r);
xor_vec(&hash_bytes(g, msg.as_ref().len()), msg.as_ref())
};
let w = hash_g1_g2(u, &v).into_affine().mul(r);
Ciphertext(u, v, w)
}
/// Returns a byte string representation of the public key.
pub fn to_bytes(&self) -> Vec<u8> {
self.0.into_affine().into_compressed().as_ref().to_vec()
}
}
/// A public key share.
#[derive(Deserialize, Serialize, Clone, PartialEq, Eq, Hash)]
pub struct PublicKeyShare(PublicKey);
impl fmt::Debug for PublicKeyShare {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let uncomp = (self.0).0.into_affine().into_uncompressed();
let bytes = uncomp.as_ref();
f.debug_tuple("PublicKeyShare")
.field(&HexBytes(bytes))
.finish()
}
}
impl PublicKeyShare {
/// Returns `true` if the signature matches the element of `G2`.
pub fn verify_g2<H: Into<G2Affine>>(&self, sig: &SignatureShare, hash: H) -> bool {
self.0.verify_g2(&sig.0, hash)
}
/// Returns `true` if the signature matches the message.
pub fn verify<M: AsRef<[u8]>>(&self, sig: &SignatureShare, msg: M) -> bool {
self.verify_g2(sig, hash_g2(msg))
}
/// Returns `true` if the decryption share matches the ciphertext.
pub fn verify_decryption_share(&self, share: &DecryptionShare, ct: &Ciphertext) -> bool {
let Ciphertext(ref u, ref v, ref w) = *ct;
let hash = hash_g1_g2(*u, v);
Bls12::pairing(share.0, hash) == Bls12::pairing((self.0).0, *w)
}
/// Returns a byte string representation of the public key share.
pub fn to_bytes(&self) -> Vec<u8> {
self.0.to_bytes()
}
}
/// A signature.
// Note: Random signatures can be generated for testing.
#[derive(Deserialize, Serialize, Clone, PartialEq, Eq, Rand)]
pub struct Signature(#[serde(with = "serde_impl::projective")] G2);
impl fmt::Debug for Signature {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let uncomp = self.0.into_affine().into_uncompressed();
let bytes = uncomp.as_ref();
f.debug_tuple("Signature").field(&HexBytes(bytes)).finish()
}
}
impl Hash for Signature {
fn hash<H: Hasher>(&self, state: &mut H) {
self.0.into_affine().into_compressed().as_ref().hash(state);
}
}
impl Signature {
pub fn parity(&self) -> bool {
let uncomp = self.0.into_affine().into_uncompressed();
let bytes = uncomp.as_ref();
let xor_bytes: u8 = bytes.iter().fold(0, |result, byte| result ^ byte);
let parity = 0 != xor_bytes.count_ones() % 2;
debug!("Signature: {:?}, output: {}", HexBytes(bytes), parity);
parity
}
}
/// A signature share.
// Note: Random signature shares can be generated for testing.
#[derive(Deserialize, Serialize, Clone, PartialEq, Eq, Rand, Hash)]
pub struct SignatureShare(pub Signature);
impl fmt::Debug for SignatureShare {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let uncomp = (self.0).0.into_affine().into_uncompressed();
let bytes = uncomp.as_ref();
f.debug_tuple("SignatureShare")
.field(&HexBytes(bytes))
.finish()
}
}
/// A secret key; wraps a single prime field element. The field element is
/// heap allocated to avoid any stack copying that result when passing
/// `SecretKey`s between stack frames.
#[derive(PartialEq, Eq)]
pub struct SecretKey(Box<Fr>);
/// Creates a `SecretKey` containing the zero prime field element.
///
/// # Panics
///
/// Panics if we have reached the system's locked memory limit when locking the secret field
/// element in RAM.
impl Default for SecretKey {
fn default() -> Self {
let mut fr = Fr::zero();
SecretKey::try_from_mut(&mut fr)
.unwrap_or_else(|e| panic!("Failed to create default `SecretKey`: {}", e))
}
}
/// Creates a random `SecretKey` from a given RNG. If you do not need to specify your own RNG, you
/// should use `SecretKey::random()` or `SecretKey::try_random()` as your constructor instead.
///
/// # Panics
///
/// Panics if we have reached the system's locked memory limit when locking the secret field
/// element in RAM.
impl Rand for SecretKey {
fn rand<R: Rng>(rng: &mut R) -> Self {
let mut fr = Fr::rand(rng);
SecretKey::try_from_mut(&mut fr)
.unwrap_or_else(|e| panic!("Failed to create random `SecretKey`: {}", e))
}
}
/// Creates a new `SecretKey` by cloning another `SecretKey`'s prime field element.
///
/// # Panics
///
/// Panics if we have reached the system's locked memory limit when locking the secret field
/// element into RAM.
impl Clone for SecretKey {
fn clone(&self) -> Self {
let mut fr = *self.0;
SecretKey::try_from_mut(&mut fr)
.unwrap_or_else(|e| panic!("Failed to clone `SecretKey`: {}", e))
}
}
/// Zeroes out and unlocks the memory allocated from the `SecretKey`'s field element.
///
/// # Panics
///
/// Panics if we fail to unlock the memory containing the field element.
impl Drop for SecretKey {
fn drop(&mut self) {
self.zero_secret();
if let Err(e) = self.munlock_secret() {
panic!("Failed to drop `SecretKey`: {}", e);
}
}
}
/// A debug statement where the secret prime field element is redacted.
impl fmt::Debug for SecretKey {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_tuple("SecretKey").field(&"...").finish()
}
}
impl ContainsSecret for SecretKey {
fn secret_memory(&self) -> MemRange {
let ptr = &*self.0 as *const Fr as *mut u8;
let n_bytes = *FR_SIZE;
MemRange { ptr, n_bytes }
}
}
impl SecretKey {
/// Creates a new `SecretKey` from a mutable reference to a field element. This constructor
/// takes a reference to avoid any unnecessary stack copying/moving of secrets (i.e. the field
/// element). The field element is copied bytewise onto the heap, the resulting `Box` is
/// stored in the returned `SecretKey`.
///
/// This constructor is identical to `SecretKey::try_from_mut()` in every way except that this
/// constructor will panic if locking memory into RAM fails, whereas
/// `SecretKey::try_from_mut()` returns an `Err`.
///
/// *WARNING* this constructor will overwrite the referenced `Fr` element with zeros after it
/// has been copied onto the heap.
///
/// # Panics
///
/// Panics if we reach the system's locked memory limit when locking the secret field element
/// into RAM.
pub fn from_mut(fr: &mut Fr) -> Self {
SecretKey::try_from_mut(fr)
.unwrap_or_else(|e| panic!("Falied to create `SecretKey`: {}", e))
}
/// Creates a new `SecretKey` from a mutable reference to a field element. This constructor
/// takes a reference to avoid any unnecessary stack copying/moving of secrets (i.e. the field
/// element). The field element is copied bytewise onto the heap, the resulting `Box` is
/// stored in the returned `SecretKey`.
///
/// This constructor is identical to `SecretKey::from_mut()` in every way except that this
/// constructor will return an `Err` if locking memory into RAM fails, whereas
/// `SecretKey::from_mut()` will panic.
///
/// *WARNING* this constructor will overwrite the referenced `Fr` element with zeros after it
/// has been copied onto the heap.
///
/// # Errors
///
/// Returns an `Error::MlockFailed` if we reached the system's locked memory limit when locking
/// the secret field element into RAM.
pub fn try_from_mut(fr: &mut Fr) -> Result<Self> {
let fr_ptr = fr as *mut Fr;
let mut boxed_fr = Box::new(Fr::zero());
unsafe {
copy_nonoverlapping(fr_ptr, &mut *boxed_fr as *mut Fr, 1);
}
clear_fr(fr_ptr as *mut u8);
let sk = SecretKey(boxed_fr);
sk.mlock_secret()?;
Ok(sk)
}
/// Creates a new random instance of `SecretKey`. If you want to use/define your own random
/// number generator, you should use the constructor: `SecretKey::rand()`. If you do not need
/// to specify your own RNG, you should use the `SecretKey::random()` and
/// `SecretKey::try_random()` constructors, which use
/// [`rand::thead_rng()`](https://docs.rs/rand/0.4.3/rand/fn.thread_rng.html) internally as
/// their RNG.
///
/// This constructor panics if it is unable to lock `SecretKey` memory into RAM, otherwise it
/// is identical to the constructor: `SecretKey::try_random()` (which instead of panicing
/// returns an `Err`).
///
/// # Panics
///
/// Panics if we have hit the system's locked memory limit when `mlock`ing the new instance of
/// `SecretKey`.
pub fn random() -> Self {
let mut rng = rand::thread_rng();
SecretKey::rand(&mut rng)
}
/// Creates a new random instance of `SecretKey`. If you want to use/define your own random
/// number generator, you should use the constructor: `SecretKey::rand()`. If you do not need
/// to specify your own RNG, you should use the `SecretKey::random()` and
/// `SecretKey::try_random()` constructors, which use
/// [`rand::thead_rng()`](https://docs.rs/rand/0.4.3/rand/fn.thread_rng.html) internally as
/// their RNG.
///
/// This constructor returns an `Err` if it is unable to lock `SecretKey` memory into RAM,
/// otherwise it is identical to the constructor: `SecretKey::random()` (which will panic
/// instead of returning an `Err`).
///
/// # Errors
///
/// Returns an `Error::MlockFailed` if we have reached the systems's locked memory limit.
pub fn try_random() -> Result<Self> {
let mut rng = rand::thread_rng();
let mut fr = Fr::rand(&mut rng);
SecretKey::try_from_mut(&mut fr)
}
/// Returns the matching public key.
pub fn public_key(&self) -> PublicKey {
PublicKey(G1Affine::one().mul(*self.0))
}
/// Signs the given element of `G2`.
pub fn sign_g2<H: Into<G2Affine>>(&self, hash: H) -> Signature {
Signature(hash.into().mul(*self.0))
}
/// Signs the given message.
pub fn sign<M: AsRef<[u8]>>(&self, msg: M) -> Signature {
self.sign_g2(hash_g2(msg))
}
/// Returns the decrypted text, or `None`, if the ciphertext isn't valid.
pub fn decrypt(&self, ct: &Ciphertext) -> Option<Vec<u8>> {
if !ct.verify() {
return None;
}
let Ciphertext(ref u, ref v, _) = *ct;
let g = u.into_affine().mul(*self.0);
Some(xor_vec(&hash_bytes(g, v.len()), v))
}
/// Generates a non-redacted debug string. This method differs from
/// the `Debug` implementation in that it *does* leak the secret prime
/// field element.
pub fn reveal(&self) -> String {
let uncomp = self.public_key().0.into_affine().into_uncompressed();
let bytes = uncomp.as_ref();
format!("SecretKey({:?})", HexBytes(bytes))
}
}
/// A secret key share.
#[derive(Clone, PartialEq, Eq, Rand, Default)]
pub struct SecretKeyShare(SecretKey);
impl fmt::Debug for SecretKeyShare {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
f.debug_tuple("SecretKeyShare").field(&"...").finish()
}
}
impl SecretKeyShare {
/// Creates a new `SecretKeyShare` from a mutable reference to a field element. This
/// constructor takes a reference to avoid any unnecessary stack copying/moving of secrets
/// field elements. The field element will be copied bytewise onto the heap, the resulting
/// `Box` is stored in the `SecretKey` which is then wrapped in a `SecretKeyShare`.
///
/// This constructor is identical to `SecretKeyShare::try_from_mut()` in every way except that
/// this constructor will panic if locking memory into RAM fails, whereas
/// `SecretKeyShare::try_from_mut()` will return an `Err`.
///
/// *WARNING* this constructor will overwrite the pointed to `Fr` element with zeros once it
/// has been copied into a new `SecretKeyShare`.
///
/// # Panics
///
/// Panics if we reach the systems locked memory limit.
pub fn from_mut(fr: &mut Fr) -> Self {
match SecretKey::try_from_mut(fr) {
Ok(sk) => SecretKeyShare(sk),
Err(e) => panic!(
"Failed to create `SecretKeyShare` from field element: {}",
e
),
}
}
/// Creates a new `SecretKeyShare` from a mutable reference to a field element. This
/// constructor takes a reference to avoid any unnecessary stack copying/moving of secrets
/// field elements. The field element will be copied bytewise onto the heap, the resulting
/// `Box` is stored in the `SecretKey` which is then wrapped in a `SecretKeyShare`.
///
/// This constructor is identical to `SecretKeyShare::from_mut()` in every way except that this
/// constructor will return an `Err` if locking memory into RAM fails, whereas
/// `SecretKeyShare::from_mut()` will panic.
///
/// *WARNING* this constructor will overwrite the pointed to `Fr` element with zeros once it
/// has been copied into a new `SecretKeyShare`.
///
/// # Errors
///
/// Returns an `Error::MlockFailed` if we have reached the systems's locked memory limit.
pub fn try_from_mut(fr: &mut Fr) -> Result<Self> {
SecretKey::try_from_mut(fr).map(SecretKeyShare)
}
/// Returns the matching public key share.
pub fn public_key_share(&self) -> PublicKeyShare {
PublicKeyShare(self.0.public_key())
}
/// Signs the given element of `G2`.
pub fn sign_g2<H: Into<G2Affine>>(&self, hash: H) -> SignatureShare {
SignatureShare(self.0.sign_g2(hash))
}
/// Signs the given message.
pub fn sign<M: AsRef<[u8]>>(&self, msg: M) -> SignatureShare {
SignatureShare(self.0.sign(msg))
}
/// Returns a decryption share, or `None`, if the ciphertext isn't valid.
pub fn decrypt_share(&self, ct: &Ciphertext) -> Option<DecryptionShare> {
if !ct.verify() {
return None;
}
Some(self.decrypt_share_no_verify(ct))
}
/// Returns a decryption share, without validating the ciphertext.
pub fn decrypt_share_no_verify(&self, ct: &Ciphertext) -> DecryptionShare {
DecryptionShare(ct.0.into_affine().mul(*(self.0).0))
}
/// Generates a non-redacted debug string. This method differs from
/// the `Debug` implementation in that it *does* leak the secret prime
/// field element.
pub fn reveal(&self) -> String {
let uncomp = self.0.public_key().0.into_affine().into_uncompressed();
let bytes = uncomp.as_ref();
format!("SecretKeyShare({:?})", HexBytes(bytes))
}
}
/// An encrypted message.
#[derive(Deserialize, Serialize, Debug, Clone, PartialEq, Eq)]
pub struct Ciphertext(
#[serde(with = "serde_impl::projective")] G1,
Vec<u8>,
#[serde(with = "serde_impl::projective")] G2,
);
impl Hash for Ciphertext {
fn hash<H: Hasher>(&self, state: &mut H) {
let Ciphertext(ref u, ref v, ref w) = *self;
u.into_affine().into_compressed().as_ref().hash(state);
v.hash(state);
w.into_affine().into_compressed().as_ref().hash(state);
}
}
impl Ciphertext {
/// Returns `true` if this is a valid ciphertext. This check is necessary to prevent
/// chosen-ciphertext attacks.
pub fn verify(&self) -> bool {
let Ciphertext(ref u, ref v, ref w) = *self;
let hash = hash_g1_g2(*u, v);
Bls12::pairing(G1Affine::one(), *w) == Bls12::pairing(*u, hash)
}
}
/// A decryption share. A threshold of decryption shares can be used to decrypt a message.
#[derive(Clone, Deserialize, Serialize, Debug, PartialEq, Eq, Rand)]
pub struct DecryptionShare(#[serde(with = "serde_impl::projective")] G1);
impl Hash for DecryptionShare {
fn hash<H: Hasher>(&self, state: &mut H) {
self.0.into_affine().into_compressed().as_ref().hash(state);
}
}
/// A public key and an associated set of public key shares.
#[derive(Serialize, Deserialize, Clone, Debug, PartialEq, Eq)]
pub struct PublicKeySet {
/// The coefficients of a polynomial whose value at `0` is the "master key", and value at
/// `i + 1` is key share number `i`.
commit: Commitment,
}
impl Hash for PublicKeySet {
fn hash<H: Hasher>(&self, state: &mut H) {
self.commit.hash(state);
}
}
impl From<Commitment> for PublicKeySet {
fn from(commit: Commitment) -> PublicKeySet {
PublicKeySet { commit }
}
}
impl PublicKeySet {
/// Returns the threshold `t`: any set of `t + 1` signature shares can be combined into a full
/// signature.
pub fn threshold(&self) -> usize {
self.commit.degree()
}
/// Returns the public key.
pub fn public_key(&self) -> PublicKey {
PublicKey(self.commit.coeff[0])
}
/// Returns the `i`-th public key share.
pub fn public_key_share<T: IntoFr>(&self, i: T) -> PublicKeyShare {
let value = self.commit.evaluate(into_fr_plus_1(i));
PublicKeyShare(PublicKey(value))
}
/// Combines the shares into a signature that can be verified with the main public key.
pub fn combine_signatures<'a, T, I>(&self, shares: I) -> Result<Signature>
where
I: IntoIterator<Item = (T, &'a SignatureShare)>,
T: IntoFr,
{
let samples = shares.into_iter().map(|(i, share)| (i, &(share.0).0));
Ok(Signature(interpolate(self.commit.degree() + 1, samples)?))
}
/// Combines the shares to decrypt the ciphertext.
pub fn decrypt<'a, T, I>(&self, shares: I, ct: &Ciphertext) -> Result<Vec<u8>>
where
I: IntoIterator<Item = (T, &'a DecryptionShare)>,
T: IntoFr,
{
let samples = shares.into_iter().map(|(i, share)| (i, &share.0));
let g = interpolate(self.commit.degree() + 1, samples)?;
Ok(xor_vec(&hash_bytes(g, ct.1.len()), &ct.1))
}
}
/// A secret key and an associated set of secret key shares.
pub struct SecretKeySet {
/// The coefficients of a polynomial whose value at `0` is the "master key", and value at
/// `i + 1` is key share number `i`.
poly: Poly,
}
impl From<Poly> for SecretKeySet {
fn from(poly: Poly) -> SecretKeySet {
SecretKeySet { poly }
}
}
impl SecretKeySet {
/// Creates a set of secret key shares, where any `threshold + 1` of them can collaboratively
/// sign and decrypt. This constuctor is identical to the `SecretKey::try_random()` in every
/// way except that this constructor panics if locking secret values into RAM fails.
///
/// # Panics
///
/// Panics if we reach the system's locked memory limit.
pub fn random<R: Rng>(threshold: usize, rng: &mut R) -> Self {
SecretKeySet::try_random(threshold, rng)
.unwrap_or_else(|e| panic!("Failed to create random `SecretKeySet`: {}", e))
}
/// Creates a set of secret key shares, where any `threshold + 1` of them can collaboratively
/// sign and decrypt. This constuctor is identical to the `SecretKey::random()` in every
/// way except that this constructor return an `Err` if locking secret values into RAM fails.
///
/// # Errors
///
/// Returns an `Error::MlockFailed` if we have reached the systems's locked memory limit.
pub fn try_random<R: Rng>(threshold: usize, rng: &mut R) -> Result<Self> {
Poly::try_random(threshold, rng).map(SecretKeySet::from)
}
/// Returns the threshold `t`: any set of `t + 1` signature shares can be combined into a full
/// signature.
pub fn threshold(&self) -> usize {
self.poly.degree()
}
/// Returns the `i`-th secret key share. This method is identical to the
/// `.try_secret_key_share()` in every way except that this method panics if
/// locking secret values into memory fails, whereas `.try_secret_key_share()`
/// returns an `Err`.
///
/// # Panics
///
/// Panics if we reach the system's locked memory limit.
pub fn secret_key_share<T: IntoFr>(&self, i: T) -> SecretKeyShare {
self.try_secret_key_share(i)
.unwrap_or_else(|e| panic!("Failed to create `SecretKeyShare`: {}", e))
}
/// Returns the `i`-th secret key share. This method is identical to the method
/// `.secret_key_share()` in every way except that this method returns an `Err` if
/// locking secret values into memory fails, whereas `.secret_key_share()` will
/// panic.
///
/// # Errors
///
/// Returns an `Error::MlockFailed` if we have reached the systems's locked memory limit.
pub fn try_secret_key_share<T: IntoFr>(&self, i: T) -> Result<SecretKeyShare> {
let mut fr = self.poly.evaluate(into_fr_plus_1(i));
SecretKeyShare::try_from_mut(&mut fr)
}
/// Returns the corresponding public key set. That information can be shared publicly.
pub fn public_keys(&self) -> PublicKeySet {
PublicKeySet {
commit: self.poly.commitment(),
}
}
/// Returns the secret master key. Panics if mlocking fails.
///
/// # Panics
///
/// Panics if we have hit the system's locked memory limit when `mlock`ing the new instance of
/// `SecretKey`.
#[cfg(test)]
fn secret_key(&self) -> SecretKey {
let mut fr = self.poly.evaluate(0);
SecretKey::from_mut(&mut fr)
}
}
/// Returns a hash of the given message in `G2`.
fn hash_g2<M: AsRef<[u8]>>(msg: M) -> G2 {
let digest = sha3_256(msg.as_ref());
let seed = <[u32; CHACHA_RNG_SEED_SIZE]>::init_with_indices(|i| {
BigEndian::read_u32(&digest.as_ref()[(4 * i)..(4 * i + 4)])
});
let mut rng = ChaChaRng::from_seed(&seed);
rng.gen()
}
/// Returns a hash of the group element and message, in the second group.
fn hash_g1_g2<M: AsRef<[u8]>>(g1: G1, msg: M) -> G2 {
// If the message is large, hash it, otherwise copy it.
// TODO: Benchmark and optimize the threshold.
let mut msg = if msg.as_ref().len() > 64 {
sha3_256(msg.as_ref()).to_vec()
} else {
msg.as_ref().to_vec()
};
msg.extend(g1.into_affine().into_compressed().as_ref());
hash_g2(&msg)
}
/// Returns a hash of the group element with the specified length in bytes.
fn hash_bytes(g1: G1, len: usize) -> Vec<u8> {
let digest = sha3_256(g1.into_affine().into_compressed().as_ref());
let seed = <[u32; CHACHA_RNG_SEED_SIZE]>::init_with_indices(|i| {
BigEndian::read_u32(&digest.as_ref()[(4 * i)..(4 * i + 4)])
});
let mut rng = ChaChaRng::from_seed(&seed);
rng.gen_iter().take(len).collect()
}
/// Returns the bitwise xor.
fn xor_vec(x: &[u8], y: &[u8]) -> Vec<u8> {
x.iter().zip(y).map(|(a, b)| a ^ b).collect()
}
/// Given a list of `t` samples `(i - 1, f(i) * g)` for a polynomial `f` of degree `t - 1`, and a
/// group generator `g`, returns `f(0) * g`.
fn interpolate<'a, C, T, I>(t: usize, items: I) -> Result<C>
where
C: CurveProjective<Scalar = Fr>,
I: IntoIterator<Item = (T, &'a C)>,
T: IntoFr,
{
let samples: Vec<_> = items
.into_iter()
.map(|(i, sample)| (into_fr_plus_1(i), sample))
.collect();
if samples.len() < t {
return Err(Error::NotEnoughShares);
}
let mut result = C::zero();
let mut indexes = Vec::new();
for (x, sample) in samples.iter().take(t) {
if indexes.contains(x) {
return Err(Error::DuplicateEntry);
}
indexes.push(x.clone());
// Compute the value at 0 of the Lagrange polynomial that is `0` at the other data
// points but `1` at `x`.
let mut l0 = C::Scalar::one();
for (x0, _) in samples.iter().take(t).filter(|(x0, _)| x0 != x) {
let mut denom = *x0;
denom.sub_assign(x);
l0.mul_assign(x0);
l0.mul_assign(&denom.inverse().expect("indices are different"));
}
result.add_assign(&sample.into_affine().mul(l0));
}
Ok(result)
}
fn into_fr_plus_1<I: IntoFr>(x: I) -> Fr {
let mut result = Fr::one();
result.add_assign(&x.into_fr());
result
}
#[cfg(test)]
mod tests {
use super::*;
use std::collections::BTreeMap;
use rand::{self, random};
#[test]
fn test_simple_sig() {
let sk0: SecretKey = random();
let sk1: SecretKey = random();
let pk0 = sk0.public_key();
let msg0 = b"Real news";
let msg1 = b"Fake news";
assert!(pk0.verify(&sk0.sign(msg0), msg0));
assert!(!pk0.verify(&sk1.sign(msg0), msg0)); // Wrong key.
assert!(!pk0.verify(&sk0.sign(msg1), msg0)); // Wrong message.
}
#[test]
fn test_threshold_sig() {
let mut rng = rand::thread_rng();
let sk_set = SecretKeySet::random(3, &mut rng);
let pk_set = sk_set.public_keys();
let pk_master = pk_set.public_key();
// Make sure the keys are different, and the first coefficient is the main key.
assert_ne!(pk_master, pk_set.public_key_share(0).0);
assert_ne!(pk_master, pk_set.public_key_share(1).0);
assert_ne!(pk_master, pk_set.public_key_share(2).0);
// Make sure we don't hand out the main secret key to anyone.
let sk_master = sk_set.secret_key();
let sk_share_0 = sk_set.secret_key_share(0).0;
let sk_share_1 = sk_set.secret_key_share(1).0;
let sk_share_2 = sk_set.secret_key_share(2).0;
assert_ne!(sk_master, sk_share_0);
assert_ne!(sk_master, sk_share_1);
assert_ne!(sk_master, sk_share_2);
let msg = "Totally real news";
// The threshold is 3, so 4 signature shares will suffice to recreate the share.
let sigs: BTreeMap<_, _> = [5, 8, 7, 10]
.iter()
.map(|&i| {
let sig = sk_set.secret_key_share(i).sign(msg);
(i, sig)
}).collect();
// Each of the shares is a valid signature matching its public key share.
for (i, sig) in &sigs {
assert!(pk_set.public_key_share(*i).verify(sig, msg));
}
// Combined, they produce a signature matching the main public key.
let sig = pk_set.combine_signatures(&sigs).expect("signatures match");
assert!(pk_set.public_key().verify(&sig, msg));
// A different set of signatories produces the same signature.
let sigs2: BTreeMap<_, _> = [42, 43, 44, 45]
.iter()
.map(|&i| {
let sig = sk_set.secret_key_share(i).sign(msg);
(i, sig)
}).collect();
let sig2 = pk_set.combine_signatures(&sigs2).expect("signatures match");
assert_eq!(sig, sig2);
}
#[test]
fn test_simple_enc() {
let sk_bob: SecretKey = random();
let sk_eve: SecretKey = random();
let pk_bob = sk_bob.public_key();
let msg = b"Muffins in the canteen today! Don't tell Eve!";
let ciphertext = pk_bob.encrypt(&msg[..]);
assert!(ciphertext.verify());
// Bob can decrypt the message.
let decrypted = sk_bob.decrypt(&ciphertext).expect("invalid ciphertext");
assert_eq!(msg[..], decrypted[..]);
// Eve can't.
let decrypted_eve = sk_eve.decrypt(&ciphertext).expect("invalid ciphertext");
assert_ne!(msg[..], decrypted_eve[..]);
// Eve tries to trick Bob into decrypting `msg` xor `v`, but it doesn't validate.
let Ciphertext(u, v, w) = ciphertext;
let fake_ciphertext = Ciphertext(u, vec![0; v.len()], w);
assert!(!fake_ciphertext.verify());
assert_eq!(None, sk_bob.decrypt(&fake_ciphertext));
}
#[test]
fn test_threshold_enc() {
let mut rng = rand::thread_rng();
let sk_set = SecretKeySet::random(3, &mut rng);
let pk_set = sk_set.public_keys();
let msg = b"Totally real news";
let ciphertext = pk_set.public_key().encrypt(&msg[..]);
// The threshold is 3, so 4 signature shares will suffice to decrypt.
let shares: BTreeMap<_, _> = [5, 8, 7, 10]
.iter()
.map(|&i| {
let dec_share = sk_set
.secret_key_share(i)
.decrypt_share(&ciphertext)
.expect("ciphertext is invalid");
(i, dec_share)
}).collect();
// Each of the shares is valid matching its public key share.
for (i, share) in &shares {
pk_set
.public_key_share(*i)
.verify_decryption_share(share, &ciphertext);
}
// Combined, they can decrypt the message.
let decrypted = pk_set
.decrypt(&shares, &ciphertext)
.expect("decryption shares match");
assert_eq!(msg[..], decrypted[..]);
}
/// Some basic sanity checks for the `hash_g2` function.
#[test]
fn test_hash_g2() {
let mut rng = rand::thread_rng();
let msg: Vec<u8> = (0..1000).map(|_| rng.gen()).collect();
let msg_end0: Vec<u8> = msg.iter().chain(b"end0").cloned().collect();
let msg_end1: Vec<u8> = msg.iter().chain(b"end1").cloned().collect();
assert_eq!(hash_g2(&msg), hash_g2(&msg));
assert_ne!(hash_g2(&msg), hash_g2(&msg_end0));
assert_ne!(hash_g2(&msg_end0), hash_g2(&msg_end1));
}
/// Some basic sanity checks for the `hash_g1_g2` function.
#[test]
fn test_hash_g1_g2() {
let mut rng = rand::thread_rng();
let msg: Vec<u8> = (0..1000).map(|_| rng.gen()).collect();
let msg_end0: Vec<u8> = msg.iter().chain(b"end0").cloned().collect();
let msg_end1: Vec<u8> = msg.iter().chain(b"end1").cloned().collect();
let g0 = rng.gen();
let g1 = rng.gen();
assert_eq!(hash_g1_g2(g0, &msg), hash_g1_g2(g0, &msg));
assert_ne!(hash_g1_g2(g0, &msg), hash_g1_g2(g0, &msg_end0));
assert_ne!(hash_g1_g2(g0, &msg_end0), hash_g1_g2(g0, &msg_end1));
assert_ne!(hash_g1_g2(g0, &msg), hash_g1_g2(g1, &msg));
}
/// Some basic sanity checks for the `hash_bytes` function.
#[test]
fn test_hash_bytes() {
let mut rng = rand::thread_rng();
let g0 = rng.gen();
let g1 = rng.gen();
let hash = hash_bytes;
assert_eq!(hash(g0, 5), hash(g0, 5));
assert_ne!(hash(g0, 5), hash(g1, 5));
assert_eq!(5, hash(g0, 5).len());
assert_eq!(6, hash(g0, 6).len());
assert_eq!(20, hash(g0, 20).len());
}
#[test]
fn test_serde() {
use bincode;
let sk: SecretKey = random();
let sig = sk.sign("Please sign here: ______");
let pk = sk.public_key();
let ser_pk = bincode::serialize(&pk).expect("serialize public key");
let deser_pk = bincode::deserialize(&ser_pk).expect("deserialize public key");
assert_eq!(pk, deser_pk);
let ser_sig = bincode::serialize(&sig).expect("serialize signature");
let deser_sig = bincode::deserialize(&ser_sig).expect("deserialize signature");
assert_eq!(sig, deser_sig);
}
}