fork of https://github.com/poanetwork/threshold_crypto for the needs of nextgraph.org
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
585 lines
20 KiB
585 lines
20 KiB
pub mod error;
|
|
pub mod poly;
|
|
#[cfg(feature = "serialization-protobuf")]
|
|
pub mod protobuf_impl;
|
|
mod serde_impl;
|
|
|
|
use std::fmt;
|
|
use std::hash::{Hash, Hasher};
|
|
|
|
use byteorder::{BigEndian, ByteOrder};
|
|
use clear_on_drop::ClearOnDrop;
|
|
use init_with::InitWith;
|
|
use pairing::{CurveAffine, CurveProjective, Engine, Field, PrimeField};
|
|
use rand::{ChaChaRng, OsRng, Rng, SeedableRng};
|
|
use ring::digest;
|
|
|
|
use self::error::{ErrorKind, Result};
|
|
use self::poly::{Commitment, Poly};
|
|
use fmt::HexBytes;
|
|
|
|
/// The number of words (`u32`) in a ChaCha RNG seed.
|
|
const CHACHA_RNG_SEED_SIZE: usize = 8;
|
|
|
|
const ERR_OS_RNG: &str = "could not initialize the OS random number generator";
|
|
|
|
/// A public key, or a public key share.
|
|
#[derive(Deserialize, Serialize, Clone, Debug)]
|
|
pub struct PublicKey<E: Engine>(#[serde(with = "serde_impl::projective")] E::G1);
|
|
|
|
impl<E: Engine> PartialEq for PublicKey<E> {
|
|
fn eq(&self, other: &PublicKey<E>) -> bool {
|
|
self.0 == other.0
|
|
}
|
|
}
|
|
|
|
impl<E: Engine> Hash for PublicKey<E> {
|
|
fn hash<H: Hasher>(&self, state: &mut H) {
|
|
self.0.into_affine().into_compressed().as_ref().hash(state);
|
|
}
|
|
}
|
|
|
|
impl<E: Engine> PublicKey<E> {
|
|
/// Returns `true` if the signature matches the element of `E::G2`.
|
|
pub fn verify_g2<H: Into<E::G2Affine>>(&self, sig: &Signature<E>, hash: H) -> bool {
|
|
E::pairing(self.0, hash) == E::pairing(E::G1Affine::one(), sig.0)
|
|
}
|
|
|
|
/// Returns `true` if the signature matches the message.
|
|
pub fn verify<M: AsRef<[u8]>>(&self, sig: &Signature<E>, msg: M) -> bool {
|
|
self.verify_g2(sig, hash_g2::<E, M>(msg))
|
|
}
|
|
|
|
/// Returns `true` if the decryption share matches the ciphertext.
|
|
pub fn verify_decryption_share(&self, share: &DecryptionShare<E>, ct: &Ciphertext<E>) -> bool {
|
|
let Ciphertext(ref u, ref v, ref w) = *ct;
|
|
let hash = hash_g1_g2::<E, _>(*u, v);
|
|
E::pairing(share.0, hash) == E::pairing(self.0, *w)
|
|
}
|
|
|
|
/// Encrypts the message.
|
|
pub fn encrypt<M: AsRef<[u8]>>(&self, msg: M) -> Ciphertext<E> {
|
|
let r: E::Fr = OsRng::new().expect(ERR_OS_RNG).gen();
|
|
let u = E::G1Affine::one().mul(r);
|
|
let v: Vec<u8> = {
|
|
let g = self.0.into_affine().mul(r);
|
|
xor_vec(&hash_bytes::<E>(g, msg.as_ref().len()), msg.as_ref())
|
|
};
|
|
let w = hash_g1_g2::<E, _>(u, &v).into_affine().mul(r);
|
|
Ciphertext(u, v, w)
|
|
}
|
|
|
|
/// Returns a byte string representation of the public key.
|
|
pub fn to_bytes(&self) -> Vec<u8> {
|
|
self.0.into_affine().into_compressed().as_ref().to_vec()
|
|
}
|
|
}
|
|
|
|
/// A signature, or a signature share.
|
|
#[derive(Deserialize, Serialize, Clone)]
|
|
pub struct Signature<E: Engine>(#[serde(with = "serde_impl::projective")] E::G2);
|
|
|
|
impl<E: Engine> fmt::Debug for Signature<E> {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
let uncomp = self.0.into_affine().into_uncompressed();
|
|
let bytes = uncomp.as_ref();
|
|
write!(f, "{:?}", HexBytes(bytes))
|
|
}
|
|
}
|
|
|
|
impl<E: Engine> PartialEq for Signature<E> {
|
|
fn eq(&self, other: &Signature<E>) -> bool {
|
|
self.0 == other.0
|
|
}
|
|
}
|
|
|
|
impl<E: Engine> Hash for Signature<E> {
|
|
fn hash<H: Hasher>(&self, state: &mut H) {
|
|
self.0.into_affine().into_compressed().as_ref().hash(state);
|
|
}
|
|
}
|
|
|
|
impl<E: Engine> Signature<E> {
|
|
pub fn parity(&self) -> bool {
|
|
let uncomp = self.0.into_affine().into_uncompressed();
|
|
let bytes = uncomp.as_ref();
|
|
let xor_bytes: u8 = bytes.iter().fold(0, |result, byte| result ^ byte);
|
|
let parity = 0 != xor_bytes % 2;
|
|
debug!("Signature: {:?}, output: {}", HexBytes(bytes), parity);
|
|
parity
|
|
}
|
|
}
|
|
|
|
/// A secret key, or a secret key share.
|
|
#[derive(Debug)]
|
|
pub struct SecretKey<E: Engine>(E::Fr);
|
|
|
|
impl<E: Engine> PartialEq for SecretKey<E> {
|
|
fn eq(&self, other: &SecretKey<E>) -> bool {
|
|
self.0 == other.0
|
|
}
|
|
}
|
|
|
|
impl<E: Engine> Default for SecretKey<E> {
|
|
fn default() -> Self {
|
|
SecretKey(E::Fr::zero())
|
|
}
|
|
}
|
|
|
|
impl<E: Engine> SecretKey<E> {
|
|
/// Creates a new secret key.
|
|
pub fn new<R: Rng>(rng: &mut R) -> Self {
|
|
SecretKey(rng.gen())
|
|
}
|
|
|
|
/// Returns the matching public key.
|
|
pub fn public_key(&self) -> PublicKey<E> {
|
|
PublicKey(E::G1Affine::one().mul(self.0))
|
|
}
|
|
|
|
/// Signs the given element of `E::G2`.
|
|
pub fn sign_g2<H: Into<E::G2Affine>>(&self, hash: H) -> Signature<E> {
|
|
Signature(hash.into().mul(self.0))
|
|
}
|
|
|
|
/// Signs the given message.
|
|
pub fn sign<M: AsRef<[u8]>>(&self, msg: M) -> Signature<E> {
|
|
self.sign_g2(hash_g2::<E, M>(msg))
|
|
}
|
|
|
|
/// Returns the decrypted text, or `None`, if the ciphertext isn't valid.
|
|
pub fn decrypt(&self, ct: &Ciphertext<E>) -> Option<Vec<u8>> {
|
|
if !ct.verify() {
|
|
return None;
|
|
}
|
|
let Ciphertext(ref u, ref v, _) = *ct;
|
|
let g = u.into_affine().mul(self.0);
|
|
Some(xor_vec(&hash_bytes::<E>(g, v.len()), v))
|
|
}
|
|
|
|
/// Returns a decryption share, or `None`, if the ciphertext isn't valid.
|
|
pub fn decrypt_share(&self, ct: &Ciphertext<E>) -> Option<DecryptionShare<E>> {
|
|
if !ct.verify() {
|
|
return None;
|
|
}
|
|
Some(DecryptionShare(ct.0.into_affine().mul(self.0)))
|
|
}
|
|
}
|
|
|
|
/// An encrypted message.
|
|
#[derive(Deserialize, Serialize, Debug)]
|
|
pub struct Ciphertext<E: Engine>(
|
|
#[serde(with = "serde_impl::projective")] E::G1,
|
|
Vec<u8>,
|
|
#[serde(with = "serde_impl::projective")] E::G2,
|
|
);
|
|
|
|
impl<E: Engine> PartialEq for Ciphertext<E> {
|
|
fn eq(&self, other: &Ciphertext<E>) -> bool {
|
|
self.0 == other.0 && self.1 == other.1 && self.2 == other.2
|
|
}
|
|
}
|
|
|
|
impl<E: Engine> Hash for Ciphertext<E> {
|
|
fn hash<H: Hasher>(&self, state: &mut H) {
|
|
let Ciphertext(ref u, ref v, ref w) = *self;
|
|
u.into_affine().into_compressed().as_ref().hash(state);
|
|
v.hash(state);
|
|
w.into_affine().into_compressed().as_ref().hash(state);
|
|
}
|
|
}
|
|
|
|
impl<E: Engine> Ciphertext<E> {
|
|
/// Returns `true` if this is a valid ciphertext. This check is necessary to prevent
|
|
/// chosen-ciphertext attacks.
|
|
pub fn verify(&self) -> bool {
|
|
let Ciphertext(ref u, ref v, ref w) = *self;
|
|
let hash = hash_g1_g2::<E, _>(*u, v);
|
|
E::pairing(E::G1Affine::one(), *w) == E::pairing(*u, hash)
|
|
}
|
|
}
|
|
|
|
/// A decryption share. A threshold of decryption shares can be used to decrypt a message.
|
|
#[derive(Deserialize, Serialize, Debug)]
|
|
pub struct DecryptionShare<E: Engine>(#[serde(with = "serde_impl::projective")] E::G1);
|
|
|
|
impl<E: Engine> PartialEq for DecryptionShare<E> {
|
|
fn eq(&self, other: &DecryptionShare<E>) -> bool {
|
|
self.0 == other.0
|
|
}
|
|
}
|
|
|
|
impl<E: Engine> Hash for DecryptionShare<E> {
|
|
fn hash<H: Hasher>(&self, state: &mut H) {
|
|
self.0.into_affine().into_compressed().as_ref().hash(state);
|
|
}
|
|
}
|
|
|
|
/// A public key and an associated set of public key shares.
|
|
#[derive(Serialize, Deserialize, Clone, Debug, Hash)]
|
|
pub struct PublicKeySet<E: Engine> {
|
|
/// The coefficients of a polynomial whose value at `0` is the "master key", and value at
|
|
/// `i + 1` is key share number `i`.
|
|
commit: Commitment<E>,
|
|
}
|
|
|
|
impl<E: Engine> From<Commitment<E>> for PublicKeySet<E> {
|
|
fn from(commit: Commitment<E>) -> PublicKeySet<E> {
|
|
PublicKeySet { commit }
|
|
}
|
|
}
|
|
|
|
impl<E: Engine> PublicKeySet<E> {
|
|
/// Returns the threshold `t`: any set of `t + 1` signature shares can be combined into a full
|
|
/// signature.
|
|
pub fn threshold(&self) -> usize {
|
|
self.commit.degree()
|
|
}
|
|
|
|
/// Returns the public key.
|
|
pub fn public_key(&self) -> PublicKey<E> {
|
|
PublicKey(self.commit.evaluate(0))
|
|
}
|
|
|
|
/// Returns the `i`-th public key share.
|
|
pub fn public_key_share<T: Into<<E::Fr as PrimeField>::Repr>>(&self, i: T) -> PublicKey<E> {
|
|
PublicKey(self.commit.evaluate(from_repr_plus_1::<E::Fr>(i.into())))
|
|
}
|
|
|
|
/// Combines the shares into a signature that can be verified with the main public key.
|
|
pub fn combine_signatures<'a, ITR, IND>(&self, shares: ITR) -> Result<Signature<E>>
|
|
where
|
|
ITR: IntoIterator<Item = (&'a IND, &'a Signature<E>)>,
|
|
IND: Into<<E::Fr as PrimeField>::Repr> + Clone + 'a,
|
|
{
|
|
let samples = shares.into_iter().map(|(i, share)| (i, &share.0));
|
|
Ok(Signature(interpolate(self.commit.degree() + 1, samples)?))
|
|
}
|
|
|
|
/// Combines the shares to decrypt the ciphertext.
|
|
pub fn decrypt<'a, ITR, IND>(&self, shares: ITR, ct: &Ciphertext<E>) -> Result<Vec<u8>>
|
|
where
|
|
ITR: IntoIterator<Item = (&'a IND, &'a DecryptionShare<E>)>,
|
|
IND: Into<<E::Fr as PrimeField>::Repr> + Clone + 'a,
|
|
{
|
|
let samples = shares.into_iter().map(|(i, share)| (i, &share.0));
|
|
let g = interpolate(self.commit.degree() + 1, samples)?;
|
|
Ok(xor_vec(&hash_bytes::<E>(g, ct.1.len()), &ct.1))
|
|
}
|
|
}
|
|
|
|
/// A secret key and an associated set of secret key shares.
|
|
pub struct SecretKeySet<E: Engine> {
|
|
/// The coefficients of a polynomial whose value at `0` is the "master key", and value at
|
|
/// `i + 1` is key share number `i`.
|
|
poly: Poly<E>,
|
|
}
|
|
|
|
impl<E: Engine> From<Poly<E>> for SecretKeySet<E> {
|
|
fn from(poly: Poly<E>) -> SecretKeySet<E> {
|
|
SecretKeySet { poly }
|
|
}
|
|
}
|
|
|
|
impl<E: Engine> SecretKeySet<E> {
|
|
/// Creates a set of secret key shares, where any `threshold + 1` of them can collaboratively
|
|
/// sign and decrypt.
|
|
pub fn random<R: Rng>(threshold: usize, rng: &mut R) -> Self {
|
|
SecretKeySet {
|
|
poly: Poly::random(threshold, rng),
|
|
}
|
|
}
|
|
|
|
/// Returns the threshold `t`: any set of `t + 1` signature shares can be combined into a full
|
|
/// signature.
|
|
pub fn threshold(&self) -> usize {
|
|
self.poly.degree()
|
|
}
|
|
|
|
/// Returns the `i`-th secret key share.
|
|
pub fn secret_key_share<T>(&self, i: T) -> ClearOnDrop<Box<SecretKey<E>>>
|
|
where
|
|
T: Into<<E::Fr as PrimeField>::Repr>
|
|
{
|
|
ClearOnDrop::new(Box::new(
|
|
SecretKey(self.poly.evaluate(from_repr_plus_1::<E::Fr>(i.into())))
|
|
))
|
|
}
|
|
|
|
/// Returns the corresponding public key set. That information can be shared publicly.
|
|
pub fn public_keys(&self) -> PublicKeySet<E> {
|
|
PublicKeySet {
|
|
commit: self.poly.commitment(),
|
|
}
|
|
}
|
|
|
|
/// Returns the secret master key.
|
|
#[cfg(test)]
|
|
fn secret_key(&self) -> SecretKey<E> {
|
|
SecretKey(self.poly.evaluate(0))
|
|
}
|
|
}
|
|
|
|
/// Returns a hash of the given message in `G2`.
|
|
fn hash_g2<E: Engine, M: AsRef<[u8]>>(msg: M) -> E::G2 {
|
|
let digest = digest::digest(&digest::SHA256, msg.as_ref());
|
|
let seed = <[u32; CHACHA_RNG_SEED_SIZE]>::init_with_indices(|i| {
|
|
BigEndian::read_u32(&digest.as_ref()[(4 * i)..(4 * i + 4)])
|
|
});
|
|
let mut rng = ChaChaRng::from_seed(&seed);
|
|
rng.gen()
|
|
}
|
|
|
|
/// Returns a hash of the group element and message, in the second group.
|
|
fn hash_g1_g2<E: Engine, M: AsRef<[u8]>>(g1: E::G1, msg: M) -> E::G2 {
|
|
// If the message is large, hash it, otherwise copy it.
|
|
// TODO: Benchmark and optimize the threshold.
|
|
let mut msg = if msg.as_ref().len() > 64 {
|
|
let digest = digest::digest(&digest::SHA256, msg.as_ref());
|
|
digest.as_ref().to_vec()
|
|
} else {
|
|
msg.as_ref().to_vec()
|
|
};
|
|
msg.extend(g1.into_affine().into_compressed().as_ref());
|
|
hash_g2::<E, _>(&msg)
|
|
}
|
|
|
|
/// Returns a hash of the group element with the specified length in bytes.
|
|
fn hash_bytes<E: Engine>(g1: E::G1, len: usize) -> Vec<u8> {
|
|
let digest = digest::digest(&digest::SHA256, g1.into_affine().into_compressed().as_ref());
|
|
let seed = <[u32; CHACHA_RNG_SEED_SIZE]>::init_with_indices(|i| {
|
|
BigEndian::read_u32(&digest.as_ref()[(4 * i)..(4 * i + 4)])
|
|
});
|
|
let mut rng = ChaChaRng::from_seed(&seed);
|
|
rng.gen_iter().take(len).collect()
|
|
}
|
|
|
|
/// Returns the bitwise xor.
|
|
fn xor_vec(x: &[u8], y: &[u8]) -> Vec<u8> {
|
|
x.iter().zip(y).map(|(a, b)| a ^ b).collect()
|
|
}
|
|
|
|
/// Given a list of `t` samples `(i - 1, f(i) * g)` for a polynomial `f` of degree `t - 1`, and a
|
|
/// group generator `g`, returns `f(0) * g`.
|
|
fn interpolate<'a, C, ITR, IND>(t: usize, items: ITR) -> Result<C>
|
|
where
|
|
C: CurveProjective,
|
|
ITR: IntoIterator<Item = (&'a IND, &'a C)>,
|
|
IND: Into<<C::Scalar as PrimeField>::Repr> + Clone + 'a,
|
|
{
|
|
let samples: Vec<_> = items
|
|
.into_iter()
|
|
.map(|(i, sample)| (from_repr_plus_1::<C::Scalar>(i.clone().into()), sample))
|
|
.collect();
|
|
if samples.len() < t {
|
|
return Err(ErrorKind::NotEnoughShares.into());
|
|
}
|
|
let mut result = C::zero();
|
|
let mut indexes = Vec::new();
|
|
for (x, sample) in samples.iter().take(t) {
|
|
if indexes.contains(x) {
|
|
return Err(ErrorKind::DuplicateEntry.into());
|
|
}
|
|
indexes.push(x.clone());
|
|
// Compute the value at 0 of the Lagrange polynomial that is `0` at the other data
|
|
// points but `1` at `x`.
|
|
let mut l0 = C::Scalar::one();
|
|
for (x0, _) in samples.iter().take(t).filter(|(x0, _)| x0 != x) {
|
|
let mut denom = *x0;
|
|
denom.sub_assign(x);
|
|
l0.mul_assign(x0);
|
|
l0.mul_assign(&denom.inverse().expect("indices are different"));
|
|
}
|
|
result.add_assign(&sample.into_affine().mul(l0));
|
|
}
|
|
Ok(result)
|
|
}
|
|
|
|
fn from_repr_plus_1<F: PrimeField>(repr: F::Repr) -> F {
|
|
let mut x = F::one();
|
|
x.add_assign(&F::from_repr(repr).expect("invalid index"));
|
|
x
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use super::*;
|
|
|
|
use std::collections::BTreeMap;
|
|
|
|
use pairing::bls12_381::Bls12;
|
|
use rand;
|
|
|
|
#[test]
|
|
fn test_simple_sig() {
|
|
let mut rng = rand::thread_rng();
|
|
let sk0 = SecretKey::<Bls12>::new(&mut rng);
|
|
let sk1 = SecretKey::<Bls12>::new(&mut rng);
|
|
let pk0 = sk0.public_key();
|
|
let msg0 = b"Real news";
|
|
let msg1 = b"Fake news";
|
|
assert!(pk0.verify(&sk0.sign(msg0), msg0));
|
|
assert!(!pk0.verify(&sk1.sign(msg0), msg0)); // Wrong key.
|
|
assert!(!pk0.verify(&sk0.sign(msg1), msg0)); // Wrong message.
|
|
}
|
|
|
|
#[test]
|
|
fn test_threshold_sig() {
|
|
let mut rng = rand::thread_rng();
|
|
let sk_set = SecretKeySet::<Bls12>::random(3, &mut rng);
|
|
let pk_set = sk_set.public_keys();
|
|
|
|
// Make sure the keys are different, and the first coefficient is the main key.
|
|
assert_ne!(pk_set.public_key(), pk_set.public_key_share(0));
|
|
assert_ne!(pk_set.public_key(), pk_set.public_key_share(1));
|
|
assert_ne!(pk_set.public_key(), pk_set.public_key_share(2));
|
|
|
|
// Make sure we don't hand out the main secret key to anyone.
|
|
assert_ne!(sk_set.secret_key(), *sk_set.secret_key_share(0));
|
|
assert_ne!(sk_set.secret_key(), *sk_set.secret_key_share(1));
|
|
assert_ne!(sk_set.secret_key(), *sk_set.secret_key_share(2));
|
|
|
|
let msg = "Totally real news";
|
|
|
|
// The threshold is 3, so 4 signature shares will suffice to recreate the share.
|
|
let sigs: BTreeMap<_, _> = [5, 8, 7, 10]
|
|
.into_iter()
|
|
.map(|i| (*i, sk_set.secret_key_share(*i).sign(msg)))
|
|
.collect();
|
|
|
|
// Each of the shares is a valid signature matching its public key share.
|
|
for (i, sig) in &sigs {
|
|
pk_set.public_key_share(*i).verify(sig, msg);
|
|
}
|
|
|
|
// Combined, they produce a signature matching the main public key.
|
|
let sig = pk_set.combine_signatures(&sigs).expect("signatures match");
|
|
assert!(pk_set.public_key().verify(&sig, msg));
|
|
|
|
// A different set of signatories produces the same signature.
|
|
let sigs2: BTreeMap<_, _> = [42, 43, 44, 45]
|
|
.into_iter()
|
|
.map(|i| (*i, sk_set.secret_key_share(*i).sign(msg)))
|
|
.collect();
|
|
let sig2 = pk_set.combine_signatures(&sigs2).expect("signatures match");
|
|
assert_eq!(sig, sig2);
|
|
}
|
|
|
|
#[test]
|
|
fn test_simple_enc() {
|
|
let mut rng = rand::thread_rng();
|
|
let sk_bob = SecretKey::<Bls12>::new(&mut rng);
|
|
let sk_eve = SecretKey::<Bls12>::new(&mut rng);
|
|
let pk_bob = sk_bob.public_key();
|
|
let msg = b"Muffins in the canteen today! Don't tell Eve!";
|
|
let ciphertext = pk_bob.encrypt(&msg[..]);
|
|
assert!(ciphertext.verify());
|
|
|
|
// Bob can decrypt the message.
|
|
let decrypted = sk_bob.decrypt(&ciphertext).expect("valid ciphertext");
|
|
assert_eq!(msg[..], decrypted[..]);
|
|
|
|
// Eve can't.
|
|
let decrypted_eve = sk_eve.decrypt(&ciphertext).expect("valid ciphertext");
|
|
assert_ne!(msg[..], decrypted_eve[..]);
|
|
|
|
// Eve tries to trick Bob into decrypting `msg` xor `v`, but it doesn't validate.
|
|
let Ciphertext(u, v, w) = ciphertext;
|
|
let fake_ciphertext = Ciphertext::<Bls12>(u, vec![0; v.len()], w);
|
|
assert!(!fake_ciphertext.verify());
|
|
assert_eq!(None, sk_bob.decrypt(&fake_ciphertext));
|
|
}
|
|
|
|
#[test]
|
|
fn test_threshold_enc() {
|
|
let mut rng = rand::thread_rng();
|
|
let sk_set = SecretKeySet::<Bls12>::random(3, &mut rng);
|
|
let pk_set = sk_set.public_keys();
|
|
let msg = b"Totally real news";
|
|
let ciphertext = pk_set.public_key().encrypt(&msg[..]);
|
|
|
|
// The threshold is 3, so 4 signature shares will suffice to decrypt.
|
|
let shares: BTreeMap<_, _> = [5, 8, 7, 10]
|
|
.into_iter()
|
|
.map(|i| {
|
|
let ski = sk_set.secret_key_share(*i);
|
|
let share = ski.decrypt_share(&ciphertext).expect("ciphertext is valid");
|
|
(*i, share)
|
|
})
|
|
.collect();
|
|
|
|
// Each of the shares is valid matching its public key share.
|
|
for (i, share) in &shares {
|
|
pk_set
|
|
.public_key_share(*i)
|
|
.verify_decryption_share(share, &ciphertext);
|
|
}
|
|
|
|
// Combined, they can decrypt the message.
|
|
let decrypted = pk_set
|
|
.decrypt(&shares, &ciphertext)
|
|
.expect("decryption shares match");
|
|
assert_eq!(msg[..], decrypted[..]);
|
|
}
|
|
|
|
/// Some basic sanity checks for the `hash_g2` function.
|
|
#[test]
|
|
fn test_hash_g2() {
|
|
let mut rng = rand::thread_rng();
|
|
let msg: Vec<u8> = (0..1000).map(|_| rng.gen()).collect();
|
|
let msg_end0: Vec<u8> = msg.iter().chain(b"end0").cloned().collect();
|
|
let msg_end1: Vec<u8> = msg.iter().chain(b"end1").cloned().collect();
|
|
|
|
let hash = hash_g2::<Bls12, _>;
|
|
assert_eq!(hash(&msg), hash(&msg));
|
|
assert_ne!(hash(&msg), hash(&msg_end0));
|
|
assert_ne!(hash(&msg_end0), hash(&msg_end1));
|
|
}
|
|
|
|
/// Some basic sanity checks for the `hash_g1_g2` function.
|
|
#[test]
|
|
fn test_hash_g1_g2() {
|
|
let mut rng = rand::thread_rng();
|
|
let msg: Vec<u8> = (0..1000).map(|_| rng.gen()).collect();
|
|
let msg_end0: Vec<u8> = msg.iter().chain(b"end0").cloned().collect();
|
|
let msg_end1: Vec<u8> = msg.iter().chain(b"end1").cloned().collect();
|
|
let g0 = rng.gen();
|
|
let g1 = rng.gen();
|
|
|
|
let hash = hash_g1_g2::<Bls12, _>;
|
|
assert_eq!(hash(g0, &msg), hash(g0, &msg));
|
|
assert_ne!(hash(g0, &msg), hash(g0, &msg_end0));
|
|
assert_ne!(hash(g0, &msg_end0), hash(g0, &msg_end1));
|
|
assert_ne!(hash(g0, &msg), hash(g1, &msg));
|
|
}
|
|
|
|
/// Some basic sanity checks for the `hash_bytes` function.
|
|
#[test]
|
|
fn test_hash_bytes() {
|
|
let mut rng = rand::thread_rng();
|
|
let g0 = rng.gen();
|
|
let g1 = rng.gen();
|
|
let hash = hash_bytes::<Bls12>;
|
|
assert_eq!(hash(g0, 5), hash(g0, 5));
|
|
assert_ne!(hash(g0, 5), hash(g1, 5));
|
|
assert_eq!(5, hash(g0, 5).len());
|
|
assert_eq!(6, hash(g0, 6).len());
|
|
assert_eq!(20, hash(g0, 20).len());
|
|
}
|
|
|
|
#[test]
|
|
fn test_serde() {
|
|
use bincode;
|
|
|
|
let mut rng = rand::thread_rng();
|
|
let sk = SecretKey::<Bls12>::new(&mut rng);
|
|
let sig = sk.sign("Please sign here: ______");
|
|
let pk = sk.public_key();
|
|
let ser_pk = bincode::serialize(&pk).expect("serialize public key");
|
|
let deser_pk = bincode::deserialize(&ser_pk).expect("deserialize public key");
|
|
assert_eq!(pk, deser_pk);
|
|
let ser_sig = bincode::serialize(&sig).expect("serialize signature");
|
|
let deser_sig = bincode::deserialize(&ser_sig).expect("deserialize signature");
|
|
assert_eq!(sig, deser_sig);
|
|
}
|
|
}
|
|
|