fork of https://github.com/poanetwork/threshold_crypto for the needs of nextgraph.org
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
threshold_crypto/mod.rs

369 lines
12 KiB

mod error;
use byteorder::{BigEndian, ByteOrder};
use init_with::InitWith;
use pairing::{CurveAffine, CurveProjective, Engine, Field, PrimeField};
use rand::{ChaChaRng, Rand, Rng, SeedableRng};
use ring::digest;
use self::error::{ErrorKind, Result};
/// The number of words (`u32`) in a ChaCha RNG seed.
const CHACHA_RNG_SEED_SIZE: usize = 8;
/// Returns a hash of the given message in `G2`.
pub fn hash_g2<E, M>(msg: M) -> E::G2
where
E: Engine,
<E as Engine>::G2: Rand,
M: AsRef<[u8]>,
{
let digest = digest::digest(&digest::SHA256, msg.as_ref());
let seed = <[u32; CHACHA_RNG_SEED_SIZE]>::init_with_indices(|i| {
BigEndian::read_u32(&digest.as_ref()[(4 * i)..(4 * i + 4)])
});
let mut rng = ChaChaRng::from_seed(&seed);
rng.gen()
}
/// A public key, or a public key share.
#[derive(Debug)]
pub struct PublicKey<E: Engine>(E::G1);
impl<E: Engine> PartialEq for PublicKey<E>
where
E::G2: PartialEq,
{
fn eq(&self, other: &PublicKey<E>) -> bool {
self.0 == other.0
}
}
impl<E: Engine> PublicKey<E> {
/// Returns `true` if the signature matches the element of `E::G2`.
pub fn verify_g2<H: Into<E::G2Affine>>(&self, sig: &Signature<E>, hash: H) -> bool {
E::pairing(self.0, hash) == E::pairing(E::G1::one(), sig.0)
}
/// Returns `true` if the signature matches the message.
pub fn verify<M: AsRef<[u8]>>(&self, sig: &Signature<E>, msg: M) -> bool {
self.verify_g2(sig, hash_g2::<E, M>(msg))
}
}
/// A signature, or a signature share.
#[derive(Debug)]
pub struct Signature<E: Engine>(E::G2);
impl<E: Engine> PartialEq for Signature<E>
where
E::G2: PartialEq,
{
fn eq(&self, other: &Signature<E>) -> bool {
self.0 == other.0
}
}
/// A secret key, or a secret key share.
#[derive(Debug)]
pub struct SecretKey<E: Engine>(E::Fr);
impl<E: Engine> PartialEq for SecretKey<E>
where
E::G2: PartialEq,
{
fn eq(&self, other: &SecretKey<E>) -> bool {
self.0 == other.0
}
}
impl<E: Engine> SecretKey<E> {
/// Creates a new secret key.
pub fn new<R: Rng>(rng: &mut R) -> Self {
SecretKey(rng.gen())
}
/// Returns the matching public key.
pub fn public_key(&self) -> PublicKey<E> {
PublicKey(E::G1Affine::one().mul(self.0))
}
/// Signs the given element of `E::G2`.
pub fn sign_g2<H: Into<E::G2Affine>>(&self, hash: H) -> Signature<E> {
Signature(hash.into().mul(self.0))
}
/// Signs the given message.
pub fn sign<M: AsRef<[u8]>>(&self, msg: M) -> Signature<E> {
self.sign_g2(hash_g2::<E, M>(msg))
}
}
/// A public key and an associated set of public key shares.
#[cfg_attr(feature = "serialization-serde", derive(Serialize, Deserialize))]
pub struct PublicKeySet<E: Engine> {
/// The coefficients of a polynomial whose value at `0` is the "master key", and value at
/// `i + 1` is key share number `i`.
coeff: Vec<PublicKey<E>>,
}
impl<E: Engine> PublicKeySet<E> {
/// Returns the threshold `t`: any set of `t + 1` signature shares can be combined into a full
/// signature.
pub fn threshold(&self) -> usize {
self.coeff.len() - 1
}
/// Returns the public key.
pub fn public_key(&self) -> &PublicKey<E> {
&self.coeff[0]
}
/// Returns the `i`-th public key share.
pub fn public_key_share<T>(&self, i: T) -> PublicKey<E>
where
T: Into<<E::Fr as PrimeField>::Repr>,
{
let mut x = E::Fr::one();
x.add_assign(&E::Fr::from_repr(i.into()).expect("invalid index"));
let mut pk = self.coeff.last().expect("at least one coefficient").0;
for c in self.coeff.iter().rev().skip(1) {
pk.mul_assign(x);
pk.add_assign(&c.0);
}
PublicKey(pk)
}
/// Verifies that the given signatures are correct and combines them into a signature that can
/// be verified with the main public key.
pub fn combine_signatures<'a, ITR, IND>(&self, items: ITR) -> Result<Signature<E>>
where
ITR: IntoIterator<Item = (&'a IND, &'a Signature<E>)>,
IND: Into<<E::Fr as PrimeField>::Repr> + Clone + 'a,
{
let sigs: Vec<_> = items
.into_iter()
.map(|(i, sig)| {
let mut x = E::Fr::one();
x.add_assign(&E::Fr::from_repr(i.clone().into()).expect("invalid index"));
(x, sig)
})
.collect();
if sigs.len() < self.coeff.len() {
return Err(ErrorKind::NotEnoughShares.into());
}
let mut result = E::G2::zero();
let mut indexes = Vec::new();
for (x, sig) in sigs.iter().take(self.coeff.len()) {
if indexes.contains(x) {
return Err(ErrorKind::DuplicateEntry.into());
}
indexes.push(x.clone());
// Compute the value at 0 of the Lagrange polynomial that is `0` at the other data
// points but `1` at `x`.
let mut l0 = E::Fr::one();
for (x0, _) in sigs.iter().take(self.coeff.len()).filter(|(x0, _)| x0 != x) {
let mut denom = *x0;
denom.sub_assign(x);
l0.mul_assign(x0);
l0.mul_assign(&denom.inverse().expect("indices are different"));
}
let mut summand = sig.0;
summand.mul_assign(l0);
result.add_assign(&summand);
}
Ok(Signature(result))
}
}
/// A secret key and an associated set of secret key shares.
pub struct SecretKeySet<E: Engine> {
/// The coefficients of a polynomial whose value at `0` is the "master key", and value at
/// `i + 1` is key share number `i`.
coeff: Vec<E::Fr>,
}
impl<E: Engine> SecretKeySet<E> {
/// Creates a set of secret key shares, where any `threshold + 1` of them can collaboratively
/// sign and decrypt.
pub fn new<R: Rng>(threshold: usize, rng: &mut R) -> Self {
SecretKeySet {
coeff: (0..(threshold + 1)).map(|_| rng.gen()).collect(),
}
}
/// Returns the threshold `t`: any set of `t + 1` signature shares can be combined into a full
/// signature.
pub fn threshold(&self) -> usize {
self.coeff.len() - 1
}
/// Returns the `i`-th secret key share.
pub fn secret_key_share<T>(&self, i: T) -> SecretKey<E>
where
T: Into<<E::Fr as PrimeField>::Repr>,
{
let mut x = E::Fr::one();
x.add_assign(&E::Fr::from_repr(i.into()).expect("invalid index"));
let mut pk = *self.coeff.last().expect("at least one coefficient");
for c in self.coeff.iter().rev().skip(1) {
pk.mul_assign(&x);
pk.add_assign(c);
}
SecretKey(pk)
}
/// Returns the corresponding public key set. That information can be shared publicly.
pub fn public_keys(&self) -> PublicKeySet<E> {
let to_pub = |c: &E::Fr| PublicKey(E::G1Affine::one().mul(*c));
PublicKeySet {
coeff: self.coeff.iter().map(to_pub).collect(),
}
}
}
#[cfg(test)]
mod tests {
use super::*;
use std::collections::BTreeMap;
use pairing::bls12_381::Bls12;
use rand;
#[test]
fn test_simple_sig() {
let mut rng = rand::thread_rng();
let sk0 = SecretKey::<Bls12>::new(&mut rng);
let sk1 = SecretKey::<Bls12>::new(&mut rng);
let pk0 = sk0.public_key();
let msg0 = b"Real news";
let msg1 = b"Fake news";
assert!(pk0.verify(&sk0.sign(msg0), msg0));
assert!(!pk0.verify(&sk1.sign(msg0), msg0)); // Wrong key.
assert!(!pk0.verify(&sk0.sign(msg1), msg0)); // Wrong message.
}
#[test]
fn test_threshold_sig() {
let mut rng = rand::thread_rng();
let sk_set = SecretKeySet::<Bls12>::new(3, &mut rng);
let pk_set = sk_set.public_keys();
let msg = "Totally real news";
// The threshold is 3, so 4 signature shares will suffice to recreate the share.
let sigs: BTreeMap<_, _> = [5, 8, 7, 10]
.into_iter()
.map(|i| (*i, sk_set.secret_key_share(*i).sign(msg)))
.collect();
// Each of the shares is a valid signature matching its public key share.
for (i, sig) in &sigs {
pk_set.public_key_share(*i).verify(sig, msg);
}
// Combined, they produce a signature matching the main public key.
let sig = pk_set.combine_signatures(&sigs).expect("signatures match");
assert!(pk_set.public_key().verify(&sig, msg));
// A different set of signatories produces the same signature.
let sigs2: BTreeMap<_, _> = [42, 43, 44, 45]
.into_iter()
.map(|i| (*i, sk_set.secret_key_share(*i).sign(msg)))
.collect();
let sig2 = pk_set.combine_signatures(&sigs2).expect("signatures match");
assert_eq!(sig, sig2);
}
/// Some basic sanity checks for the hash function.
#[test]
fn test_hash_g2() {
let mut rng = rand::thread_rng();
let msg: Vec<u8> = (0..1000).map(|_| rng.gen()).collect();
let msg_end0: Vec<u8> = msg.iter().chain(b"end0").cloned().collect();
let msg_end1: Vec<u8> = msg.iter().chain(b"end1").cloned().collect();
let hash = hash_g2::<Bls12, _>;
assert_eq!(hash(&msg), hash(&msg));
assert_ne!(hash(&msg), hash(&msg_end0));
assert_ne!(hash(&msg_end0), hash(&msg_end1));
}
#[cfg(feature = "serialization-serde")]
#[test]
fn test_serde() {
use bincode;
let mut rng = rand::thread_rng();
let sk = SecretKey::<Bls12>::new(&mut rng);
let sig = sk.sign("Please sign here: ______");
let pk = sk.public_key();
let ser_pk = bincode::serialize(&pk).expect("serialize public key");
let deser_pk = bincode::deserialize(&ser_pk).expect("deserialize public key");
assert_eq!(pk, deser_pk);
let ser_sig = bincode::serialize(&sig).expect("serialize signature");
let deser_sig = bincode::deserialize(&ser_sig).expect("deserialize signature");
assert_eq!(sig, deser_sig);
}
}
#[cfg(feature = "serialization-serde")]
mod serde {
use pairing::{CurveAffine, CurveProjective, EncodedPoint, Engine};
use super::{PublicKey, Signature};
use serde::de::Error as DeserializeError;
use serde::{Deserialize, Deserializer, Serialize, Serializer};
const ERR_LEN: &str = "wrong length of deserialized group element";
const ERR_CODE: &str = "deserialized bytes don't encode a group element";
impl<E: Engine> Serialize for PublicKey<E> {
fn serialize<S: Serializer>(&self, s: S) -> Result<S::Ok, S::Error> {
serialize_projective(&self.0, s)
}
}
impl<'de, E: Engine> Deserialize<'de> for PublicKey<E> {
fn deserialize<D: Deserializer<'de>>(d: D) -> Result<Self, D::Error> {
Ok(PublicKey(deserialize_projective(d)?))
}
}
impl<E: Engine> Serialize for Signature<E> {
fn serialize<S: Serializer>(&self, s: S) -> Result<S::Ok, S::Error> {
serialize_projective(&self.0, s)
}
}
impl<'de, E: Engine> Deserialize<'de> for Signature<E> {
fn deserialize<D: Deserializer<'de>>(d: D) -> Result<Self, D::Error> {
Ok(Signature(deserialize_projective(d)?))
}
}
/// Serializes the compressed representation of a group element.
fn serialize_projective<S, C>(c: &C, s: S) -> Result<S::Ok, S::Error>
where
S: Serializer,
C: CurveProjective,
{
c.into_affine().into_compressed().as_ref().serialize(s)
}
/// Deserializes the compressed representation of a group element.
fn deserialize_projective<'de, D, C>(d: D) -> Result<C, D::Error>
where
D: Deserializer<'de>,
C: CurveProjective,
{
let bytes = <Vec<u8>>::deserialize(d)?;
if bytes.len() != <C::Affine as CurveAffine>::Compressed::size() {
return Err(D::Error::custom(ERR_LEN));
}
let mut compressed = <C::Affine as CurveAffine>::Compressed::empty();
compressed.as_mut().copy_from_slice(&bytes);
let to_err = |_| D::Error::custom(ERR_CODE);
Ok(compressed.into_affine().map_err(to_err)?.into_projective())
}
}