fork of https://github.com/poanetwork/threshold_crypto for the needs of nextgraph.org
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
661 lines
22 KiB
661 lines
22 KiB
// Clippy warns that it's dangerous to derive `PartialEq` and explicitly implement `Hash`, but the
|
|
// `pairing::bls12_381` types don't implement `Hash`, so we can't derive it.
|
|
#![cfg_attr(feature = "cargo-clippy", allow(derive_hash_xor_eq))]
|
|
|
|
pub mod error;
|
|
mod into_fr;
|
|
pub mod poly;
|
|
#[cfg(feature = "serialization-protobuf")]
|
|
pub mod protobuf_impl;
|
|
pub mod serde_impl;
|
|
|
|
use std::fmt;
|
|
use std::hash::{Hash, Hasher};
|
|
use std::ptr::write_volatile;
|
|
|
|
use byteorder::{BigEndian, ByteOrder};
|
|
use init_with::InitWith;
|
|
use pairing::bls12_381::{Bls12, Fr, G1, G1Affine, G2, G2Affine};
|
|
use pairing::{CurveAffine, CurveProjective, Engine, Field};
|
|
use rand::{ChaChaRng, OsRng, Rng, SeedableRng};
|
|
use ring::digest;
|
|
|
|
use self::error::{ErrorKind, Result};
|
|
use self::into_fr::IntoFr;
|
|
use self::poly::{Commitment, Poly};
|
|
use fmt::HexBytes;
|
|
|
|
/// The number of words (`u32`) in a ChaCha RNG seed.
|
|
const CHACHA_RNG_SEED_SIZE: usize = 8;
|
|
|
|
const ERR_OS_RNG: &str = "could not initialize the OS random number generator";
|
|
|
|
/// A public key.
|
|
#[derive(Deserialize, Serialize, Copy, Clone, PartialEq, Eq)]
|
|
pub struct PublicKey(#[serde(with = "serde_impl::projective")] G1);
|
|
|
|
impl Hash for PublicKey {
|
|
fn hash<H: Hasher>(&self, state: &mut H) {
|
|
self.0.into_affine().into_compressed().as_ref().hash(state);
|
|
}
|
|
}
|
|
|
|
impl fmt::Debug for PublicKey {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
let uncomp = self.0.into_affine().into_uncompressed();
|
|
let bytes = uncomp.as_ref();
|
|
write!(f, "PublicKey({:?})", HexBytes(bytes))
|
|
}
|
|
}
|
|
|
|
impl PublicKey {
|
|
/// Returns `true` if the signature matches the element of `G2`.
|
|
pub fn verify_g2<H: Into<G2Affine>>(&self, sig: &Signature, hash: H) -> bool {
|
|
Bls12::pairing(self.0, hash) == Bls12::pairing(G1Affine::one(), sig.0)
|
|
}
|
|
|
|
/// Returns `true` if the signature matches the message.
|
|
pub fn verify<M: AsRef<[u8]>>(&self, sig: &Signature, msg: M) -> bool {
|
|
self.verify_g2(sig, hash_g2(msg))
|
|
}
|
|
|
|
/// Encrypts the message.
|
|
pub fn encrypt<M: AsRef<[u8]>>(&self, msg: M) -> Ciphertext {
|
|
let r: Fr = OsRng::new().expect(ERR_OS_RNG).gen();
|
|
let u = G1Affine::one().mul(r);
|
|
let v: Vec<u8> = {
|
|
let g = self.0.into_affine().mul(r);
|
|
xor_vec(&hash_bytes(g, msg.as_ref().len()), msg.as_ref())
|
|
};
|
|
let w = hash_g1_g2(u, &v).into_affine().mul(r);
|
|
Ciphertext(u, v, w)
|
|
}
|
|
|
|
/// Returns a byte string representation of the public key.
|
|
pub fn to_bytes(&self) -> Vec<u8> {
|
|
self.0.into_affine().into_compressed().as_ref().to_vec()
|
|
}
|
|
}
|
|
|
|
/// A public key share.
|
|
#[derive(Deserialize, Serialize, Clone, PartialEq, Eq, Hash)]
|
|
pub struct PublicKeyShare(PublicKey);
|
|
|
|
impl fmt::Debug for PublicKeyShare {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
let uncomp = (self.0).0.into_affine().into_uncompressed();
|
|
let bytes = uncomp.as_ref();
|
|
write!(f, "PublicKeyShare({:?})", HexBytes(bytes))
|
|
}
|
|
}
|
|
|
|
impl PublicKeyShare {
|
|
/// Returns `true` if the signature matches the element of `G2`.
|
|
pub fn verify_g2<H: Into<G2Affine>>(&self, sig: &SignatureShare, hash: H) -> bool {
|
|
self.0.verify_g2(&sig.0, hash)
|
|
}
|
|
|
|
/// Returns `true` if the signature matches the message.
|
|
pub fn verify<M: AsRef<[u8]>>(&self, sig: &SignatureShare, msg: M) -> bool {
|
|
self.verify_g2(sig, hash_g2(msg))
|
|
}
|
|
|
|
/// Returns `true` if the decryption share matches the ciphertext.
|
|
pub fn verify_decryption_share(&self, share: &DecryptionShare, ct: &Ciphertext) -> bool {
|
|
let Ciphertext(ref u, ref v, ref w) = *ct;
|
|
let hash = hash_g1_g2(*u, v);
|
|
Bls12::pairing(share.0, hash) == Bls12::pairing((self.0).0, *w)
|
|
}
|
|
|
|
/// Returns a byte string representation of the public key share.
|
|
pub fn to_bytes(&self) -> Vec<u8> {
|
|
self.0.to_bytes()
|
|
}
|
|
}
|
|
|
|
/// A signature.
|
|
// Note: Random signatures can be generated for testing.
|
|
#[derive(Deserialize, Serialize, Clone, PartialEq, Eq, Rand)]
|
|
pub struct Signature(#[serde(with = "serde_impl::projective")] G2);
|
|
|
|
impl fmt::Debug for Signature {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
let uncomp = self.0.into_affine().into_uncompressed();
|
|
let bytes = uncomp.as_ref();
|
|
write!(f, "Signature({:?})", HexBytes(bytes))
|
|
}
|
|
}
|
|
|
|
impl Hash for Signature {
|
|
fn hash<H: Hasher>(&self, state: &mut H) {
|
|
self.0.into_affine().into_compressed().as_ref().hash(state);
|
|
}
|
|
}
|
|
|
|
impl Signature {
|
|
pub fn parity(&self) -> bool {
|
|
let uncomp = self.0.into_affine().into_uncompressed();
|
|
let bytes = uncomp.as_ref();
|
|
let xor_bytes: u8 = bytes.iter().fold(0, |result, byte| result ^ byte);
|
|
let parity = 0 != xor_bytes.count_ones() % 2;
|
|
debug!("Signature: {:?}, output: {}", HexBytes(bytes), parity);
|
|
parity
|
|
}
|
|
}
|
|
|
|
/// A signature share.
|
|
// Note: Random signature shares can be generated for testing.
|
|
#[derive(Deserialize, Serialize, Clone, PartialEq, Eq, Rand, Hash)]
|
|
pub struct SignatureShare(pub(crate) Signature);
|
|
|
|
impl fmt::Debug for SignatureShare {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
let uncomp = (self.0).0.into_affine().into_uncompressed();
|
|
let bytes = uncomp.as_ref();
|
|
write!(f, "SignatureShare({:?})", HexBytes(bytes))
|
|
}
|
|
}
|
|
|
|
/// A secret key.
|
|
#[derive(Clone, PartialEq, Eq, Rand)]
|
|
pub struct SecretKey(Fr);
|
|
|
|
impl fmt::Debug for SecretKey {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
let uncomp = self.public_key().0.into_affine().into_uncompressed();
|
|
let bytes = uncomp.as_ref();
|
|
write!(f, "SecretKey({:?})", HexBytes(bytes))
|
|
}
|
|
}
|
|
|
|
impl Default for SecretKey {
|
|
fn default() -> Self {
|
|
SecretKey(Fr::zero())
|
|
}
|
|
}
|
|
|
|
impl Drop for SecretKey {
|
|
fn drop(&mut self) {
|
|
let ptr = self as *mut Self;
|
|
unsafe {
|
|
write_volatile(ptr, SecretKey::default());
|
|
}
|
|
}
|
|
}
|
|
|
|
impl SecretKey {
|
|
/// Creates a secret key from an existing value
|
|
pub fn from_value(f: Fr) -> Self {
|
|
SecretKey(f)
|
|
}
|
|
|
|
/// Returns the matching public key.
|
|
pub fn public_key(&self) -> PublicKey {
|
|
PublicKey(G1Affine::one().mul(self.0))
|
|
}
|
|
|
|
/// Signs the given element of `G2`.
|
|
pub fn sign_g2<H: Into<G2Affine>>(&self, hash: H) -> Signature {
|
|
Signature(hash.into().mul(self.0))
|
|
}
|
|
|
|
/// Signs the given message.
|
|
pub fn sign<M: AsRef<[u8]>>(&self, msg: M) -> Signature {
|
|
self.sign_g2(hash_g2(msg))
|
|
}
|
|
|
|
/// Returns the decrypted text, or `None`, if the ciphertext isn't valid.
|
|
pub fn decrypt(&self, ct: &Ciphertext) -> Option<Vec<u8>> {
|
|
if !ct.verify() {
|
|
return None;
|
|
}
|
|
let Ciphertext(ref u, ref v, _) = *ct;
|
|
let g = u.into_affine().mul(self.0);
|
|
Some(xor_vec(&hash_bytes(g, v.len()), v))
|
|
}
|
|
}
|
|
|
|
/// A secret key share.
|
|
#[derive(Clone, PartialEq, Eq, Rand, Default)]
|
|
pub struct SecretKeyShare(SecretKey);
|
|
|
|
impl fmt::Debug for SecretKeyShare {
|
|
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
|
|
let uncomp = self.0.public_key().0.into_affine().into_uncompressed();
|
|
let bytes = uncomp.as_ref();
|
|
write!(f, "SecretKeyShare({:?})", HexBytes(bytes))
|
|
}
|
|
}
|
|
|
|
impl SecretKeyShare {
|
|
/// Creates a secret key share from an existing value
|
|
pub fn from_value(f: Fr) -> Self {
|
|
SecretKeyShare(SecretKey::from_value(f))
|
|
}
|
|
|
|
/// Returns the matching public key share.
|
|
pub fn public_key_share(&self) -> PublicKeyShare {
|
|
PublicKeyShare(self.0.public_key())
|
|
}
|
|
|
|
/// Signs the given element of `G2`.
|
|
pub fn sign_g2<H: Into<G2Affine>>(&self, hash: H) -> SignatureShare {
|
|
SignatureShare(self.0.sign_g2(hash))
|
|
}
|
|
|
|
/// Signs the given message.
|
|
pub fn sign<M: AsRef<[u8]>>(&self, msg: M) -> SignatureShare {
|
|
SignatureShare(self.0.sign(msg))
|
|
}
|
|
|
|
/// Returns a decryption share, or `None`, if the ciphertext isn't valid.
|
|
pub fn decrypt_share(&self, ct: &Ciphertext) -> Option<DecryptionShare> {
|
|
if !ct.verify() {
|
|
return None;
|
|
}
|
|
Some(DecryptionShare(ct.0.into_affine().mul((self.0).0)))
|
|
}
|
|
}
|
|
|
|
/// An encrypted message.
|
|
#[derive(Deserialize, Serialize, Debug, Clone, PartialEq, Eq)]
|
|
pub struct Ciphertext(
|
|
#[serde(with = "serde_impl::projective")] G1,
|
|
Vec<u8>,
|
|
#[serde(with = "serde_impl::projective")] G2,
|
|
);
|
|
|
|
impl Hash for Ciphertext {
|
|
fn hash<H: Hasher>(&self, state: &mut H) {
|
|
let Ciphertext(ref u, ref v, ref w) = *self;
|
|
u.into_affine().into_compressed().as_ref().hash(state);
|
|
v.hash(state);
|
|
w.into_affine().into_compressed().as_ref().hash(state);
|
|
}
|
|
}
|
|
|
|
impl Ciphertext {
|
|
/// Returns `true` if this is a valid ciphertext. This check is necessary to prevent
|
|
/// chosen-ciphertext attacks.
|
|
pub fn verify(&self) -> bool {
|
|
let Ciphertext(ref u, ref v, ref w) = *self;
|
|
let hash = hash_g1_g2(*u, v);
|
|
Bls12::pairing(G1Affine::one(), *w) == Bls12::pairing(*u, hash)
|
|
}
|
|
}
|
|
|
|
/// A decryption share. A threshold of decryption shares can be used to decrypt a message.
|
|
#[derive(Clone, Deserialize, Serialize, Debug, PartialEq, Eq, Rand)]
|
|
pub struct DecryptionShare(#[serde(with = "serde_impl::projective")] G1);
|
|
|
|
impl Hash for DecryptionShare {
|
|
fn hash<H: Hasher>(&self, state: &mut H) {
|
|
self.0.into_affine().into_compressed().as_ref().hash(state);
|
|
}
|
|
}
|
|
|
|
/// A public key and an associated set of public key shares.
|
|
#[derive(Serialize, Deserialize, Clone, Debug, PartialEq, Eq)]
|
|
pub struct PublicKeySet {
|
|
/// The coefficients of a polynomial whose value at `0` is the "master key", and value at
|
|
/// `i + 1` is key share number `i`.
|
|
commit: Commitment,
|
|
}
|
|
|
|
impl Hash for PublicKeySet {
|
|
fn hash<H: Hasher>(&self, state: &mut H) {
|
|
self.commit.hash(state);
|
|
}
|
|
}
|
|
|
|
impl From<Commitment> for PublicKeySet {
|
|
fn from(commit: Commitment) -> PublicKeySet {
|
|
PublicKeySet { commit }
|
|
}
|
|
}
|
|
|
|
impl PublicKeySet {
|
|
/// Returns the threshold `t`: any set of `t + 1` signature shares can be combined into a full
|
|
/// signature.
|
|
pub fn threshold(&self) -> usize {
|
|
self.commit.degree()
|
|
}
|
|
|
|
/// Returns the public key.
|
|
pub fn public_key(&self) -> PublicKey {
|
|
PublicKey(self.commit.coeff[0])
|
|
}
|
|
|
|
/// Returns the `i`-th public key share.
|
|
pub fn public_key_share<T: IntoFr>(&self, i: T) -> PublicKeyShare {
|
|
let value = self.commit.evaluate(into_fr_plus_1(i));
|
|
PublicKeyShare(PublicKey(value))
|
|
}
|
|
|
|
/// Combines the shares into a signature that can be verified with the main public key.
|
|
pub fn combine_signatures<'a, T, I>(&self, shares: I) -> Result<Signature>
|
|
where
|
|
I: IntoIterator<Item = (T, &'a SignatureShare)>,
|
|
T: IntoFr,
|
|
{
|
|
let samples = shares.into_iter().map(|(i, share)| (i, &(share.0).0));
|
|
Ok(Signature(interpolate(self.commit.degree() + 1, samples)?))
|
|
}
|
|
|
|
/// Combines the shares to decrypt the ciphertext.
|
|
pub fn decrypt<'a, T, I>(&self, shares: I, ct: &Ciphertext) -> Result<Vec<u8>>
|
|
where
|
|
I: IntoIterator<Item = (T, &'a DecryptionShare)>,
|
|
T: IntoFr,
|
|
{
|
|
let samples = shares.into_iter().map(|(i, share)| (i, &share.0));
|
|
let g = interpolate(self.commit.degree() + 1, samples)?;
|
|
Ok(xor_vec(&hash_bytes(g, ct.1.len()), &ct.1))
|
|
}
|
|
}
|
|
|
|
/// A secret key and an associated set of secret key shares.
|
|
pub struct SecretKeySet {
|
|
/// The coefficients of a polynomial whose value at `0` is the "master key", and value at
|
|
/// `i + 1` is key share number `i`.
|
|
poly: Poly,
|
|
}
|
|
|
|
impl From<Poly> for SecretKeySet {
|
|
fn from(poly: Poly) -> SecretKeySet {
|
|
SecretKeySet { poly }
|
|
}
|
|
}
|
|
|
|
impl SecretKeySet {
|
|
/// Creates a set of secret key shares, where any `threshold + 1` of them can collaboratively
|
|
/// sign and decrypt.
|
|
pub fn random<R: Rng>(threshold: usize, rng: &mut R) -> Self {
|
|
SecretKeySet {
|
|
poly: Poly::random(threshold, rng),
|
|
}
|
|
}
|
|
|
|
/// Returns the threshold `t`: any set of `t + 1` signature shares can be combined into a full
|
|
/// signature.
|
|
pub fn threshold(&self) -> usize {
|
|
self.poly.degree()
|
|
}
|
|
|
|
/// Returns the `i`-th secret key share.
|
|
pub fn secret_key_share<T: IntoFr>(&self, i: T) -> SecretKeyShare {
|
|
let value = self.poly.evaluate(into_fr_plus_1(i));
|
|
SecretKeyShare(SecretKey(value))
|
|
}
|
|
|
|
/// Returns the corresponding public key set. That information can be shared publicly.
|
|
pub fn public_keys(&self) -> PublicKeySet {
|
|
PublicKeySet {
|
|
commit: self.poly.commitment(),
|
|
}
|
|
}
|
|
|
|
/// Returns the secret master key.
|
|
#[cfg(test)]
|
|
fn secret_key(&self) -> SecretKey {
|
|
SecretKey(self.poly.evaluate(0))
|
|
}
|
|
}
|
|
|
|
/// Returns a hash of the given message in `G2`.
|
|
fn hash_g2<M: AsRef<[u8]>>(msg: M) -> G2 {
|
|
let digest = digest::digest(&digest::SHA256, msg.as_ref());
|
|
let seed = <[u32; CHACHA_RNG_SEED_SIZE]>::init_with_indices(|i| {
|
|
BigEndian::read_u32(&digest.as_ref()[(4 * i)..(4 * i + 4)])
|
|
});
|
|
let mut rng = ChaChaRng::from_seed(&seed);
|
|
rng.gen()
|
|
}
|
|
|
|
/// Returns a hash of the group element and message, in the second group.
|
|
fn hash_g1_g2<M: AsRef<[u8]>>(g1: G1, msg: M) -> G2 {
|
|
// If the message is large, hash it, otherwise copy it.
|
|
// TODO: Benchmark and optimize the threshold.
|
|
let mut msg = if msg.as_ref().len() > 64 {
|
|
let digest = digest::digest(&digest::SHA256, msg.as_ref());
|
|
digest.as_ref().to_vec()
|
|
} else {
|
|
msg.as_ref().to_vec()
|
|
};
|
|
msg.extend(g1.into_affine().into_compressed().as_ref());
|
|
hash_g2(&msg)
|
|
}
|
|
|
|
/// Returns a hash of the group element with the specified length in bytes.
|
|
fn hash_bytes(g1: G1, len: usize) -> Vec<u8> {
|
|
let digest = digest::digest(&digest::SHA256, g1.into_affine().into_compressed().as_ref());
|
|
let seed = <[u32; CHACHA_RNG_SEED_SIZE]>::init_with_indices(|i| {
|
|
BigEndian::read_u32(&digest.as_ref()[(4 * i)..(4 * i + 4)])
|
|
});
|
|
let mut rng = ChaChaRng::from_seed(&seed);
|
|
rng.gen_iter().take(len).collect()
|
|
}
|
|
|
|
/// Returns the bitwise xor.
|
|
fn xor_vec(x: &[u8], y: &[u8]) -> Vec<u8> {
|
|
x.iter().zip(y).map(|(a, b)| a ^ b).collect()
|
|
}
|
|
|
|
/// Given a list of `t` samples `(i - 1, f(i) * g)` for a polynomial `f` of degree `t - 1`, and a
|
|
/// group generator `g`, returns `f(0) * g`.
|
|
fn interpolate<'a, C, T, I>(t: usize, items: I) -> Result<C>
|
|
where
|
|
C: CurveProjective<Scalar = Fr>,
|
|
I: IntoIterator<Item = (T, &'a C)>,
|
|
T: IntoFr,
|
|
{
|
|
let samples: Vec<_> = items
|
|
.into_iter()
|
|
.map(|(i, sample)| (into_fr_plus_1(i), sample))
|
|
.collect();
|
|
if samples.len() < t {
|
|
return Err(ErrorKind::NotEnoughShares.into());
|
|
}
|
|
let mut result = C::zero();
|
|
let mut indexes = Vec::new();
|
|
for (x, sample) in samples.iter().take(t) {
|
|
if indexes.contains(x) {
|
|
return Err(ErrorKind::DuplicateEntry.into());
|
|
}
|
|
indexes.push(x.clone());
|
|
// Compute the value at 0 of the Lagrange polynomial that is `0` at the other data
|
|
// points but `1` at `x`.
|
|
let mut l0 = C::Scalar::one();
|
|
for (x0, _) in samples.iter().take(t).filter(|(x0, _)| x0 != x) {
|
|
let mut denom = *x0;
|
|
denom.sub_assign(x);
|
|
l0.mul_assign(x0);
|
|
l0.mul_assign(&denom.inverse().expect("indices are different"));
|
|
}
|
|
result.add_assign(&sample.into_affine().mul(l0));
|
|
}
|
|
Ok(result)
|
|
}
|
|
|
|
fn into_fr_plus_1<I: IntoFr>(x: I) -> Fr {
|
|
let mut result = Fr::one();
|
|
result.add_assign(&x.into_fr());
|
|
result
|
|
}
|
|
|
|
#[cfg(test)]
|
|
mod tests {
|
|
use super::*;
|
|
|
|
use std::collections::BTreeMap;
|
|
|
|
use rand::{self, random};
|
|
|
|
#[test]
|
|
fn test_simple_sig() {
|
|
let sk0: SecretKey = random();
|
|
let sk1: SecretKey = random();
|
|
let pk0 = sk0.public_key();
|
|
let msg0 = b"Real news";
|
|
let msg1 = b"Fake news";
|
|
assert!(pk0.verify(&sk0.sign(msg0), msg0));
|
|
assert!(!pk0.verify(&sk1.sign(msg0), msg0)); // Wrong key.
|
|
assert!(!pk0.verify(&sk0.sign(msg1), msg0)); // Wrong message.
|
|
}
|
|
|
|
#[test]
|
|
fn test_threshold_sig() {
|
|
let mut rng = rand::thread_rng();
|
|
let sk_set = SecretKeySet::random(3, &mut rng);
|
|
let pk_set = sk_set.public_keys();
|
|
|
|
// Make sure the keys are different, and the first coefficient is the main key.
|
|
assert_ne!(pk_set.public_key(), pk_set.public_key_share(0).0);
|
|
assert_ne!(pk_set.public_key(), pk_set.public_key_share(1).0);
|
|
assert_ne!(pk_set.public_key(), pk_set.public_key_share(2).0);
|
|
|
|
// Make sure we don't hand out the main secret key to anyone.
|
|
assert_ne!(sk_set.secret_key(), sk_set.secret_key_share(0).0);
|
|
assert_ne!(sk_set.secret_key(), sk_set.secret_key_share(1).0);
|
|
assert_ne!(sk_set.secret_key(), sk_set.secret_key_share(2).0);
|
|
|
|
let msg = "Totally real news";
|
|
|
|
// The threshold is 3, so 4 signature shares will suffice to recreate the share.
|
|
let sigs: BTreeMap<_, _> = [5, 8, 7, 10]
|
|
.into_iter()
|
|
.map(|i| (*i, sk_set.secret_key_share(*i).sign(msg)))
|
|
.collect();
|
|
|
|
// Each of the shares is a valid signature matching its public key share.
|
|
for (i, sig) in &sigs {
|
|
assert!(pk_set.public_key_share(*i).verify(sig, msg));
|
|
}
|
|
|
|
// Combined, they produce a signature matching the main public key.
|
|
let sig = pk_set.combine_signatures(&sigs).expect("signatures match");
|
|
assert!(pk_set.public_key().verify(&sig, msg));
|
|
|
|
// A different set of signatories produces the same signature.
|
|
let sigs2: BTreeMap<_, _> = [42, 43, 44, 45]
|
|
.into_iter()
|
|
.map(|i| (*i, sk_set.secret_key_share(*i).sign(msg)))
|
|
.collect();
|
|
let sig2 = pk_set.combine_signatures(&sigs2).expect("signatures match");
|
|
assert_eq!(sig, sig2);
|
|
}
|
|
|
|
#[test]
|
|
fn test_simple_enc() {
|
|
let sk_bob: SecretKey = random();
|
|
let sk_eve: SecretKey = random();
|
|
let pk_bob = sk_bob.public_key();
|
|
let msg = b"Muffins in the canteen today! Don't tell Eve!";
|
|
let ciphertext = pk_bob.encrypt(&msg[..]);
|
|
assert!(ciphertext.verify());
|
|
|
|
// Bob can decrypt the message.
|
|
let decrypted = sk_bob.decrypt(&ciphertext).expect("valid ciphertext");
|
|
assert_eq!(msg[..], decrypted[..]);
|
|
|
|
// Eve can't.
|
|
let decrypted_eve = sk_eve.decrypt(&ciphertext).expect("valid ciphertext");
|
|
assert_ne!(msg[..], decrypted_eve[..]);
|
|
|
|
// Eve tries to trick Bob into decrypting `msg` xor `v`, but it doesn't validate.
|
|
let Ciphertext(u, v, w) = ciphertext;
|
|
let fake_ciphertext = Ciphertext(u, vec![0; v.len()], w);
|
|
assert!(!fake_ciphertext.verify());
|
|
assert_eq!(None, sk_bob.decrypt(&fake_ciphertext));
|
|
}
|
|
|
|
#[test]
|
|
fn test_threshold_enc() {
|
|
let mut rng = rand::thread_rng();
|
|
let sk_set = SecretKeySet::random(3, &mut rng);
|
|
let pk_set = sk_set.public_keys();
|
|
let msg = b"Totally real news";
|
|
let ciphertext = pk_set.public_key().encrypt(&msg[..]);
|
|
|
|
// The threshold is 3, so 4 signature shares will suffice to decrypt.
|
|
let shares: BTreeMap<_, _> = [5, 8, 7, 10]
|
|
.into_iter()
|
|
.map(|i| {
|
|
let ski = sk_set.secret_key_share(*i);
|
|
let share = ski.decrypt_share(&ciphertext).expect("ciphertext is valid");
|
|
(*i, share)
|
|
})
|
|
.collect();
|
|
|
|
// Each of the shares is valid matching its public key share.
|
|
for (i, share) in &shares {
|
|
pk_set
|
|
.public_key_share(*i)
|
|
.verify_decryption_share(share, &ciphertext);
|
|
}
|
|
|
|
// Combined, they can decrypt the message.
|
|
let decrypted = pk_set
|
|
.decrypt(&shares, &ciphertext)
|
|
.expect("decryption shares match");
|
|
assert_eq!(msg[..], decrypted[..]);
|
|
}
|
|
|
|
/// Some basic sanity checks for the `hash_g2` function.
|
|
#[test]
|
|
fn test_hash_g2() {
|
|
let mut rng = rand::thread_rng();
|
|
let msg: Vec<u8> = (0..1000).map(|_| rng.gen()).collect();
|
|
let msg_end0: Vec<u8> = msg.iter().chain(b"end0").cloned().collect();
|
|
let msg_end1: Vec<u8> = msg.iter().chain(b"end1").cloned().collect();
|
|
|
|
assert_eq!(hash_g2(&msg), hash_g2(&msg));
|
|
assert_ne!(hash_g2(&msg), hash_g2(&msg_end0));
|
|
assert_ne!(hash_g2(&msg_end0), hash_g2(&msg_end1));
|
|
}
|
|
|
|
/// Some basic sanity checks for the `hash_g1_g2` function.
|
|
#[test]
|
|
fn test_hash_g1_g2() {
|
|
let mut rng = rand::thread_rng();
|
|
let msg: Vec<u8> = (0..1000).map(|_| rng.gen()).collect();
|
|
let msg_end0: Vec<u8> = msg.iter().chain(b"end0").cloned().collect();
|
|
let msg_end1: Vec<u8> = msg.iter().chain(b"end1").cloned().collect();
|
|
let g0 = rng.gen();
|
|
let g1 = rng.gen();
|
|
|
|
assert_eq!(hash_g1_g2(g0, &msg), hash_g1_g2(g0, &msg));
|
|
assert_ne!(hash_g1_g2(g0, &msg), hash_g1_g2(g0, &msg_end0));
|
|
assert_ne!(hash_g1_g2(g0, &msg_end0), hash_g1_g2(g0, &msg_end1));
|
|
assert_ne!(hash_g1_g2(g0, &msg), hash_g1_g2(g1, &msg));
|
|
}
|
|
|
|
/// Some basic sanity checks for the `hash_bytes` function.
|
|
#[test]
|
|
fn test_hash_bytes() {
|
|
let mut rng = rand::thread_rng();
|
|
let g0 = rng.gen();
|
|
let g1 = rng.gen();
|
|
let hash = hash_bytes;
|
|
assert_eq!(hash(g0, 5), hash(g0, 5));
|
|
assert_ne!(hash(g0, 5), hash(g1, 5));
|
|
assert_eq!(5, hash(g0, 5).len());
|
|
assert_eq!(6, hash(g0, 6).len());
|
|
assert_eq!(20, hash(g0, 20).len());
|
|
}
|
|
|
|
#[test]
|
|
fn test_serde() {
|
|
use bincode;
|
|
|
|
let sk: SecretKey = random();
|
|
let sig = sk.sign("Please sign here: ______");
|
|
let pk = sk.public_key();
|
|
let ser_pk = bincode::serialize(&pk).expect("serialize public key");
|
|
let deser_pk = bincode::deserialize(&ser_pk).expect("deserialize public key");
|
|
assert_eq!(pk, deser_pk);
|
|
let ser_sig = bincode::serialize(&sig).expect("serialize signature");
|
|
let deser_sig = bincode::deserialize(&ser_sig).expect("deserialize signature");
|
|
assert_eq!(sig, deser_sig);
|
|
}
|
|
}
|
|
|