Rust implementation of NextGraph, a Decentralized and local-first web 3.0 ecosystem https://nextgraph.org
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
nextgraph-rs/p2p-net/src/utils.rs

283 lines
9.0 KiB

/*
* Copyright (c) 2022-2023 Niko Bonnieure, Par le Peuple, NextGraph.org developers
* All rights reserved.
* Licensed under the Apache License, Version 2.0
* <LICENSE-APACHE2 or http://www.apache.org/licenses/LICENSE-2.0>
* or the MIT license <LICENSE-MIT or http://opensource.org/licenses/MIT>,
* at your option. All files in the project carrying such
* notice may not be copied, modified, or distributed except
* according to those terms.
*/
use async_std::task;
use ed25519_dalek::*;
use futures::{channel::mpsc, select, Future, FutureExt, SinkExt};
pub use noise_protocol::U8Array;
use noise_protocol::DH;
pub use noise_rust_crypto::sensitive::Sensitive;
use p2p_repo::log::*;
use p2p_repo::types::PubKey;
use std::net::{IpAddr, Ipv4Addr, Ipv6Addr};
#[cfg(target_arch = "wasm32")]
pub fn spawn_and_log_error<F>(fut: F) -> task::JoinHandle<()>
where
F: Future<Output = ResultSend<()>> + 'static,
{
task::spawn_local(async move {
if let Err(e) = fut.await {
log_err!("EXCEPTION {}", e)
}
})
}
#[cfg(target_arch = "wasm32")]
pub type ResultSend<T> = std::result::Result<T, Box<dyn std::error::Error + Send + Sync>>;
#[cfg(not(target_arch = "wasm32"))]
pub type ResultSend<T> = std::result::Result<T, Box<dyn std::error::Error + Send + Sync>>;
#[cfg(not(target_arch = "wasm32"))]
pub fn spawn_and_log_error<F>(fut: F) -> task::JoinHandle<()>
where
F: Future<Output = ResultSend<()>> + Send + 'static,
{
task::spawn(async move {
if let Err(e) = fut.await {
log_err!("{}", e)
}
})
}
pub type Sender<T> = mpsc::UnboundedSender<T>;
pub type Receiver<T> = mpsc::UnboundedReceiver<T>;
pub fn keypair_from_ed(secret: SecretKey, public: PublicKey) -> (Sensitive<[u8; 32]>, PubKey) {
let ed_priv_key = secret.to_bytes();
let ed_pub_key = public.to_bytes();
//let priv_key = PrivKey::Ed25519PrivKey(ed_priv_key);
let pub_key = PubKey::Ed25519PubKey(ed_pub_key);
let priv_key = Sensitive::<[u8; 32]>::from_slice(&ed_priv_key);
(priv_key, pub_key)
}
pub fn keys_from_bytes(secret_key: [u8; 32]) -> (Sensitive<[u8; 32]>, PubKey) {
let sk = SecretKey::from_bytes(&secret_key).unwrap();
let pk: PublicKey = (&sk).into();
let pub_key = PubKey::Ed25519PubKey(pk.to_bytes());
let priv_key = Sensitive::<[u8; 32]>::from_slice(&secret_key);
(priv_key, pub_key)
}
pub fn gen_dh_keys() -> (Sensitive<[u8; 32]>, [u8; 32]) {
let pri = noise_rust_crypto::X25519::genkey();
let publ = noise_rust_crypto::X25519::pubkey(&pri);
(pri, publ)
}
pub fn gen_ed_keys() -> (Sensitive<[u8; 32]>, PubKey) {
let mut ed25519_priv = Sensitive::<[u8; 32]>::new();
getrandom::getrandom(&mut *ed25519_priv).expect("getrandom failed");
//TODO FIXME do not create a SecretKey or call into() on it, as this is not using Sensitive<>
let secret = SecretKey::from_bytes(&ed25519_priv.as_slice()).unwrap();
let ed25519_pub: PublicKey = (&secret).into();
(ed25519_priv, PubKey::Ed25519PubKey(ed25519_pub.to_bytes()))
}
pub struct Dual25519Keys {
pub x25519_priv: Sensitive<[u8; 32]>,
pub x25519_public: [u8; 32],
pub ed25519_priv: SecretKey,
pub ed25519_pub: PublicKey,
}
pub fn from_ed_priv_to_dh_priv(private: Sensitive<[u8; 32]>) -> Sensitive<[u8; 32]> {
let ed25519_priv = SecretKey::from_bytes(&private.as_slice()).unwrap();
let exp: ExpandedSecretKey = (&ed25519_priv).into();
let exp_bytes = exp.to_bytes();
let mut bits = Sensitive::<[u8; 32]>::from_slice(&exp_bytes[0..32]);
bits[0] &= 248;
bits[31] &= 127;
bits[31] |= 64;
bits
}
impl Dual25519Keys {
pub fn generate() -> Self {
let mut x25519_priv = Sensitive::<[u8; 32]>::new();
getrandom::getrandom(&mut *x25519_priv).expect("getrandom failed");
let ed25519_priv = SecretKey::from_bytes(&x25519_priv.as_slice()).unwrap();
let exp: ExpandedSecretKey = (&ed25519_priv).into();
let exp_bytes = exp.to_bytes();
let ed25519_pub: PublicKey = (&ed25519_priv).into();
let mut bits = Sensitive::<[u8; 32]>::from_slice(&exp_bytes[0..32]);
bits[0] &= 248;
bits[31] &= 127;
bits[31] |= 64;
let x25519_public = noise_rust_crypto::X25519::pubkey(&bits);
Self {
x25519_priv: bits,
x25519_public,
ed25519_priv,
ed25519_pub,
}
}
pub fn from_sensitive(sensitive: Sensitive<[u8; 32]>) -> Self {
let ed25519_priv = SecretKey::from_bytes(&sensitive.as_slice()).unwrap();
let exp: ExpandedSecretKey = (&ed25519_priv).into();
let exp_bytes = exp.to_bytes();
let ed25519_pub: PublicKey = (&ed25519_priv).into();
let mut bits = Sensitive::<[u8; 32]>::from_slice(&exp_bytes[0..32]);
bits[0] &= 248;
bits[31] &= 127;
bits[31] |= 64;
let x25519_public = noise_rust_crypto::X25519::pubkey(&bits);
Self {
x25519_priv: bits,
x25519_public,
ed25519_priv,
ed25519_pub,
}
}
}
pub fn get_domain_without_port(domain: &String) -> String {
let parts: Vec<&str> = domain.split(':').collect();
parts[0].to_string()
}
pub fn get_domain_without_port_443(domain: &str) -> &str {
let parts: Vec<&str> = domain.split(':').collect();
if parts.len() > 1 && parts[1] == "443" {
return parts[0];
}
domain
}
pub fn is_public_ipv4(ip: &Ipv4Addr) -> bool {
// TODO, use core::net::Ipv6Addr.is_global when it will be stable
return is_ipv4_global(ip);
}
pub fn is_public_ipv6(ip: &Ipv6Addr) -> bool {
// TODO, use core::net::Ipv6Addr.is_global when it will be stable
return is_ipv6_global(ip);
}
pub fn is_public_ip(ip: &IpAddr) -> bool {
match ip {
IpAddr::V4(v4) => is_public_ipv4(v4),
IpAddr::V6(v6) => is_public_ipv6(v6),
}
}
pub fn is_private_ip(ip: &IpAddr) -> bool {
match ip {
IpAddr::V4(v4) => is_ipv4_private(v4),
IpAddr::V6(v6) => is_ipv6_private(v6),
}
}
#[must_use]
#[inline]
pub const fn is_ipv4_shared(addr: &Ipv4Addr) -> bool {
addr.octets()[0] == 100 && (addr.octets()[1] & 0b1100_0000 == 0b0100_0000)
}
#[must_use]
#[inline]
pub const fn is_ipv4_benchmarking(addr: &Ipv4Addr) -> bool {
addr.octets()[0] == 198 && (addr.octets()[1] & 0xfe) == 18
}
#[must_use]
#[inline]
pub const fn is_ipv4_reserved(addr: &Ipv4Addr) -> bool {
addr.octets()[0] & 240 == 240 && !addr.is_broadcast()
}
#[must_use]
#[inline]
pub const fn is_ipv4_private(addr: &Ipv4Addr) -> bool {
addr.is_private() || addr.is_link_local()
}
#[must_use]
#[inline]
pub const fn is_ipv4_global(addr: &Ipv4Addr) -> bool {
!(addr.octets()[0] == 0 // "This network"
|| addr.is_private()
|| is_ipv4_shared(addr)
|| addr.is_loopback()
|| addr.is_link_local()
// addresses reserved for future protocols (`192.0.0.0/24`)
||(addr.octets()[0] == 192 && addr.octets()[1] == 0 && addr.octets()[2] == 0)
|| addr.is_documentation()
|| is_ipv4_benchmarking(addr)
|| is_ipv4_reserved(addr)
|| addr.is_broadcast())
}
#[must_use]
#[inline]
pub const fn is_ipv6_unique_local(addr: &Ipv6Addr) -> bool {
(addr.segments()[0] & 0xfe00) == 0xfc00
}
#[must_use]
#[inline]
pub const fn is_ipv6_unicast_link_local(addr: &Ipv6Addr) -> bool {
(addr.segments()[0] & 0xffc0) == 0xfe80
}
#[must_use]
#[inline]
pub const fn is_ipv6_documentation(addr: &Ipv6Addr) -> bool {
(addr.segments()[0] == 0x2001) && (addr.segments()[1] == 0xdb8)
}
#[must_use]
#[inline]
pub const fn is_ipv6_private(addr: &Ipv6Addr) -> bool {
is_ipv6_unique_local(addr)
}
#[must_use]
#[inline]
pub const fn is_ipv6_global(addr: &Ipv6Addr) -> bool {
!(addr.is_unspecified()
|| addr.is_loopback()
// IPv4-mapped Address (`::ffff:0:0/96`)
|| matches!(addr.segments(), [0, 0, 0, 0, 0, 0xffff, _, _])
// IPv4-IPv6 Translat. (`64:ff9b:1::/48`)
|| matches!(addr.segments(), [0x64, 0xff9b, 1, _, _, _, _, _])
// Discard-Only Address Block (`100::/64`)
|| matches!(addr.segments(), [0x100, 0, 0, 0, _, _, _, _])
// IETF Protocol Assignments (`2001::/23`)
|| (matches!(addr.segments(), [0x2001, b, _, _, _, _, _, _] if b < 0x200)
&& !(
// Port Control Protocol Anycast (`2001:1::1`)
u128::from_be_bytes(addr.octets()) == 0x2001_0001_0000_0000_0000_0000_0000_0001
// Traversal Using Relays around NAT Anycast (`2001:1::2`)
|| u128::from_be_bytes(addr.octets()) == 0x2001_0001_0000_0000_0000_0000_0000_0002
// AMT (`2001:3::/32`)
|| matches!(addr.segments(), [0x2001, 3, _, _, _, _, _, _])
// AS112-v6 (`2001:4:112::/48`)
|| matches!(addr.segments(), [0x2001, 4, 0x112, _, _, _, _, _])
// ORCHIDv2 (`2001:20::/28`)
|| matches!(addr.segments(), [0x2001, b, _, _, _, _, _, _] if b >= 0x20 && b <= 0x2F)
))
|| is_ipv6_documentation(addr)
|| is_ipv6_unique_local(addr)
|| is_ipv6_unicast_link_local(addr))
}