rocksdb/db_stress_tool/db_stress_common.cc

347 lines
12 KiB

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
//
#ifdef GFLAGS
#include "db_stress_tool/db_stress_common.h"
#include <cmath>
#include "util/file_checksum_helper.h"
#include "util/xxhash.h"
ROCKSDB_NAMESPACE::Env* db_stress_env = nullptr;
#ifndef NDEBUG
// If non-null, injects read error at a rate specified by the
// read_fault_one_in or write_fault_one_in flag
std::shared_ptr<ROCKSDB_NAMESPACE::FaultInjectionTestFS> fault_fs_guard;
#endif // NDEBUG
enum ROCKSDB_NAMESPACE::CompressionType compression_type_e =
ROCKSDB_NAMESPACE::kSnappyCompression;
enum ROCKSDB_NAMESPACE::CompressionType bottommost_compression_type_e =
ROCKSDB_NAMESPACE::kSnappyCompression;
enum ROCKSDB_NAMESPACE::ChecksumType checksum_type_e =
ROCKSDB_NAMESPACE::kCRC32c;
enum RepFactory FLAGS_rep_factory = kSkipList;
std::vector<double> sum_probs(100001);
constexpr int64_t zipf_sum_size = 100000;
namespace ROCKSDB_NAMESPACE {
// Zipfian distribution is generated based on a pre-calculated array.
// It should be used before start the stress test.
// First, the probability distribution function (PDF) of this Zipfian follows
// power low. P(x) = 1/(x^alpha).
// So we calculate the PDF when x is from 0 to zipf_sum_size in first for loop
// and add the PDF value togetger as c. So we get the total probability in c.
// Next, we calculate inverse CDF of Zipfian and store the value of each in
// an array (sum_probs). The rank is from 0 to zipf_sum_size. For example, for
// integer k, its Zipfian CDF value is sum_probs[k].
// Third, when we need to get an integer whose probability follows Zipfian
// distribution, we use a rand_seed [0,1] which follows uniform distribution
// as a seed and search it in the sum_probs via binary search. When we find
// the closest sum_probs[i] of rand_seed, i is the integer that in
// [0, zipf_sum_size] following Zipfian distribution with parameter alpha.
// Finally, we can scale i to [0, max_key] scale.
// In order to avoid that hot keys are close to each other and skew towards 0,
// we use Rando64 to shuffle it.
void InitializeHotKeyGenerator(double alpha) {
double c = 0;
for (int64_t i = 1; i <= zipf_sum_size; i++) {
c = c + (1.0 / std::pow(static_cast<double>(i), alpha));
}
c = 1.0 / c;
sum_probs[0] = 0;
for (int64_t i = 1; i <= zipf_sum_size; i++) {
sum_probs[i] =
sum_probs[i - 1] + c / std::pow(static_cast<double>(i), alpha);
}
}
// Generate one key that follows the Zipfian distribution. The skewness
// is decided by the parameter alpha. Input is the rand_seed [0,1] and
// the max of the key to be generated. If we directly return tmp_zipf_seed,
// the closer to 0, the higher probability will be. To randomly distribute
// the hot keys in [0, max_key], we use Random64 to shuffle it.
int64_t GetOneHotKeyID(double rand_seed, int64_t max_key) {
int64_t low = 1, mid, high = zipf_sum_size, zipf = 0;
while (low <= high) {
mid = (low + high) / 2;
if (sum_probs[mid] >= rand_seed && sum_probs[mid - 1] < rand_seed) {
zipf = mid;
break;
} else if (sum_probs[mid] >= rand_seed) {
high = mid - 1;
} else {
low = mid + 1;
}
}
int64_t tmp_zipf_seed = zipf * max_key / zipf_sum_size;
Random64 rand_local(tmp_zipf_seed);
return rand_local.Next() % max_key;
}
void PoolSizeChangeThread(void* v) {
assert(FLAGS_compaction_thread_pool_adjust_interval > 0);
ThreadState* thread = reinterpret_cast<ThreadState*>(v);
SharedState* shared = thread->shared;
while (true) {
{
MutexLock l(shared->GetMutex());
if (shared->ShouldStopBgThread()) {
shared->IncBgThreadsFinished();
if (shared->BgThreadsFinished()) {
shared->GetCondVar()->SignalAll();
}
return;
}
}
auto thread_pool_size_base = FLAGS_max_background_compactions;
auto thread_pool_size_var = FLAGS_compaction_thread_pool_variations;
int new_thread_pool_size =
thread_pool_size_base - thread_pool_size_var +
thread->rand.Next() % (thread_pool_size_var * 2 + 1);
if (new_thread_pool_size < 1) {
new_thread_pool_size = 1;
}
db_stress_env->SetBackgroundThreads(new_thread_pool_size,
ROCKSDB_NAMESPACE::Env::Priority::LOW);
// Sleep up to 3 seconds
db_stress_env->SleepForMicroseconds(
thread->rand.Next() % FLAGS_compaction_thread_pool_adjust_interval *
1000 +
1);
}
}
void DbVerificationThread(void* v) {
assert(FLAGS_continuous_verification_interval > 0);
auto* thread = reinterpret_cast<ThreadState*>(v);
SharedState* shared = thread->shared;
StressTest* stress_test = shared->GetStressTest();
assert(stress_test != nullptr);
while (true) {
{
MutexLock l(shared->GetMutex());
if (shared->ShouldStopBgThread()) {
shared->IncBgThreadsFinished();
if (shared->BgThreadsFinished()) {
shared->GetCondVar()->SignalAll();
}
return;
}
}
if (!shared->HasVerificationFailedYet()) {
stress_test->ContinuouslyVerifyDb(thread);
}
db_stress_env->SleepForMicroseconds(
thread->rand.Next() % FLAGS_continuous_verification_interval * 1000 +
1);
}
}
void PrintKeyValue(int cf, uint64_t key, const char* value, size_t sz) {
if (!FLAGS_verbose) {
return;
}
std::string tmp;
tmp.reserve(sz * 2 + 16);
char buf[4];
for (size_t i = 0; i < sz; i++) {
snprintf(buf, 4, "%X", value[i]);
tmp.append(buf);
}
auto key_str = Key(key);
Slice key_slice = key_str;
fprintf(stdout, "[CF %d] %s (%" PRIi64 ") == > (%" ROCKSDB_PRIszt ") %s\n",
cf, key_slice.ToString(true).c_str(), key, sz, tmp.c_str());
}
// Note that if hot_key_alpha != 0, it generates the key based on Zipfian
// distribution. Keys are randomly scattered to [0, FLAGS_max_key]. It does
// not ensure the order of the keys being generated and the keys does not have
// the active range which is related to FLAGS_active_width.
int64_t GenerateOneKey(ThreadState* thread, uint64_t iteration) {
const double completed_ratio =
static_cast<double>(iteration) / FLAGS_ops_per_thread;
const int64_t base_key = static_cast<int64_t>(
completed_ratio * (FLAGS_max_key - FLAGS_active_width));
int64_t rand_seed = base_key + thread->rand.Next() % FLAGS_active_width;
int64_t cur_key = rand_seed;
if (FLAGS_hot_key_alpha != 0) {
// If set the Zipfian distribution Alpha to non 0, use Zipfian
double float_rand =
(static_cast<double>(thread->rand.Next() % FLAGS_max_key)) /
FLAGS_max_key;
cur_key = GetOneHotKeyID(float_rand, FLAGS_max_key);
}
return cur_key;
}
// Note that if hot_key_alpha != 0, it generates the key based on Zipfian
// distribution. Keys being generated are in random order.
// If user want to generate keys based on uniform distribution, user needs to
// set hot_key_alpha == 0. It will generate the random keys in increasing
// order in the key array (ensure key[i] >= key[i+1]) and constrained in a
// range related to FLAGS_active_width.
std::vector<int64_t> GenerateNKeys(ThreadState* thread, int num_keys,
uint64_t iteration) {
const double completed_ratio =
static_cast<double>(iteration) / FLAGS_ops_per_thread;
const int64_t base_key = static_cast<int64_t>(
completed_ratio * (FLAGS_max_key - FLAGS_active_width));
std::vector<int64_t> keys;
keys.reserve(num_keys);
int64_t next_key = base_key + thread->rand.Next() % FLAGS_active_width;
keys.push_back(next_key);
for (int i = 1; i < num_keys; ++i) {
// Generate the key follows zipfian distribution
if (FLAGS_hot_key_alpha != 0) {
double float_rand =
(static_cast<double>(thread->rand.Next() % FLAGS_max_key)) /
FLAGS_max_key;
next_key = GetOneHotKeyID(float_rand, FLAGS_max_key);
} else {
// This may result in some duplicate keys
next_key = next_key + thread->rand.Next() %
(FLAGS_active_width - (next_key - base_key));
}
keys.push_back(next_key);
}
return keys;
}
size_t GenerateValue(uint32_t rand, char* v, size_t max_sz) {
size_t value_sz =
((rand % kRandomValueMaxFactor) + 1) * FLAGS_value_size_mult;
assert(value_sz <= max_sz && value_sz >= sizeof(uint32_t));
(void)max_sz;
*((uint32_t*)v) = rand;
for (size_t i = sizeof(uint32_t); i < value_sz; i++) {
v[i] = (char)(rand ^ i);
}
v[value_sz] = '\0';
return value_sz; // the size of the value set.
}
std::string NowNanosStr() {
uint64_t t = db_stress_env->NowNanos();
std::string ret;
PutFixed64(&ret, t);
return ret;
}
std::string GenerateTimestampForRead() { return NowNanosStr(); }
namespace {
class MyXXH64Checksum : public FileChecksumGenerator {
public:
explicit MyXXH64Checksum(bool big) : big_(big) {
state_ = XXH64_createState();
XXH64_reset(state_, 0);
}
virtual ~MyXXH64Checksum() override { XXH64_freeState(state_); }
void Update(const char* data, size_t n) override {
XXH64_update(state_, data, n);
}
void Finalize() override {
assert(str_.empty());
uint64_t digest = XXH64_digest(state_);
// Store as little endian raw bytes
PutFixed64(&str_, digest);
if (big_) {
// Throw in some more data for stress testing (448 bits total)
PutFixed64(&str_, GetSliceHash64(str_));
PutFixed64(&str_, GetSliceHash64(str_));
PutFixed64(&str_, GetSliceHash64(str_));
PutFixed64(&str_, GetSliceHash64(str_));
PutFixed64(&str_, GetSliceHash64(str_));
PutFixed64(&str_, GetSliceHash64(str_));
}
}
std::string GetChecksum() const override {
assert(!str_.empty());
return str_;
}
const char* Name() const override {
return big_ ? "MyBigChecksum" : "MyXXH64Checksum";
}
private:
bool big_;
XXH64_state_t* state_;
std::string str_;
};
class DbStressChecksumGenFactory : public FileChecksumGenFactory {
std::string default_func_name_;
std::unique_ptr<FileChecksumGenerator> CreateFromFuncName(
const std::string& func_name) {
std::unique_ptr<FileChecksumGenerator> rv;
if (func_name == "FileChecksumCrc32c") {
rv.reset(new FileChecksumGenCrc32c(FileChecksumGenContext()));
} else if (func_name == "MyXXH64Checksum") {
rv.reset(new MyXXH64Checksum(false /* big */));
} else if (func_name == "MyBigChecksum") {
rv.reset(new MyXXH64Checksum(true /* big */));
} else {
// Should be a recognized function when we get here
assert(false);
}
return rv;
}
public:
explicit DbStressChecksumGenFactory(const std::string& default_func_name)
: default_func_name_(default_func_name) {}
std::unique_ptr<FileChecksumGenerator> CreateFileChecksumGenerator(
const FileChecksumGenContext& context) override {
if (context.requested_checksum_func_name.empty()) {
return CreateFromFuncName(default_func_name_);
} else {
return CreateFromFuncName(context.requested_checksum_func_name);
}
}
const char* Name() const override { return "FileChecksumGenCrc32cFactory"; }
};
} // namespace
std::shared_ptr<FileChecksumGenFactory> GetFileChecksumImpl(
const std::string& name) {
// Translate from friendly names to internal names
std::string internal_name;
if (name == "crc32c") {
internal_name = "FileChecksumCrc32c";
} else if (name == "xxh64") {
internal_name = "MyXXH64Checksum";
} else if (name == "big") {
internal_name = "MyBigChecksum";
} else {
assert(name.empty() || name == "none");
return nullptr;
}
return std::make_shared<DbStressChecksumGenFactory>(internal_name);
}
} // namespace ROCKSDB_NAMESPACE
#endif // GFLAGS