You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
rocksdb/cache/lru_cache.cc

969 lines
31 KiB

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include "cache/lru_cache.h"
#include <cassert>
New Cache API for gathering statistics (#8225) Summary: Adds a new Cache::ApplyToAllEntries API that we expect to use (in follow-up PRs) for efficiently gathering block cache statistics. Notable features vs. old ApplyToAllCacheEntries: * Includes key and deleter (in addition to value and charge). We could have passed in a Handle but then more virtual function calls would be needed to get the "fields" of each entry. We expect to use the 'deleter' to identify the origin of entries, perhaps even more. * Heavily tuned to minimize latency impact on operating cache. It does this by iterating over small sections of each cache shard while cycling through the shards. * Supports tuning roughly how many entries to operate on for each lock acquire and release, to control the impact on the latency of other operations without excessive lock acquire & release. The right balance can depend on the cost of the callback. Good default seems to be around 256. * There should be no need to disable thread safety. (I would expect uncontended locks to be sufficiently fast.) I have enhanced cache_bench to validate this approach: * Reports a histogram of ns per operation, so we can look at the ditribution of times, not just throughput (average). * Can add a thread for simulated "gather stats" which calls ApplyToAllEntries at a specified interval. We also generate a histogram of time to run ApplyToAllEntries. To make the iteration over some entries of each shard work as cleanly as possible, even with resize between next set of entries, I have re-arranged which hash bits are used for sharding and which for indexing within a shard. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8225 Test Plan: A couple of unit tests are added, but primary validation is manual, as the primary risk is to performance. The primary validation is using cache_bench to ensure that neither the minor hashing changes nor the simulated stats gathering significantly impact QPS or latency distribution. Note that adding op latency histogram seriously impacts the benchmark QPS, so for a fair baseline, we need the cache_bench changes (except remove simulated stat gathering to make it compile). In short, we don't see any reproducible difference in ops/sec or op latency unless we are gathering stats nearly continuously. Test uses 10GB block cache with 8KB values to be somewhat realistic in the number of items to iterate over. Baseline typical output: ``` Complete in 92.017 s; Rough parallel ops/sec = 869401 Thread ops/sec = 54662 Operation latency (ns): Count: 80000000 Average: 11223.9494 StdDev: 29.61 Min: 0 Median: 7759.3973 Max: 9620500 Percentiles: P50: 7759.40 P75: 14190.73 P99: 46922.75 P99.9: 77509.84 P99.99: 217030.58 ------------------------------------------------------ [ 0, 1 ] 68 0.000% 0.000% ( 2900, 4400 ] 89 0.000% 0.000% ( 4400, 6600 ] 33630240 42.038% 42.038% ######## ( 6600, 9900 ] 18129842 22.662% 64.700% ##### ( 9900, 14000 ] 7877533 9.847% 74.547% ## ( 14000, 22000 ] 15193238 18.992% 93.539% #### ( 22000, 33000 ] 3037061 3.796% 97.335% # ( 33000, 50000 ] 1626316 2.033% 99.368% ( 50000, 75000 ] 421532 0.527% 99.895% ( 75000, 110000 ] 56910 0.071% 99.966% ( 110000, 170000 ] 16134 0.020% 99.986% ( 170000, 250000 ] 5166 0.006% 99.993% ( 250000, 380000 ] 3017 0.004% 99.996% ( 380000, 570000 ] 1337 0.002% 99.998% ( 570000, 860000 ] 805 0.001% 99.999% ( 860000, 1200000 ] 319 0.000% 100.000% ( 1200000, 1900000 ] 231 0.000% 100.000% ( 1900000, 2900000 ] 100 0.000% 100.000% ( 2900000, 4300000 ] 39 0.000% 100.000% ( 4300000, 6500000 ] 16 0.000% 100.000% ( 6500000, 9800000 ] 7 0.000% 100.000% ``` New, gather_stats=false. Median thread ops/sec of 5 runs: ``` Complete in 92.030 s; Rough parallel ops/sec = 869285 Thread ops/sec = 54458 Operation latency (ns): Count: 80000000 Average: 11298.1027 StdDev: 42.18 Min: 0 Median: 7722.0822 Max: 6398720 Percentiles: P50: 7722.08 P75: 14294.68 P99: 47522.95 P99.9: 85292.16 P99.99: 228077.78 ------------------------------------------------------ [ 0, 1 ] 109 0.000% 0.000% ( 2900, 4400 ] 793 0.001% 0.001% ( 4400, 6600 ] 34054563 42.568% 42.569% ######### ( 6600, 9900 ] 17482646 21.853% 64.423% #### ( 9900, 14000 ] 7908180 9.885% 74.308% ## ( 14000, 22000 ] 15032072 18.790% 93.098% #### ( 22000, 33000 ] 3237834 4.047% 97.145% # ( 33000, 50000 ] 1736882 2.171% 99.316% ( 50000, 75000 ] 446851 0.559% 99.875% ( 75000, 110000 ] 68251 0.085% 99.960% ( 110000, 170000 ] 18592 0.023% 99.983% ( 170000, 250000 ] 7200 0.009% 99.992% ( 250000, 380000 ] 3334 0.004% 99.997% ( 380000, 570000 ] 1393 0.002% 99.998% ( 570000, 860000 ] 700 0.001% 99.999% ( 860000, 1200000 ] 293 0.000% 100.000% ( 1200000, 1900000 ] 196 0.000% 100.000% ( 1900000, 2900000 ] 69 0.000% 100.000% ( 2900000, 4300000 ] 32 0.000% 100.000% ( 4300000, 6500000 ] 10 0.000% 100.000% ``` New, gather_stats=true, 1 second delay between scans. Scans take about 1 second here so it's spending about 50% time scanning. Still the effect on ops/sec and latency seems to be in the noise. Median thread ops/sec of 5 runs: ``` Complete in 91.890 s; Rough parallel ops/sec = 870608 Thread ops/sec = 54551 Operation latency (ns): Count: 80000000 Average: 11311.2629 StdDev: 45.28 Min: 0 Median: 7686.5458 Max: 10018340 Percentiles: P50: 7686.55 P75: 14481.95 P99: 47232.60 P99.9: 79230.18 P99.99: 232998.86 ------------------------------------------------------ [ 0, 1 ] 71 0.000% 0.000% ( 2900, 4400 ] 291 0.000% 0.000% ( 4400, 6600 ] 34492060 43.115% 43.116% ######### ( 6600, 9900 ] 16727328 20.909% 64.025% #### ( 9900, 14000 ] 7845828 9.807% 73.832% ## ( 14000, 22000 ] 15510654 19.388% 93.220% #### ( 22000, 33000 ] 3216533 4.021% 97.241% # ( 33000, 50000 ] 1680859 2.101% 99.342% ( 50000, 75000 ] 439059 0.549% 99.891% ( 75000, 110000 ] 60540 0.076% 99.967% ( 110000, 170000 ] 14649 0.018% 99.985% ( 170000, 250000 ] 5242 0.007% 99.991% ( 250000, 380000 ] 3260 0.004% 99.995% ( 380000, 570000 ] 1599 0.002% 99.997% ( 570000, 860000 ] 1043 0.001% 99.999% ( 860000, 1200000 ] 471 0.001% 99.999% ( 1200000, 1900000 ] 275 0.000% 100.000% ( 1900000, 2900000 ] 143 0.000% 100.000% ( 2900000, 4300000 ] 60 0.000% 100.000% ( 4300000, 6500000 ] 27 0.000% 100.000% ( 6500000, 9800000 ] 7 0.000% 100.000% ( 9800000, 14000000 ] 1 0.000% 100.000% Gather stats latency (us): Count: 46 Average: 980387.5870 StdDev: 60911.18 Min: 879155 Median: 1033777.7778 Max: 1261431 Percentiles: P50: 1033777.78 P75: 1120666.67 P99: 1261431.00 P99.9: 1261431.00 P99.99: 1261431.00 ------------------------------------------------------ ( 860000, 1200000 ] 45 97.826% 97.826% #################### ( 1200000, 1900000 ] 1 2.174% 100.000% Most recent cache entry stats: Number of entries: 1295133 Total charge: 9.88 GB Average key size: 23.4982 Average charge: 8.00 KB Unique deleters: 3 ``` Reviewed By: mrambacher Differential Revision: D28295742 Pulled By: pdillinger fbshipit-source-id: bbc4a552f91ba0fe10e5cc025c42cef5a81f2b95
4 years ago
#include <cstdint>
#include <cstdio>
Avoid recompressing cold block in CompressedSecondaryCache (#10527) Summary: **Summary:** When a block is firstly `Lookup` from the secondary cache, we just insert a dummy block in the primary cache (charging the actual size of the block) and don’t erase the block from the secondary cache. A standalone handle is returned from `Lookup`. Only if the block is hit again, we erase it from the secondary cache and add it into the primary cache. When a block is firstly evicted from the primary cache to the secondary cache, we just insert a dummy block (size 0) in the secondary cache. When the block is evicted again, it is treated as a hot block and is inserted into the secondary cache. **Implementation Details** Add a new state of LRUHandle: The handle is never inserted into the LRUCache (both hash table and LRU list) and it doesn't experience the above three states. The entry can be freed when refs becomes 0. (refs >= 1 && in_cache == false && IS_STANDALONE == true) The behaviors of `LRUCacheShard::Lookup()` are updated if the secondary_cache is CompressedSecondaryCache: 1. If a handle is found in primary cache: 1.1. If the handle's value is not nullptr, it is returned immediately. 1.2. If the handle's value is nullptr, this means the handle is a dummy one. For a dummy handle, if it was retrieved from secondary cache, it may still exist in secondary cache. - 1.2.1. If no valid handle can be `Lookup` from secondary cache, return nullptr. - 1.2.2. If the handle from secondary cache is valid, erase it from the secondary cache and add it into the primary cache. 2. If a handle is not found in primary cache: 2.1. If no valid handle can be `Lookup` from secondary cache, return nullptr. 2.2. If the handle from secondary cache is valid, insert a dummy block in the primary cache (charging the actual size of the block) and return a standalone handle. The behaviors of `LRUCacheShard::Promote()` are updated as follows: 1. If `e->sec_handle` has value, one of the following steps can happen: 1.1. Insert a dummy handle and return a standalone handle to caller when `secondary_cache_` is `CompressedSecondaryCache` and e is a standalone handle. 1.2. Insert the item into the primary cache and return the handle to caller. 1.3. Exception handling. 3. If `e->sec_handle` has no value, mark the item as not in cache and charge the cache as its only metadata that'll shortly be released. The behavior of `CompressedSecondaryCache::Insert()` is updated: 1. If a block is evicted from the primary cache for the first time, a dummy item is inserted. 4. If a dummy item is found for a block, the block is inserted into the secondary cache. The behavior of `CompressedSecondaryCache:::Lookup()` is updated: 1. If a handle is not found or it is a dummy item, a nullptr is returned. 2. If `erase_handle` is true, the handle is erased. The behaviors of `LRUCacheShard::Release()` are adjusted for the standalone handles. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10527 Test Plan: 1. stress tests. 5. unit tests. 6. CPU profiling for db_bench. Reviewed By: siying Differential Revision: D38747613 Pulled By: gitbw95 fbshipit-source-id: 74a1eba7e1957c9affb2bd2ae3e0194584fa6eca
2 years ago
#include <cstdlib>
#include "monitoring/perf_context_imp.h"
#include "monitoring/statistics.h"
#include "port/lang.h"
Use optimized folly DistributedMutex in LRUCache when available (#10179) Summary: folly DistributedMutex is faster than standard mutexes though imposes some static obligations on usage. See https://github.com/facebook/folly/blob/main/folly/synchronization/DistributedMutex.h for details. Here we use this alternative for our Cache implementations (especially LRUCache) for better locking performance, when RocksDB is compiled with folly. Also added information about which distributed mutex implementation is being used to cache_bench output and to DB LOG. Intended follow-up: * Use DMutex in more places, perhaps improving API to support non-scoped locking * Fix linking with fbcode compiler (needs ROCKSDB_NO_FBCODE=1 currently) Credit: Thanks Siying for reminding me about this line of work that was previously left unfinished. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10179 Test Plan: for correctness, existing tests. CircleCI config updated. Also Meta-internal buck build updated. For performance, ran simultaneous before & after cache_bench. Out of three comparison runs, the middle improvement to ops/sec was +21%: Baseline: USE_CLANG=1 DEBUG_LEVEL=0 make -j24 cache_bench (fbcode compiler) ``` Complete in 20.201 s; Rough parallel ops/sec = 1584062 Thread ops/sec = 107176 Operation latency (ns): Count: 32000000 Average: 9257.9421 StdDev: 122412.04 Min: 134 Median: 3623.0493 Max: 56918500 Percentiles: P50: 3623.05 P75: 10288.02 P99: 30219.35 P99.9: 683522.04 P99.99: 7302791.63 ``` New: (add USE_FOLLY=1) ``` Complete in 16.674 s; Rough parallel ops/sec = 1919135 (+21%) Thread ops/sec = 135487 Operation latency (ns): Count: 32000000 Average: 7304.9294 StdDev: 108530.28 Min: 132 Median: 3777.6012 Max: 91030902 Percentiles: P50: 3777.60 P75: 10169.89 P99: 24504.51 P99.9: 59721.59 P99.99: 1861151.83 ``` Reviewed By: anand1976 Differential Revision: D37182983 Pulled By: pdillinger fbshipit-source-id: a17eb05f25b832b6a2c1356f5c657e831a5af8d1
2 years ago
#include "util/distributed_mutex.h"
namespace ROCKSDB_NAMESPACE {
namespace lru_cache {
New Cache API for gathering statistics (#8225) Summary: Adds a new Cache::ApplyToAllEntries API that we expect to use (in follow-up PRs) for efficiently gathering block cache statistics. Notable features vs. old ApplyToAllCacheEntries: * Includes key and deleter (in addition to value and charge). We could have passed in a Handle but then more virtual function calls would be needed to get the "fields" of each entry. We expect to use the 'deleter' to identify the origin of entries, perhaps even more. * Heavily tuned to minimize latency impact on operating cache. It does this by iterating over small sections of each cache shard while cycling through the shards. * Supports tuning roughly how many entries to operate on for each lock acquire and release, to control the impact on the latency of other operations without excessive lock acquire & release. The right balance can depend on the cost of the callback. Good default seems to be around 256. * There should be no need to disable thread safety. (I would expect uncontended locks to be sufficiently fast.) I have enhanced cache_bench to validate this approach: * Reports a histogram of ns per operation, so we can look at the ditribution of times, not just throughput (average). * Can add a thread for simulated "gather stats" which calls ApplyToAllEntries at a specified interval. We also generate a histogram of time to run ApplyToAllEntries. To make the iteration over some entries of each shard work as cleanly as possible, even with resize between next set of entries, I have re-arranged which hash bits are used for sharding and which for indexing within a shard. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8225 Test Plan: A couple of unit tests are added, but primary validation is manual, as the primary risk is to performance. The primary validation is using cache_bench to ensure that neither the minor hashing changes nor the simulated stats gathering significantly impact QPS or latency distribution. Note that adding op latency histogram seriously impacts the benchmark QPS, so for a fair baseline, we need the cache_bench changes (except remove simulated stat gathering to make it compile). In short, we don't see any reproducible difference in ops/sec or op latency unless we are gathering stats nearly continuously. Test uses 10GB block cache with 8KB values to be somewhat realistic in the number of items to iterate over. Baseline typical output: ``` Complete in 92.017 s; Rough parallel ops/sec = 869401 Thread ops/sec = 54662 Operation latency (ns): Count: 80000000 Average: 11223.9494 StdDev: 29.61 Min: 0 Median: 7759.3973 Max: 9620500 Percentiles: P50: 7759.40 P75: 14190.73 P99: 46922.75 P99.9: 77509.84 P99.99: 217030.58 ------------------------------------------------------ [ 0, 1 ] 68 0.000% 0.000% ( 2900, 4400 ] 89 0.000% 0.000% ( 4400, 6600 ] 33630240 42.038% 42.038% ######## ( 6600, 9900 ] 18129842 22.662% 64.700% ##### ( 9900, 14000 ] 7877533 9.847% 74.547% ## ( 14000, 22000 ] 15193238 18.992% 93.539% #### ( 22000, 33000 ] 3037061 3.796% 97.335% # ( 33000, 50000 ] 1626316 2.033% 99.368% ( 50000, 75000 ] 421532 0.527% 99.895% ( 75000, 110000 ] 56910 0.071% 99.966% ( 110000, 170000 ] 16134 0.020% 99.986% ( 170000, 250000 ] 5166 0.006% 99.993% ( 250000, 380000 ] 3017 0.004% 99.996% ( 380000, 570000 ] 1337 0.002% 99.998% ( 570000, 860000 ] 805 0.001% 99.999% ( 860000, 1200000 ] 319 0.000% 100.000% ( 1200000, 1900000 ] 231 0.000% 100.000% ( 1900000, 2900000 ] 100 0.000% 100.000% ( 2900000, 4300000 ] 39 0.000% 100.000% ( 4300000, 6500000 ] 16 0.000% 100.000% ( 6500000, 9800000 ] 7 0.000% 100.000% ``` New, gather_stats=false. Median thread ops/sec of 5 runs: ``` Complete in 92.030 s; Rough parallel ops/sec = 869285 Thread ops/sec = 54458 Operation latency (ns): Count: 80000000 Average: 11298.1027 StdDev: 42.18 Min: 0 Median: 7722.0822 Max: 6398720 Percentiles: P50: 7722.08 P75: 14294.68 P99: 47522.95 P99.9: 85292.16 P99.99: 228077.78 ------------------------------------------------------ [ 0, 1 ] 109 0.000% 0.000% ( 2900, 4400 ] 793 0.001% 0.001% ( 4400, 6600 ] 34054563 42.568% 42.569% ######### ( 6600, 9900 ] 17482646 21.853% 64.423% #### ( 9900, 14000 ] 7908180 9.885% 74.308% ## ( 14000, 22000 ] 15032072 18.790% 93.098% #### ( 22000, 33000 ] 3237834 4.047% 97.145% # ( 33000, 50000 ] 1736882 2.171% 99.316% ( 50000, 75000 ] 446851 0.559% 99.875% ( 75000, 110000 ] 68251 0.085% 99.960% ( 110000, 170000 ] 18592 0.023% 99.983% ( 170000, 250000 ] 7200 0.009% 99.992% ( 250000, 380000 ] 3334 0.004% 99.997% ( 380000, 570000 ] 1393 0.002% 99.998% ( 570000, 860000 ] 700 0.001% 99.999% ( 860000, 1200000 ] 293 0.000% 100.000% ( 1200000, 1900000 ] 196 0.000% 100.000% ( 1900000, 2900000 ] 69 0.000% 100.000% ( 2900000, 4300000 ] 32 0.000% 100.000% ( 4300000, 6500000 ] 10 0.000% 100.000% ``` New, gather_stats=true, 1 second delay between scans. Scans take about 1 second here so it's spending about 50% time scanning. Still the effect on ops/sec and latency seems to be in the noise. Median thread ops/sec of 5 runs: ``` Complete in 91.890 s; Rough parallel ops/sec = 870608 Thread ops/sec = 54551 Operation latency (ns): Count: 80000000 Average: 11311.2629 StdDev: 45.28 Min: 0 Median: 7686.5458 Max: 10018340 Percentiles: P50: 7686.55 P75: 14481.95 P99: 47232.60 P99.9: 79230.18 P99.99: 232998.86 ------------------------------------------------------ [ 0, 1 ] 71 0.000% 0.000% ( 2900, 4400 ] 291 0.000% 0.000% ( 4400, 6600 ] 34492060 43.115% 43.116% ######### ( 6600, 9900 ] 16727328 20.909% 64.025% #### ( 9900, 14000 ] 7845828 9.807% 73.832% ## ( 14000, 22000 ] 15510654 19.388% 93.220% #### ( 22000, 33000 ] 3216533 4.021% 97.241% # ( 33000, 50000 ] 1680859 2.101% 99.342% ( 50000, 75000 ] 439059 0.549% 99.891% ( 75000, 110000 ] 60540 0.076% 99.967% ( 110000, 170000 ] 14649 0.018% 99.985% ( 170000, 250000 ] 5242 0.007% 99.991% ( 250000, 380000 ] 3260 0.004% 99.995% ( 380000, 570000 ] 1599 0.002% 99.997% ( 570000, 860000 ] 1043 0.001% 99.999% ( 860000, 1200000 ] 471 0.001% 99.999% ( 1200000, 1900000 ] 275 0.000% 100.000% ( 1900000, 2900000 ] 143 0.000% 100.000% ( 2900000, 4300000 ] 60 0.000% 100.000% ( 4300000, 6500000 ] 27 0.000% 100.000% ( 6500000, 9800000 ] 7 0.000% 100.000% ( 9800000, 14000000 ] 1 0.000% 100.000% Gather stats latency (us): Count: 46 Average: 980387.5870 StdDev: 60911.18 Min: 879155 Median: 1033777.7778 Max: 1261431 Percentiles: P50: 1033777.78 P75: 1120666.67 P99: 1261431.00 P99.9: 1261431.00 P99.99: 1261431.00 ------------------------------------------------------ ( 860000, 1200000 ] 45 97.826% 97.826% #################### ( 1200000, 1900000 ] 1 2.174% 100.000% Most recent cache entry stats: Number of entries: 1295133 Total charge: 9.88 GB Average key size: 23.4982 Average charge: 8.00 KB Unique deleters: 3 ``` Reviewed By: mrambacher Differential Revision: D28295742 Pulled By: pdillinger fbshipit-source-id: bbc4a552f91ba0fe10e5cc025c42cef5a81f2b95
4 years ago
LRUHandleTable::LRUHandleTable(int max_upper_hash_bits)
: length_bits_(/* historical starting size*/ 4),
list_(new LRUHandle* [size_t{1} << length_bits_] {}),
elems_(0),
max_length_bits_(max_upper_hash_bits) {}
LRUHandleTable::~LRUHandleTable() {
New Cache API for gathering statistics (#8225) Summary: Adds a new Cache::ApplyToAllEntries API that we expect to use (in follow-up PRs) for efficiently gathering block cache statistics. Notable features vs. old ApplyToAllCacheEntries: * Includes key and deleter (in addition to value and charge). We could have passed in a Handle but then more virtual function calls would be needed to get the "fields" of each entry. We expect to use the 'deleter' to identify the origin of entries, perhaps even more. * Heavily tuned to minimize latency impact on operating cache. It does this by iterating over small sections of each cache shard while cycling through the shards. * Supports tuning roughly how many entries to operate on for each lock acquire and release, to control the impact on the latency of other operations without excessive lock acquire & release. The right balance can depend on the cost of the callback. Good default seems to be around 256. * There should be no need to disable thread safety. (I would expect uncontended locks to be sufficiently fast.) I have enhanced cache_bench to validate this approach: * Reports a histogram of ns per operation, so we can look at the ditribution of times, not just throughput (average). * Can add a thread for simulated "gather stats" which calls ApplyToAllEntries at a specified interval. We also generate a histogram of time to run ApplyToAllEntries. To make the iteration over some entries of each shard work as cleanly as possible, even with resize between next set of entries, I have re-arranged which hash bits are used for sharding and which for indexing within a shard. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8225 Test Plan: A couple of unit tests are added, but primary validation is manual, as the primary risk is to performance. The primary validation is using cache_bench to ensure that neither the minor hashing changes nor the simulated stats gathering significantly impact QPS or latency distribution. Note that adding op latency histogram seriously impacts the benchmark QPS, so for a fair baseline, we need the cache_bench changes (except remove simulated stat gathering to make it compile). In short, we don't see any reproducible difference in ops/sec or op latency unless we are gathering stats nearly continuously. Test uses 10GB block cache with 8KB values to be somewhat realistic in the number of items to iterate over. Baseline typical output: ``` Complete in 92.017 s; Rough parallel ops/sec = 869401 Thread ops/sec = 54662 Operation latency (ns): Count: 80000000 Average: 11223.9494 StdDev: 29.61 Min: 0 Median: 7759.3973 Max: 9620500 Percentiles: P50: 7759.40 P75: 14190.73 P99: 46922.75 P99.9: 77509.84 P99.99: 217030.58 ------------------------------------------------------ [ 0, 1 ] 68 0.000% 0.000% ( 2900, 4400 ] 89 0.000% 0.000% ( 4400, 6600 ] 33630240 42.038% 42.038% ######## ( 6600, 9900 ] 18129842 22.662% 64.700% ##### ( 9900, 14000 ] 7877533 9.847% 74.547% ## ( 14000, 22000 ] 15193238 18.992% 93.539% #### ( 22000, 33000 ] 3037061 3.796% 97.335% # ( 33000, 50000 ] 1626316 2.033% 99.368% ( 50000, 75000 ] 421532 0.527% 99.895% ( 75000, 110000 ] 56910 0.071% 99.966% ( 110000, 170000 ] 16134 0.020% 99.986% ( 170000, 250000 ] 5166 0.006% 99.993% ( 250000, 380000 ] 3017 0.004% 99.996% ( 380000, 570000 ] 1337 0.002% 99.998% ( 570000, 860000 ] 805 0.001% 99.999% ( 860000, 1200000 ] 319 0.000% 100.000% ( 1200000, 1900000 ] 231 0.000% 100.000% ( 1900000, 2900000 ] 100 0.000% 100.000% ( 2900000, 4300000 ] 39 0.000% 100.000% ( 4300000, 6500000 ] 16 0.000% 100.000% ( 6500000, 9800000 ] 7 0.000% 100.000% ``` New, gather_stats=false. Median thread ops/sec of 5 runs: ``` Complete in 92.030 s; Rough parallel ops/sec = 869285 Thread ops/sec = 54458 Operation latency (ns): Count: 80000000 Average: 11298.1027 StdDev: 42.18 Min: 0 Median: 7722.0822 Max: 6398720 Percentiles: P50: 7722.08 P75: 14294.68 P99: 47522.95 P99.9: 85292.16 P99.99: 228077.78 ------------------------------------------------------ [ 0, 1 ] 109 0.000% 0.000% ( 2900, 4400 ] 793 0.001% 0.001% ( 4400, 6600 ] 34054563 42.568% 42.569% ######### ( 6600, 9900 ] 17482646 21.853% 64.423% #### ( 9900, 14000 ] 7908180 9.885% 74.308% ## ( 14000, 22000 ] 15032072 18.790% 93.098% #### ( 22000, 33000 ] 3237834 4.047% 97.145% # ( 33000, 50000 ] 1736882 2.171% 99.316% ( 50000, 75000 ] 446851 0.559% 99.875% ( 75000, 110000 ] 68251 0.085% 99.960% ( 110000, 170000 ] 18592 0.023% 99.983% ( 170000, 250000 ] 7200 0.009% 99.992% ( 250000, 380000 ] 3334 0.004% 99.997% ( 380000, 570000 ] 1393 0.002% 99.998% ( 570000, 860000 ] 700 0.001% 99.999% ( 860000, 1200000 ] 293 0.000% 100.000% ( 1200000, 1900000 ] 196 0.000% 100.000% ( 1900000, 2900000 ] 69 0.000% 100.000% ( 2900000, 4300000 ] 32 0.000% 100.000% ( 4300000, 6500000 ] 10 0.000% 100.000% ``` New, gather_stats=true, 1 second delay between scans. Scans take about 1 second here so it's spending about 50% time scanning. Still the effect on ops/sec and latency seems to be in the noise. Median thread ops/sec of 5 runs: ``` Complete in 91.890 s; Rough parallel ops/sec = 870608 Thread ops/sec = 54551 Operation latency (ns): Count: 80000000 Average: 11311.2629 StdDev: 45.28 Min: 0 Median: 7686.5458 Max: 10018340 Percentiles: P50: 7686.55 P75: 14481.95 P99: 47232.60 P99.9: 79230.18 P99.99: 232998.86 ------------------------------------------------------ [ 0, 1 ] 71 0.000% 0.000% ( 2900, 4400 ] 291 0.000% 0.000% ( 4400, 6600 ] 34492060 43.115% 43.116% ######### ( 6600, 9900 ] 16727328 20.909% 64.025% #### ( 9900, 14000 ] 7845828 9.807% 73.832% ## ( 14000, 22000 ] 15510654 19.388% 93.220% #### ( 22000, 33000 ] 3216533 4.021% 97.241% # ( 33000, 50000 ] 1680859 2.101% 99.342% ( 50000, 75000 ] 439059 0.549% 99.891% ( 75000, 110000 ] 60540 0.076% 99.967% ( 110000, 170000 ] 14649 0.018% 99.985% ( 170000, 250000 ] 5242 0.007% 99.991% ( 250000, 380000 ] 3260 0.004% 99.995% ( 380000, 570000 ] 1599 0.002% 99.997% ( 570000, 860000 ] 1043 0.001% 99.999% ( 860000, 1200000 ] 471 0.001% 99.999% ( 1200000, 1900000 ] 275 0.000% 100.000% ( 1900000, 2900000 ] 143 0.000% 100.000% ( 2900000, 4300000 ] 60 0.000% 100.000% ( 4300000, 6500000 ] 27 0.000% 100.000% ( 6500000, 9800000 ] 7 0.000% 100.000% ( 9800000, 14000000 ] 1 0.000% 100.000% Gather stats latency (us): Count: 46 Average: 980387.5870 StdDev: 60911.18 Min: 879155 Median: 1033777.7778 Max: 1261431 Percentiles: P50: 1033777.78 P75: 1120666.67 P99: 1261431.00 P99.9: 1261431.00 P99.99: 1261431.00 ------------------------------------------------------ ( 860000, 1200000 ] 45 97.826% 97.826% #################### ( 1200000, 1900000 ] 1 2.174% 100.000% Most recent cache entry stats: Number of entries: 1295133 Total charge: 9.88 GB Average key size: 23.4982 Average charge: 8.00 KB Unique deleters: 3 ``` Reviewed By: mrambacher Differential Revision: D28295742 Pulled By: pdillinger fbshipit-source-id: bbc4a552f91ba0fe10e5cc025c42cef5a81f2b95
4 years ago
ApplyToEntriesRange(
[](LRUHandle* h) {
if (!h->HasRefs()) {
h->Free();
}
},
0, uint32_t{1} << length_bits_);
}
LRUHandle* LRUHandleTable::Lookup(const Slice& key, uint32_t hash) {
return *FindPointer(key, hash);
}
LRUHandle* LRUHandleTable::Insert(LRUHandle* h) {
LRUHandle** ptr = FindPointer(h->key(), h->hash);
LRUHandle* old = *ptr;
h->next_hash = (old == nullptr ? nullptr : old->next_hash);
*ptr = h;
if (old == nullptr) {
++elems_;
New Cache API for gathering statistics (#8225) Summary: Adds a new Cache::ApplyToAllEntries API that we expect to use (in follow-up PRs) for efficiently gathering block cache statistics. Notable features vs. old ApplyToAllCacheEntries: * Includes key and deleter (in addition to value and charge). We could have passed in a Handle but then more virtual function calls would be needed to get the "fields" of each entry. We expect to use the 'deleter' to identify the origin of entries, perhaps even more. * Heavily tuned to minimize latency impact on operating cache. It does this by iterating over small sections of each cache shard while cycling through the shards. * Supports tuning roughly how many entries to operate on for each lock acquire and release, to control the impact on the latency of other operations without excessive lock acquire & release. The right balance can depend on the cost of the callback. Good default seems to be around 256. * There should be no need to disable thread safety. (I would expect uncontended locks to be sufficiently fast.) I have enhanced cache_bench to validate this approach: * Reports a histogram of ns per operation, so we can look at the ditribution of times, not just throughput (average). * Can add a thread for simulated "gather stats" which calls ApplyToAllEntries at a specified interval. We also generate a histogram of time to run ApplyToAllEntries. To make the iteration over some entries of each shard work as cleanly as possible, even with resize between next set of entries, I have re-arranged which hash bits are used for sharding and which for indexing within a shard. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8225 Test Plan: A couple of unit tests are added, but primary validation is manual, as the primary risk is to performance. The primary validation is using cache_bench to ensure that neither the minor hashing changes nor the simulated stats gathering significantly impact QPS or latency distribution. Note that adding op latency histogram seriously impacts the benchmark QPS, so for a fair baseline, we need the cache_bench changes (except remove simulated stat gathering to make it compile). In short, we don't see any reproducible difference in ops/sec or op latency unless we are gathering stats nearly continuously. Test uses 10GB block cache with 8KB values to be somewhat realistic in the number of items to iterate over. Baseline typical output: ``` Complete in 92.017 s; Rough parallel ops/sec = 869401 Thread ops/sec = 54662 Operation latency (ns): Count: 80000000 Average: 11223.9494 StdDev: 29.61 Min: 0 Median: 7759.3973 Max: 9620500 Percentiles: P50: 7759.40 P75: 14190.73 P99: 46922.75 P99.9: 77509.84 P99.99: 217030.58 ------------------------------------------------------ [ 0, 1 ] 68 0.000% 0.000% ( 2900, 4400 ] 89 0.000% 0.000% ( 4400, 6600 ] 33630240 42.038% 42.038% ######## ( 6600, 9900 ] 18129842 22.662% 64.700% ##### ( 9900, 14000 ] 7877533 9.847% 74.547% ## ( 14000, 22000 ] 15193238 18.992% 93.539% #### ( 22000, 33000 ] 3037061 3.796% 97.335% # ( 33000, 50000 ] 1626316 2.033% 99.368% ( 50000, 75000 ] 421532 0.527% 99.895% ( 75000, 110000 ] 56910 0.071% 99.966% ( 110000, 170000 ] 16134 0.020% 99.986% ( 170000, 250000 ] 5166 0.006% 99.993% ( 250000, 380000 ] 3017 0.004% 99.996% ( 380000, 570000 ] 1337 0.002% 99.998% ( 570000, 860000 ] 805 0.001% 99.999% ( 860000, 1200000 ] 319 0.000% 100.000% ( 1200000, 1900000 ] 231 0.000% 100.000% ( 1900000, 2900000 ] 100 0.000% 100.000% ( 2900000, 4300000 ] 39 0.000% 100.000% ( 4300000, 6500000 ] 16 0.000% 100.000% ( 6500000, 9800000 ] 7 0.000% 100.000% ``` New, gather_stats=false. Median thread ops/sec of 5 runs: ``` Complete in 92.030 s; Rough parallel ops/sec = 869285 Thread ops/sec = 54458 Operation latency (ns): Count: 80000000 Average: 11298.1027 StdDev: 42.18 Min: 0 Median: 7722.0822 Max: 6398720 Percentiles: P50: 7722.08 P75: 14294.68 P99: 47522.95 P99.9: 85292.16 P99.99: 228077.78 ------------------------------------------------------ [ 0, 1 ] 109 0.000% 0.000% ( 2900, 4400 ] 793 0.001% 0.001% ( 4400, 6600 ] 34054563 42.568% 42.569% ######### ( 6600, 9900 ] 17482646 21.853% 64.423% #### ( 9900, 14000 ] 7908180 9.885% 74.308% ## ( 14000, 22000 ] 15032072 18.790% 93.098% #### ( 22000, 33000 ] 3237834 4.047% 97.145% # ( 33000, 50000 ] 1736882 2.171% 99.316% ( 50000, 75000 ] 446851 0.559% 99.875% ( 75000, 110000 ] 68251 0.085% 99.960% ( 110000, 170000 ] 18592 0.023% 99.983% ( 170000, 250000 ] 7200 0.009% 99.992% ( 250000, 380000 ] 3334 0.004% 99.997% ( 380000, 570000 ] 1393 0.002% 99.998% ( 570000, 860000 ] 700 0.001% 99.999% ( 860000, 1200000 ] 293 0.000% 100.000% ( 1200000, 1900000 ] 196 0.000% 100.000% ( 1900000, 2900000 ] 69 0.000% 100.000% ( 2900000, 4300000 ] 32 0.000% 100.000% ( 4300000, 6500000 ] 10 0.000% 100.000% ``` New, gather_stats=true, 1 second delay between scans. Scans take about 1 second here so it's spending about 50% time scanning. Still the effect on ops/sec and latency seems to be in the noise. Median thread ops/sec of 5 runs: ``` Complete in 91.890 s; Rough parallel ops/sec = 870608 Thread ops/sec = 54551 Operation latency (ns): Count: 80000000 Average: 11311.2629 StdDev: 45.28 Min: 0 Median: 7686.5458 Max: 10018340 Percentiles: P50: 7686.55 P75: 14481.95 P99: 47232.60 P99.9: 79230.18 P99.99: 232998.86 ------------------------------------------------------ [ 0, 1 ] 71 0.000% 0.000% ( 2900, 4400 ] 291 0.000% 0.000% ( 4400, 6600 ] 34492060 43.115% 43.116% ######### ( 6600, 9900 ] 16727328 20.909% 64.025% #### ( 9900, 14000 ] 7845828 9.807% 73.832% ## ( 14000, 22000 ] 15510654 19.388% 93.220% #### ( 22000, 33000 ] 3216533 4.021% 97.241% # ( 33000, 50000 ] 1680859 2.101% 99.342% ( 50000, 75000 ] 439059 0.549% 99.891% ( 75000, 110000 ] 60540 0.076% 99.967% ( 110000, 170000 ] 14649 0.018% 99.985% ( 170000, 250000 ] 5242 0.007% 99.991% ( 250000, 380000 ] 3260 0.004% 99.995% ( 380000, 570000 ] 1599 0.002% 99.997% ( 570000, 860000 ] 1043 0.001% 99.999% ( 860000, 1200000 ] 471 0.001% 99.999% ( 1200000, 1900000 ] 275 0.000% 100.000% ( 1900000, 2900000 ] 143 0.000% 100.000% ( 2900000, 4300000 ] 60 0.000% 100.000% ( 4300000, 6500000 ] 27 0.000% 100.000% ( 6500000, 9800000 ] 7 0.000% 100.000% ( 9800000, 14000000 ] 1 0.000% 100.000% Gather stats latency (us): Count: 46 Average: 980387.5870 StdDev: 60911.18 Min: 879155 Median: 1033777.7778 Max: 1261431 Percentiles: P50: 1033777.78 P75: 1120666.67 P99: 1261431.00 P99.9: 1261431.00 P99.99: 1261431.00 ------------------------------------------------------ ( 860000, 1200000 ] 45 97.826% 97.826% #################### ( 1200000, 1900000 ] 1 2.174% 100.000% Most recent cache entry stats: Number of entries: 1295133 Total charge: 9.88 GB Average key size: 23.4982 Average charge: 8.00 KB Unique deleters: 3 ``` Reviewed By: mrambacher Differential Revision: D28295742 Pulled By: pdillinger fbshipit-source-id: bbc4a552f91ba0fe10e5cc025c42cef5a81f2b95
4 years ago
if ((elems_ >> length_bits_) > 0) { // elems_ >= length
// Since each cache entry is fairly large, we aim for a small
// average linked list length (<= 1).
Resize();
}
}
return old;
}
LRUHandle* LRUHandleTable::Remove(const Slice& key, uint32_t hash) {
LRUHandle** ptr = FindPointer(key, hash);
LRUHandle* result = *ptr;
if (result != nullptr) {
*ptr = result->next_hash;
--elems_;
}
return result;
}
LRUHandle** LRUHandleTable::FindPointer(const Slice& key, uint32_t hash) {
New Cache API for gathering statistics (#8225) Summary: Adds a new Cache::ApplyToAllEntries API that we expect to use (in follow-up PRs) for efficiently gathering block cache statistics. Notable features vs. old ApplyToAllCacheEntries: * Includes key and deleter (in addition to value and charge). We could have passed in a Handle but then more virtual function calls would be needed to get the "fields" of each entry. We expect to use the 'deleter' to identify the origin of entries, perhaps even more. * Heavily tuned to minimize latency impact on operating cache. It does this by iterating over small sections of each cache shard while cycling through the shards. * Supports tuning roughly how many entries to operate on for each lock acquire and release, to control the impact on the latency of other operations without excessive lock acquire & release. The right balance can depend on the cost of the callback. Good default seems to be around 256. * There should be no need to disable thread safety. (I would expect uncontended locks to be sufficiently fast.) I have enhanced cache_bench to validate this approach: * Reports a histogram of ns per operation, so we can look at the ditribution of times, not just throughput (average). * Can add a thread for simulated "gather stats" which calls ApplyToAllEntries at a specified interval. We also generate a histogram of time to run ApplyToAllEntries. To make the iteration over some entries of each shard work as cleanly as possible, even with resize between next set of entries, I have re-arranged which hash bits are used for sharding and which for indexing within a shard. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8225 Test Plan: A couple of unit tests are added, but primary validation is manual, as the primary risk is to performance. The primary validation is using cache_bench to ensure that neither the minor hashing changes nor the simulated stats gathering significantly impact QPS or latency distribution. Note that adding op latency histogram seriously impacts the benchmark QPS, so for a fair baseline, we need the cache_bench changes (except remove simulated stat gathering to make it compile). In short, we don't see any reproducible difference in ops/sec or op latency unless we are gathering stats nearly continuously. Test uses 10GB block cache with 8KB values to be somewhat realistic in the number of items to iterate over. Baseline typical output: ``` Complete in 92.017 s; Rough parallel ops/sec = 869401 Thread ops/sec = 54662 Operation latency (ns): Count: 80000000 Average: 11223.9494 StdDev: 29.61 Min: 0 Median: 7759.3973 Max: 9620500 Percentiles: P50: 7759.40 P75: 14190.73 P99: 46922.75 P99.9: 77509.84 P99.99: 217030.58 ------------------------------------------------------ [ 0, 1 ] 68 0.000% 0.000% ( 2900, 4400 ] 89 0.000% 0.000% ( 4400, 6600 ] 33630240 42.038% 42.038% ######## ( 6600, 9900 ] 18129842 22.662% 64.700% ##### ( 9900, 14000 ] 7877533 9.847% 74.547% ## ( 14000, 22000 ] 15193238 18.992% 93.539% #### ( 22000, 33000 ] 3037061 3.796% 97.335% # ( 33000, 50000 ] 1626316 2.033% 99.368% ( 50000, 75000 ] 421532 0.527% 99.895% ( 75000, 110000 ] 56910 0.071% 99.966% ( 110000, 170000 ] 16134 0.020% 99.986% ( 170000, 250000 ] 5166 0.006% 99.993% ( 250000, 380000 ] 3017 0.004% 99.996% ( 380000, 570000 ] 1337 0.002% 99.998% ( 570000, 860000 ] 805 0.001% 99.999% ( 860000, 1200000 ] 319 0.000% 100.000% ( 1200000, 1900000 ] 231 0.000% 100.000% ( 1900000, 2900000 ] 100 0.000% 100.000% ( 2900000, 4300000 ] 39 0.000% 100.000% ( 4300000, 6500000 ] 16 0.000% 100.000% ( 6500000, 9800000 ] 7 0.000% 100.000% ``` New, gather_stats=false. Median thread ops/sec of 5 runs: ``` Complete in 92.030 s; Rough parallel ops/sec = 869285 Thread ops/sec = 54458 Operation latency (ns): Count: 80000000 Average: 11298.1027 StdDev: 42.18 Min: 0 Median: 7722.0822 Max: 6398720 Percentiles: P50: 7722.08 P75: 14294.68 P99: 47522.95 P99.9: 85292.16 P99.99: 228077.78 ------------------------------------------------------ [ 0, 1 ] 109 0.000% 0.000% ( 2900, 4400 ] 793 0.001% 0.001% ( 4400, 6600 ] 34054563 42.568% 42.569% ######### ( 6600, 9900 ] 17482646 21.853% 64.423% #### ( 9900, 14000 ] 7908180 9.885% 74.308% ## ( 14000, 22000 ] 15032072 18.790% 93.098% #### ( 22000, 33000 ] 3237834 4.047% 97.145% # ( 33000, 50000 ] 1736882 2.171% 99.316% ( 50000, 75000 ] 446851 0.559% 99.875% ( 75000, 110000 ] 68251 0.085% 99.960% ( 110000, 170000 ] 18592 0.023% 99.983% ( 170000, 250000 ] 7200 0.009% 99.992% ( 250000, 380000 ] 3334 0.004% 99.997% ( 380000, 570000 ] 1393 0.002% 99.998% ( 570000, 860000 ] 700 0.001% 99.999% ( 860000, 1200000 ] 293 0.000% 100.000% ( 1200000, 1900000 ] 196 0.000% 100.000% ( 1900000, 2900000 ] 69 0.000% 100.000% ( 2900000, 4300000 ] 32 0.000% 100.000% ( 4300000, 6500000 ] 10 0.000% 100.000% ``` New, gather_stats=true, 1 second delay between scans. Scans take about 1 second here so it's spending about 50% time scanning. Still the effect on ops/sec and latency seems to be in the noise. Median thread ops/sec of 5 runs: ``` Complete in 91.890 s; Rough parallel ops/sec = 870608 Thread ops/sec = 54551 Operation latency (ns): Count: 80000000 Average: 11311.2629 StdDev: 45.28 Min: 0 Median: 7686.5458 Max: 10018340 Percentiles: P50: 7686.55 P75: 14481.95 P99: 47232.60 P99.9: 79230.18 P99.99: 232998.86 ------------------------------------------------------ [ 0, 1 ] 71 0.000% 0.000% ( 2900, 4400 ] 291 0.000% 0.000% ( 4400, 6600 ] 34492060 43.115% 43.116% ######### ( 6600, 9900 ] 16727328 20.909% 64.025% #### ( 9900, 14000 ] 7845828 9.807% 73.832% ## ( 14000, 22000 ] 15510654 19.388% 93.220% #### ( 22000, 33000 ] 3216533 4.021% 97.241% # ( 33000, 50000 ] 1680859 2.101% 99.342% ( 50000, 75000 ] 439059 0.549% 99.891% ( 75000, 110000 ] 60540 0.076% 99.967% ( 110000, 170000 ] 14649 0.018% 99.985% ( 170000, 250000 ] 5242 0.007% 99.991% ( 250000, 380000 ] 3260 0.004% 99.995% ( 380000, 570000 ] 1599 0.002% 99.997% ( 570000, 860000 ] 1043 0.001% 99.999% ( 860000, 1200000 ] 471 0.001% 99.999% ( 1200000, 1900000 ] 275 0.000% 100.000% ( 1900000, 2900000 ] 143 0.000% 100.000% ( 2900000, 4300000 ] 60 0.000% 100.000% ( 4300000, 6500000 ] 27 0.000% 100.000% ( 6500000, 9800000 ] 7 0.000% 100.000% ( 9800000, 14000000 ] 1 0.000% 100.000% Gather stats latency (us): Count: 46 Average: 980387.5870 StdDev: 60911.18 Min: 879155 Median: 1033777.7778 Max: 1261431 Percentiles: P50: 1033777.78 P75: 1120666.67 P99: 1261431.00 P99.9: 1261431.00 P99.99: 1261431.00 ------------------------------------------------------ ( 860000, 1200000 ] 45 97.826% 97.826% #################### ( 1200000, 1900000 ] 1 2.174% 100.000% Most recent cache entry stats: Number of entries: 1295133 Total charge: 9.88 GB Average key size: 23.4982 Average charge: 8.00 KB Unique deleters: 3 ``` Reviewed By: mrambacher Differential Revision: D28295742 Pulled By: pdillinger fbshipit-source-id: bbc4a552f91ba0fe10e5cc025c42cef5a81f2b95
4 years ago
LRUHandle** ptr = &list_[hash >> (32 - length_bits_)];
while (*ptr != nullptr && ((*ptr)->hash != hash || key != (*ptr)->key())) {
ptr = &(*ptr)->next_hash;
}
return ptr;
}
void LRUHandleTable::Resize() {
New Cache API for gathering statistics (#8225) Summary: Adds a new Cache::ApplyToAllEntries API that we expect to use (in follow-up PRs) for efficiently gathering block cache statistics. Notable features vs. old ApplyToAllCacheEntries: * Includes key and deleter (in addition to value and charge). We could have passed in a Handle but then more virtual function calls would be needed to get the "fields" of each entry. We expect to use the 'deleter' to identify the origin of entries, perhaps even more. * Heavily tuned to minimize latency impact on operating cache. It does this by iterating over small sections of each cache shard while cycling through the shards. * Supports tuning roughly how many entries to operate on for each lock acquire and release, to control the impact on the latency of other operations without excessive lock acquire & release. The right balance can depend on the cost of the callback. Good default seems to be around 256. * There should be no need to disable thread safety. (I would expect uncontended locks to be sufficiently fast.) I have enhanced cache_bench to validate this approach: * Reports a histogram of ns per operation, so we can look at the ditribution of times, not just throughput (average). * Can add a thread for simulated "gather stats" which calls ApplyToAllEntries at a specified interval. We also generate a histogram of time to run ApplyToAllEntries. To make the iteration over some entries of each shard work as cleanly as possible, even with resize between next set of entries, I have re-arranged which hash bits are used for sharding and which for indexing within a shard. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8225 Test Plan: A couple of unit tests are added, but primary validation is manual, as the primary risk is to performance. The primary validation is using cache_bench to ensure that neither the minor hashing changes nor the simulated stats gathering significantly impact QPS or latency distribution. Note that adding op latency histogram seriously impacts the benchmark QPS, so for a fair baseline, we need the cache_bench changes (except remove simulated stat gathering to make it compile). In short, we don't see any reproducible difference in ops/sec or op latency unless we are gathering stats nearly continuously. Test uses 10GB block cache with 8KB values to be somewhat realistic in the number of items to iterate over. Baseline typical output: ``` Complete in 92.017 s; Rough parallel ops/sec = 869401 Thread ops/sec = 54662 Operation latency (ns): Count: 80000000 Average: 11223.9494 StdDev: 29.61 Min: 0 Median: 7759.3973 Max: 9620500 Percentiles: P50: 7759.40 P75: 14190.73 P99: 46922.75 P99.9: 77509.84 P99.99: 217030.58 ------------------------------------------------------ [ 0, 1 ] 68 0.000% 0.000% ( 2900, 4400 ] 89 0.000% 0.000% ( 4400, 6600 ] 33630240 42.038% 42.038% ######## ( 6600, 9900 ] 18129842 22.662% 64.700% ##### ( 9900, 14000 ] 7877533 9.847% 74.547% ## ( 14000, 22000 ] 15193238 18.992% 93.539% #### ( 22000, 33000 ] 3037061 3.796% 97.335% # ( 33000, 50000 ] 1626316 2.033% 99.368% ( 50000, 75000 ] 421532 0.527% 99.895% ( 75000, 110000 ] 56910 0.071% 99.966% ( 110000, 170000 ] 16134 0.020% 99.986% ( 170000, 250000 ] 5166 0.006% 99.993% ( 250000, 380000 ] 3017 0.004% 99.996% ( 380000, 570000 ] 1337 0.002% 99.998% ( 570000, 860000 ] 805 0.001% 99.999% ( 860000, 1200000 ] 319 0.000% 100.000% ( 1200000, 1900000 ] 231 0.000% 100.000% ( 1900000, 2900000 ] 100 0.000% 100.000% ( 2900000, 4300000 ] 39 0.000% 100.000% ( 4300000, 6500000 ] 16 0.000% 100.000% ( 6500000, 9800000 ] 7 0.000% 100.000% ``` New, gather_stats=false. Median thread ops/sec of 5 runs: ``` Complete in 92.030 s; Rough parallel ops/sec = 869285 Thread ops/sec = 54458 Operation latency (ns): Count: 80000000 Average: 11298.1027 StdDev: 42.18 Min: 0 Median: 7722.0822 Max: 6398720 Percentiles: P50: 7722.08 P75: 14294.68 P99: 47522.95 P99.9: 85292.16 P99.99: 228077.78 ------------------------------------------------------ [ 0, 1 ] 109 0.000% 0.000% ( 2900, 4400 ] 793 0.001% 0.001% ( 4400, 6600 ] 34054563 42.568% 42.569% ######### ( 6600, 9900 ] 17482646 21.853% 64.423% #### ( 9900, 14000 ] 7908180 9.885% 74.308% ## ( 14000, 22000 ] 15032072 18.790% 93.098% #### ( 22000, 33000 ] 3237834 4.047% 97.145% # ( 33000, 50000 ] 1736882 2.171% 99.316% ( 50000, 75000 ] 446851 0.559% 99.875% ( 75000, 110000 ] 68251 0.085% 99.960% ( 110000, 170000 ] 18592 0.023% 99.983% ( 170000, 250000 ] 7200 0.009% 99.992% ( 250000, 380000 ] 3334 0.004% 99.997% ( 380000, 570000 ] 1393 0.002% 99.998% ( 570000, 860000 ] 700 0.001% 99.999% ( 860000, 1200000 ] 293 0.000% 100.000% ( 1200000, 1900000 ] 196 0.000% 100.000% ( 1900000, 2900000 ] 69 0.000% 100.000% ( 2900000, 4300000 ] 32 0.000% 100.000% ( 4300000, 6500000 ] 10 0.000% 100.000% ``` New, gather_stats=true, 1 second delay between scans. Scans take about 1 second here so it's spending about 50% time scanning. Still the effect on ops/sec and latency seems to be in the noise. Median thread ops/sec of 5 runs: ``` Complete in 91.890 s; Rough parallel ops/sec = 870608 Thread ops/sec = 54551 Operation latency (ns): Count: 80000000 Average: 11311.2629 StdDev: 45.28 Min: 0 Median: 7686.5458 Max: 10018340 Percentiles: P50: 7686.55 P75: 14481.95 P99: 47232.60 P99.9: 79230.18 P99.99: 232998.86 ------------------------------------------------------ [ 0, 1 ] 71 0.000% 0.000% ( 2900, 4400 ] 291 0.000% 0.000% ( 4400, 6600 ] 34492060 43.115% 43.116% ######### ( 6600, 9900 ] 16727328 20.909% 64.025% #### ( 9900, 14000 ] 7845828 9.807% 73.832% ## ( 14000, 22000 ] 15510654 19.388% 93.220% #### ( 22000, 33000 ] 3216533 4.021% 97.241% # ( 33000, 50000 ] 1680859 2.101% 99.342% ( 50000, 75000 ] 439059 0.549% 99.891% ( 75000, 110000 ] 60540 0.076% 99.967% ( 110000, 170000 ] 14649 0.018% 99.985% ( 170000, 250000 ] 5242 0.007% 99.991% ( 250000, 380000 ] 3260 0.004% 99.995% ( 380000, 570000 ] 1599 0.002% 99.997% ( 570000, 860000 ] 1043 0.001% 99.999% ( 860000, 1200000 ] 471 0.001% 99.999% ( 1200000, 1900000 ] 275 0.000% 100.000% ( 1900000, 2900000 ] 143 0.000% 100.000% ( 2900000, 4300000 ] 60 0.000% 100.000% ( 4300000, 6500000 ] 27 0.000% 100.000% ( 6500000, 9800000 ] 7 0.000% 100.000% ( 9800000, 14000000 ] 1 0.000% 100.000% Gather stats latency (us): Count: 46 Average: 980387.5870 StdDev: 60911.18 Min: 879155 Median: 1033777.7778 Max: 1261431 Percentiles: P50: 1033777.78 P75: 1120666.67 P99: 1261431.00 P99.9: 1261431.00 P99.99: 1261431.00 ------------------------------------------------------ ( 860000, 1200000 ] 45 97.826% 97.826% #################### ( 1200000, 1900000 ] 1 2.174% 100.000% Most recent cache entry stats: Number of entries: 1295133 Total charge: 9.88 GB Average key size: 23.4982 Average charge: 8.00 KB Unique deleters: 3 ``` Reviewed By: mrambacher Differential Revision: D28295742 Pulled By: pdillinger fbshipit-source-id: bbc4a552f91ba0fe10e5cc025c42cef5a81f2b95
4 years ago
if (length_bits_ >= max_length_bits_) {
// Due to reaching limit of hash information, if we made the table bigger,
// we would allocate more addresses but only the same number would be used.
New Cache API for gathering statistics (#8225) Summary: Adds a new Cache::ApplyToAllEntries API that we expect to use (in follow-up PRs) for efficiently gathering block cache statistics. Notable features vs. old ApplyToAllCacheEntries: * Includes key and deleter (in addition to value and charge). We could have passed in a Handle but then more virtual function calls would be needed to get the "fields" of each entry. We expect to use the 'deleter' to identify the origin of entries, perhaps even more. * Heavily tuned to minimize latency impact on operating cache. It does this by iterating over small sections of each cache shard while cycling through the shards. * Supports tuning roughly how many entries to operate on for each lock acquire and release, to control the impact on the latency of other operations without excessive lock acquire & release. The right balance can depend on the cost of the callback. Good default seems to be around 256. * There should be no need to disable thread safety. (I would expect uncontended locks to be sufficiently fast.) I have enhanced cache_bench to validate this approach: * Reports a histogram of ns per operation, so we can look at the ditribution of times, not just throughput (average). * Can add a thread for simulated "gather stats" which calls ApplyToAllEntries at a specified interval. We also generate a histogram of time to run ApplyToAllEntries. To make the iteration over some entries of each shard work as cleanly as possible, even with resize between next set of entries, I have re-arranged which hash bits are used for sharding and which for indexing within a shard. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8225 Test Plan: A couple of unit tests are added, but primary validation is manual, as the primary risk is to performance. The primary validation is using cache_bench to ensure that neither the minor hashing changes nor the simulated stats gathering significantly impact QPS or latency distribution. Note that adding op latency histogram seriously impacts the benchmark QPS, so for a fair baseline, we need the cache_bench changes (except remove simulated stat gathering to make it compile). In short, we don't see any reproducible difference in ops/sec or op latency unless we are gathering stats nearly continuously. Test uses 10GB block cache with 8KB values to be somewhat realistic in the number of items to iterate over. Baseline typical output: ``` Complete in 92.017 s; Rough parallel ops/sec = 869401 Thread ops/sec = 54662 Operation latency (ns): Count: 80000000 Average: 11223.9494 StdDev: 29.61 Min: 0 Median: 7759.3973 Max: 9620500 Percentiles: P50: 7759.40 P75: 14190.73 P99: 46922.75 P99.9: 77509.84 P99.99: 217030.58 ------------------------------------------------------ [ 0, 1 ] 68 0.000% 0.000% ( 2900, 4400 ] 89 0.000% 0.000% ( 4400, 6600 ] 33630240 42.038% 42.038% ######## ( 6600, 9900 ] 18129842 22.662% 64.700% ##### ( 9900, 14000 ] 7877533 9.847% 74.547% ## ( 14000, 22000 ] 15193238 18.992% 93.539% #### ( 22000, 33000 ] 3037061 3.796% 97.335% # ( 33000, 50000 ] 1626316 2.033% 99.368% ( 50000, 75000 ] 421532 0.527% 99.895% ( 75000, 110000 ] 56910 0.071% 99.966% ( 110000, 170000 ] 16134 0.020% 99.986% ( 170000, 250000 ] 5166 0.006% 99.993% ( 250000, 380000 ] 3017 0.004% 99.996% ( 380000, 570000 ] 1337 0.002% 99.998% ( 570000, 860000 ] 805 0.001% 99.999% ( 860000, 1200000 ] 319 0.000% 100.000% ( 1200000, 1900000 ] 231 0.000% 100.000% ( 1900000, 2900000 ] 100 0.000% 100.000% ( 2900000, 4300000 ] 39 0.000% 100.000% ( 4300000, 6500000 ] 16 0.000% 100.000% ( 6500000, 9800000 ] 7 0.000% 100.000% ``` New, gather_stats=false. Median thread ops/sec of 5 runs: ``` Complete in 92.030 s; Rough parallel ops/sec = 869285 Thread ops/sec = 54458 Operation latency (ns): Count: 80000000 Average: 11298.1027 StdDev: 42.18 Min: 0 Median: 7722.0822 Max: 6398720 Percentiles: P50: 7722.08 P75: 14294.68 P99: 47522.95 P99.9: 85292.16 P99.99: 228077.78 ------------------------------------------------------ [ 0, 1 ] 109 0.000% 0.000% ( 2900, 4400 ] 793 0.001% 0.001% ( 4400, 6600 ] 34054563 42.568% 42.569% ######### ( 6600, 9900 ] 17482646 21.853% 64.423% #### ( 9900, 14000 ] 7908180 9.885% 74.308% ## ( 14000, 22000 ] 15032072 18.790% 93.098% #### ( 22000, 33000 ] 3237834 4.047% 97.145% # ( 33000, 50000 ] 1736882 2.171% 99.316% ( 50000, 75000 ] 446851 0.559% 99.875% ( 75000, 110000 ] 68251 0.085% 99.960% ( 110000, 170000 ] 18592 0.023% 99.983% ( 170000, 250000 ] 7200 0.009% 99.992% ( 250000, 380000 ] 3334 0.004% 99.997% ( 380000, 570000 ] 1393 0.002% 99.998% ( 570000, 860000 ] 700 0.001% 99.999% ( 860000, 1200000 ] 293 0.000% 100.000% ( 1200000, 1900000 ] 196 0.000% 100.000% ( 1900000, 2900000 ] 69 0.000% 100.000% ( 2900000, 4300000 ] 32 0.000% 100.000% ( 4300000, 6500000 ] 10 0.000% 100.000% ``` New, gather_stats=true, 1 second delay between scans. Scans take about 1 second here so it's spending about 50% time scanning. Still the effect on ops/sec and latency seems to be in the noise. Median thread ops/sec of 5 runs: ``` Complete in 91.890 s; Rough parallel ops/sec = 870608 Thread ops/sec = 54551 Operation latency (ns): Count: 80000000 Average: 11311.2629 StdDev: 45.28 Min: 0 Median: 7686.5458 Max: 10018340 Percentiles: P50: 7686.55 P75: 14481.95 P99: 47232.60 P99.9: 79230.18 P99.99: 232998.86 ------------------------------------------------------ [ 0, 1 ] 71 0.000% 0.000% ( 2900, 4400 ] 291 0.000% 0.000% ( 4400, 6600 ] 34492060 43.115% 43.116% ######### ( 6600, 9900 ] 16727328 20.909% 64.025% #### ( 9900, 14000 ] 7845828 9.807% 73.832% ## ( 14000, 22000 ] 15510654 19.388% 93.220% #### ( 22000, 33000 ] 3216533 4.021% 97.241% # ( 33000, 50000 ] 1680859 2.101% 99.342% ( 50000, 75000 ] 439059 0.549% 99.891% ( 75000, 110000 ] 60540 0.076% 99.967% ( 110000, 170000 ] 14649 0.018% 99.985% ( 170000, 250000 ] 5242 0.007% 99.991% ( 250000, 380000 ] 3260 0.004% 99.995% ( 380000, 570000 ] 1599 0.002% 99.997% ( 570000, 860000 ] 1043 0.001% 99.999% ( 860000, 1200000 ] 471 0.001% 99.999% ( 1200000, 1900000 ] 275 0.000% 100.000% ( 1900000, 2900000 ] 143 0.000% 100.000% ( 2900000, 4300000 ] 60 0.000% 100.000% ( 4300000, 6500000 ] 27 0.000% 100.000% ( 6500000, 9800000 ] 7 0.000% 100.000% ( 9800000, 14000000 ] 1 0.000% 100.000% Gather stats latency (us): Count: 46 Average: 980387.5870 StdDev: 60911.18 Min: 879155 Median: 1033777.7778 Max: 1261431 Percentiles: P50: 1033777.78 P75: 1120666.67 P99: 1261431.00 P99.9: 1261431.00 P99.99: 1261431.00 ------------------------------------------------------ ( 860000, 1200000 ] 45 97.826% 97.826% #################### ( 1200000, 1900000 ] 1 2.174% 100.000% Most recent cache entry stats: Number of entries: 1295133 Total charge: 9.88 GB Average key size: 23.4982 Average charge: 8.00 KB Unique deleters: 3 ``` Reviewed By: mrambacher Differential Revision: D28295742 Pulled By: pdillinger fbshipit-source-id: bbc4a552f91ba0fe10e5cc025c42cef5a81f2b95
4 years ago
return;
}
New Cache API for gathering statistics (#8225) Summary: Adds a new Cache::ApplyToAllEntries API that we expect to use (in follow-up PRs) for efficiently gathering block cache statistics. Notable features vs. old ApplyToAllCacheEntries: * Includes key and deleter (in addition to value and charge). We could have passed in a Handle but then more virtual function calls would be needed to get the "fields" of each entry. We expect to use the 'deleter' to identify the origin of entries, perhaps even more. * Heavily tuned to minimize latency impact on operating cache. It does this by iterating over small sections of each cache shard while cycling through the shards. * Supports tuning roughly how many entries to operate on for each lock acquire and release, to control the impact on the latency of other operations without excessive lock acquire & release. The right balance can depend on the cost of the callback. Good default seems to be around 256. * There should be no need to disable thread safety. (I would expect uncontended locks to be sufficiently fast.) I have enhanced cache_bench to validate this approach: * Reports a histogram of ns per operation, so we can look at the ditribution of times, not just throughput (average). * Can add a thread for simulated "gather stats" which calls ApplyToAllEntries at a specified interval. We also generate a histogram of time to run ApplyToAllEntries. To make the iteration over some entries of each shard work as cleanly as possible, even with resize between next set of entries, I have re-arranged which hash bits are used for sharding and which for indexing within a shard. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8225 Test Plan: A couple of unit tests are added, but primary validation is manual, as the primary risk is to performance. The primary validation is using cache_bench to ensure that neither the minor hashing changes nor the simulated stats gathering significantly impact QPS or latency distribution. Note that adding op latency histogram seriously impacts the benchmark QPS, so for a fair baseline, we need the cache_bench changes (except remove simulated stat gathering to make it compile). In short, we don't see any reproducible difference in ops/sec or op latency unless we are gathering stats nearly continuously. Test uses 10GB block cache with 8KB values to be somewhat realistic in the number of items to iterate over. Baseline typical output: ``` Complete in 92.017 s; Rough parallel ops/sec = 869401 Thread ops/sec = 54662 Operation latency (ns): Count: 80000000 Average: 11223.9494 StdDev: 29.61 Min: 0 Median: 7759.3973 Max: 9620500 Percentiles: P50: 7759.40 P75: 14190.73 P99: 46922.75 P99.9: 77509.84 P99.99: 217030.58 ------------------------------------------------------ [ 0, 1 ] 68 0.000% 0.000% ( 2900, 4400 ] 89 0.000% 0.000% ( 4400, 6600 ] 33630240 42.038% 42.038% ######## ( 6600, 9900 ] 18129842 22.662% 64.700% ##### ( 9900, 14000 ] 7877533 9.847% 74.547% ## ( 14000, 22000 ] 15193238 18.992% 93.539% #### ( 22000, 33000 ] 3037061 3.796% 97.335% # ( 33000, 50000 ] 1626316 2.033% 99.368% ( 50000, 75000 ] 421532 0.527% 99.895% ( 75000, 110000 ] 56910 0.071% 99.966% ( 110000, 170000 ] 16134 0.020% 99.986% ( 170000, 250000 ] 5166 0.006% 99.993% ( 250000, 380000 ] 3017 0.004% 99.996% ( 380000, 570000 ] 1337 0.002% 99.998% ( 570000, 860000 ] 805 0.001% 99.999% ( 860000, 1200000 ] 319 0.000% 100.000% ( 1200000, 1900000 ] 231 0.000% 100.000% ( 1900000, 2900000 ] 100 0.000% 100.000% ( 2900000, 4300000 ] 39 0.000% 100.000% ( 4300000, 6500000 ] 16 0.000% 100.000% ( 6500000, 9800000 ] 7 0.000% 100.000% ``` New, gather_stats=false. Median thread ops/sec of 5 runs: ``` Complete in 92.030 s; Rough parallel ops/sec = 869285 Thread ops/sec = 54458 Operation latency (ns): Count: 80000000 Average: 11298.1027 StdDev: 42.18 Min: 0 Median: 7722.0822 Max: 6398720 Percentiles: P50: 7722.08 P75: 14294.68 P99: 47522.95 P99.9: 85292.16 P99.99: 228077.78 ------------------------------------------------------ [ 0, 1 ] 109 0.000% 0.000% ( 2900, 4400 ] 793 0.001% 0.001% ( 4400, 6600 ] 34054563 42.568% 42.569% ######### ( 6600, 9900 ] 17482646 21.853% 64.423% #### ( 9900, 14000 ] 7908180 9.885% 74.308% ## ( 14000, 22000 ] 15032072 18.790% 93.098% #### ( 22000, 33000 ] 3237834 4.047% 97.145% # ( 33000, 50000 ] 1736882 2.171% 99.316% ( 50000, 75000 ] 446851 0.559% 99.875% ( 75000, 110000 ] 68251 0.085% 99.960% ( 110000, 170000 ] 18592 0.023% 99.983% ( 170000, 250000 ] 7200 0.009% 99.992% ( 250000, 380000 ] 3334 0.004% 99.997% ( 380000, 570000 ] 1393 0.002% 99.998% ( 570000, 860000 ] 700 0.001% 99.999% ( 860000, 1200000 ] 293 0.000% 100.000% ( 1200000, 1900000 ] 196 0.000% 100.000% ( 1900000, 2900000 ] 69 0.000% 100.000% ( 2900000, 4300000 ] 32 0.000% 100.000% ( 4300000, 6500000 ] 10 0.000% 100.000% ``` New, gather_stats=true, 1 second delay between scans. Scans take about 1 second here so it's spending about 50% time scanning. Still the effect on ops/sec and latency seems to be in the noise. Median thread ops/sec of 5 runs: ``` Complete in 91.890 s; Rough parallel ops/sec = 870608 Thread ops/sec = 54551 Operation latency (ns): Count: 80000000 Average: 11311.2629 StdDev: 45.28 Min: 0 Median: 7686.5458 Max: 10018340 Percentiles: P50: 7686.55 P75: 14481.95 P99: 47232.60 P99.9: 79230.18 P99.99: 232998.86 ------------------------------------------------------ [ 0, 1 ] 71 0.000% 0.000% ( 2900, 4400 ] 291 0.000% 0.000% ( 4400, 6600 ] 34492060 43.115% 43.116% ######### ( 6600, 9900 ] 16727328 20.909% 64.025% #### ( 9900, 14000 ] 7845828 9.807% 73.832% ## ( 14000, 22000 ] 15510654 19.388% 93.220% #### ( 22000, 33000 ] 3216533 4.021% 97.241% # ( 33000, 50000 ] 1680859 2.101% 99.342% ( 50000, 75000 ] 439059 0.549% 99.891% ( 75000, 110000 ] 60540 0.076% 99.967% ( 110000, 170000 ] 14649 0.018% 99.985% ( 170000, 250000 ] 5242 0.007% 99.991% ( 250000, 380000 ] 3260 0.004% 99.995% ( 380000, 570000 ] 1599 0.002% 99.997% ( 570000, 860000 ] 1043 0.001% 99.999% ( 860000, 1200000 ] 471 0.001% 99.999% ( 1200000, 1900000 ] 275 0.000% 100.000% ( 1900000, 2900000 ] 143 0.000% 100.000% ( 2900000, 4300000 ] 60 0.000% 100.000% ( 4300000, 6500000 ] 27 0.000% 100.000% ( 6500000, 9800000 ] 7 0.000% 100.000% ( 9800000, 14000000 ] 1 0.000% 100.000% Gather stats latency (us): Count: 46 Average: 980387.5870 StdDev: 60911.18 Min: 879155 Median: 1033777.7778 Max: 1261431 Percentiles: P50: 1033777.78 P75: 1120666.67 P99: 1261431.00 P99.9: 1261431.00 P99.99: 1261431.00 ------------------------------------------------------ ( 860000, 1200000 ] 45 97.826% 97.826% #################### ( 1200000, 1900000 ] 1 2.174% 100.000% Most recent cache entry stats: Number of entries: 1295133 Total charge: 9.88 GB Average key size: 23.4982 Average charge: 8.00 KB Unique deleters: 3 ``` Reviewed By: mrambacher Differential Revision: D28295742 Pulled By: pdillinger fbshipit-source-id: bbc4a552f91ba0fe10e5cc025c42cef5a81f2b95
4 years ago
if (length_bits_ >= 31) {
// Avoid undefined behavior shifting uint32_t by 32.
New Cache API for gathering statistics (#8225) Summary: Adds a new Cache::ApplyToAllEntries API that we expect to use (in follow-up PRs) for efficiently gathering block cache statistics. Notable features vs. old ApplyToAllCacheEntries: * Includes key and deleter (in addition to value and charge). We could have passed in a Handle but then more virtual function calls would be needed to get the "fields" of each entry. We expect to use the 'deleter' to identify the origin of entries, perhaps even more. * Heavily tuned to minimize latency impact on operating cache. It does this by iterating over small sections of each cache shard while cycling through the shards. * Supports tuning roughly how many entries to operate on for each lock acquire and release, to control the impact on the latency of other operations without excessive lock acquire & release. The right balance can depend on the cost of the callback. Good default seems to be around 256. * There should be no need to disable thread safety. (I would expect uncontended locks to be sufficiently fast.) I have enhanced cache_bench to validate this approach: * Reports a histogram of ns per operation, so we can look at the ditribution of times, not just throughput (average). * Can add a thread for simulated "gather stats" which calls ApplyToAllEntries at a specified interval. We also generate a histogram of time to run ApplyToAllEntries. To make the iteration over some entries of each shard work as cleanly as possible, even with resize between next set of entries, I have re-arranged which hash bits are used for sharding and which for indexing within a shard. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8225 Test Plan: A couple of unit tests are added, but primary validation is manual, as the primary risk is to performance. The primary validation is using cache_bench to ensure that neither the minor hashing changes nor the simulated stats gathering significantly impact QPS or latency distribution. Note that adding op latency histogram seriously impacts the benchmark QPS, so for a fair baseline, we need the cache_bench changes (except remove simulated stat gathering to make it compile). In short, we don't see any reproducible difference in ops/sec or op latency unless we are gathering stats nearly continuously. Test uses 10GB block cache with 8KB values to be somewhat realistic in the number of items to iterate over. Baseline typical output: ``` Complete in 92.017 s; Rough parallel ops/sec = 869401 Thread ops/sec = 54662 Operation latency (ns): Count: 80000000 Average: 11223.9494 StdDev: 29.61 Min: 0 Median: 7759.3973 Max: 9620500 Percentiles: P50: 7759.40 P75: 14190.73 P99: 46922.75 P99.9: 77509.84 P99.99: 217030.58 ------------------------------------------------------ [ 0, 1 ] 68 0.000% 0.000% ( 2900, 4400 ] 89 0.000% 0.000% ( 4400, 6600 ] 33630240 42.038% 42.038% ######## ( 6600, 9900 ] 18129842 22.662% 64.700% ##### ( 9900, 14000 ] 7877533 9.847% 74.547% ## ( 14000, 22000 ] 15193238 18.992% 93.539% #### ( 22000, 33000 ] 3037061 3.796% 97.335% # ( 33000, 50000 ] 1626316 2.033% 99.368% ( 50000, 75000 ] 421532 0.527% 99.895% ( 75000, 110000 ] 56910 0.071% 99.966% ( 110000, 170000 ] 16134 0.020% 99.986% ( 170000, 250000 ] 5166 0.006% 99.993% ( 250000, 380000 ] 3017 0.004% 99.996% ( 380000, 570000 ] 1337 0.002% 99.998% ( 570000, 860000 ] 805 0.001% 99.999% ( 860000, 1200000 ] 319 0.000% 100.000% ( 1200000, 1900000 ] 231 0.000% 100.000% ( 1900000, 2900000 ] 100 0.000% 100.000% ( 2900000, 4300000 ] 39 0.000% 100.000% ( 4300000, 6500000 ] 16 0.000% 100.000% ( 6500000, 9800000 ] 7 0.000% 100.000% ``` New, gather_stats=false. Median thread ops/sec of 5 runs: ``` Complete in 92.030 s; Rough parallel ops/sec = 869285 Thread ops/sec = 54458 Operation latency (ns): Count: 80000000 Average: 11298.1027 StdDev: 42.18 Min: 0 Median: 7722.0822 Max: 6398720 Percentiles: P50: 7722.08 P75: 14294.68 P99: 47522.95 P99.9: 85292.16 P99.99: 228077.78 ------------------------------------------------------ [ 0, 1 ] 109 0.000% 0.000% ( 2900, 4400 ] 793 0.001% 0.001% ( 4400, 6600 ] 34054563 42.568% 42.569% ######### ( 6600, 9900 ] 17482646 21.853% 64.423% #### ( 9900, 14000 ] 7908180 9.885% 74.308% ## ( 14000, 22000 ] 15032072 18.790% 93.098% #### ( 22000, 33000 ] 3237834 4.047% 97.145% # ( 33000, 50000 ] 1736882 2.171% 99.316% ( 50000, 75000 ] 446851 0.559% 99.875% ( 75000, 110000 ] 68251 0.085% 99.960% ( 110000, 170000 ] 18592 0.023% 99.983% ( 170000, 250000 ] 7200 0.009% 99.992% ( 250000, 380000 ] 3334 0.004% 99.997% ( 380000, 570000 ] 1393 0.002% 99.998% ( 570000, 860000 ] 700 0.001% 99.999% ( 860000, 1200000 ] 293 0.000% 100.000% ( 1200000, 1900000 ] 196 0.000% 100.000% ( 1900000, 2900000 ] 69 0.000% 100.000% ( 2900000, 4300000 ] 32 0.000% 100.000% ( 4300000, 6500000 ] 10 0.000% 100.000% ``` New, gather_stats=true, 1 second delay between scans. Scans take about 1 second here so it's spending about 50% time scanning. Still the effect on ops/sec and latency seems to be in the noise. Median thread ops/sec of 5 runs: ``` Complete in 91.890 s; Rough parallel ops/sec = 870608 Thread ops/sec = 54551 Operation latency (ns): Count: 80000000 Average: 11311.2629 StdDev: 45.28 Min: 0 Median: 7686.5458 Max: 10018340 Percentiles: P50: 7686.55 P75: 14481.95 P99: 47232.60 P99.9: 79230.18 P99.99: 232998.86 ------------------------------------------------------ [ 0, 1 ] 71 0.000% 0.000% ( 2900, 4400 ] 291 0.000% 0.000% ( 4400, 6600 ] 34492060 43.115% 43.116% ######### ( 6600, 9900 ] 16727328 20.909% 64.025% #### ( 9900, 14000 ] 7845828 9.807% 73.832% ## ( 14000, 22000 ] 15510654 19.388% 93.220% #### ( 22000, 33000 ] 3216533 4.021% 97.241% # ( 33000, 50000 ] 1680859 2.101% 99.342% ( 50000, 75000 ] 439059 0.549% 99.891% ( 75000, 110000 ] 60540 0.076% 99.967% ( 110000, 170000 ] 14649 0.018% 99.985% ( 170000, 250000 ] 5242 0.007% 99.991% ( 250000, 380000 ] 3260 0.004% 99.995% ( 380000, 570000 ] 1599 0.002% 99.997% ( 570000, 860000 ] 1043 0.001% 99.999% ( 860000, 1200000 ] 471 0.001% 99.999% ( 1200000, 1900000 ] 275 0.000% 100.000% ( 1900000, 2900000 ] 143 0.000% 100.000% ( 2900000, 4300000 ] 60 0.000% 100.000% ( 4300000, 6500000 ] 27 0.000% 100.000% ( 6500000, 9800000 ] 7 0.000% 100.000% ( 9800000, 14000000 ] 1 0.000% 100.000% Gather stats latency (us): Count: 46 Average: 980387.5870 StdDev: 60911.18 Min: 879155 Median: 1033777.7778 Max: 1261431 Percentiles: P50: 1033777.78 P75: 1120666.67 P99: 1261431.00 P99.9: 1261431.00 P99.99: 1261431.00 ------------------------------------------------------ ( 860000, 1200000 ] 45 97.826% 97.826% #################### ( 1200000, 1900000 ] 1 2.174% 100.000% Most recent cache entry stats: Number of entries: 1295133 Total charge: 9.88 GB Average key size: 23.4982 Average charge: 8.00 KB Unique deleters: 3 ``` Reviewed By: mrambacher Differential Revision: D28295742 Pulled By: pdillinger fbshipit-source-id: bbc4a552f91ba0fe10e5cc025c42cef5a81f2b95
4 years ago
return;
}
uint32_t old_length = uint32_t{1} << length_bits_;
int new_length_bits = length_bits_ + 1;
std::unique_ptr<LRUHandle* []> new_list {
new LRUHandle* [size_t{1} << new_length_bits] {}
};
uint32_t count = 0;
New Cache API for gathering statistics (#8225) Summary: Adds a new Cache::ApplyToAllEntries API that we expect to use (in follow-up PRs) for efficiently gathering block cache statistics. Notable features vs. old ApplyToAllCacheEntries: * Includes key and deleter (in addition to value and charge). We could have passed in a Handle but then more virtual function calls would be needed to get the "fields" of each entry. We expect to use the 'deleter' to identify the origin of entries, perhaps even more. * Heavily tuned to minimize latency impact on operating cache. It does this by iterating over small sections of each cache shard while cycling through the shards. * Supports tuning roughly how many entries to operate on for each lock acquire and release, to control the impact on the latency of other operations without excessive lock acquire & release. The right balance can depend on the cost of the callback. Good default seems to be around 256. * There should be no need to disable thread safety. (I would expect uncontended locks to be sufficiently fast.) I have enhanced cache_bench to validate this approach: * Reports a histogram of ns per operation, so we can look at the ditribution of times, not just throughput (average). * Can add a thread for simulated "gather stats" which calls ApplyToAllEntries at a specified interval. We also generate a histogram of time to run ApplyToAllEntries. To make the iteration over some entries of each shard work as cleanly as possible, even with resize between next set of entries, I have re-arranged which hash bits are used for sharding and which for indexing within a shard. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8225 Test Plan: A couple of unit tests are added, but primary validation is manual, as the primary risk is to performance. The primary validation is using cache_bench to ensure that neither the minor hashing changes nor the simulated stats gathering significantly impact QPS or latency distribution. Note that adding op latency histogram seriously impacts the benchmark QPS, so for a fair baseline, we need the cache_bench changes (except remove simulated stat gathering to make it compile). In short, we don't see any reproducible difference in ops/sec or op latency unless we are gathering stats nearly continuously. Test uses 10GB block cache with 8KB values to be somewhat realistic in the number of items to iterate over. Baseline typical output: ``` Complete in 92.017 s; Rough parallel ops/sec = 869401 Thread ops/sec = 54662 Operation latency (ns): Count: 80000000 Average: 11223.9494 StdDev: 29.61 Min: 0 Median: 7759.3973 Max: 9620500 Percentiles: P50: 7759.40 P75: 14190.73 P99: 46922.75 P99.9: 77509.84 P99.99: 217030.58 ------------------------------------------------------ [ 0, 1 ] 68 0.000% 0.000% ( 2900, 4400 ] 89 0.000% 0.000% ( 4400, 6600 ] 33630240 42.038% 42.038% ######## ( 6600, 9900 ] 18129842 22.662% 64.700% ##### ( 9900, 14000 ] 7877533 9.847% 74.547% ## ( 14000, 22000 ] 15193238 18.992% 93.539% #### ( 22000, 33000 ] 3037061 3.796% 97.335% # ( 33000, 50000 ] 1626316 2.033% 99.368% ( 50000, 75000 ] 421532 0.527% 99.895% ( 75000, 110000 ] 56910 0.071% 99.966% ( 110000, 170000 ] 16134 0.020% 99.986% ( 170000, 250000 ] 5166 0.006% 99.993% ( 250000, 380000 ] 3017 0.004% 99.996% ( 380000, 570000 ] 1337 0.002% 99.998% ( 570000, 860000 ] 805 0.001% 99.999% ( 860000, 1200000 ] 319 0.000% 100.000% ( 1200000, 1900000 ] 231 0.000% 100.000% ( 1900000, 2900000 ] 100 0.000% 100.000% ( 2900000, 4300000 ] 39 0.000% 100.000% ( 4300000, 6500000 ] 16 0.000% 100.000% ( 6500000, 9800000 ] 7 0.000% 100.000% ``` New, gather_stats=false. Median thread ops/sec of 5 runs: ``` Complete in 92.030 s; Rough parallel ops/sec = 869285 Thread ops/sec = 54458 Operation latency (ns): Count: 80000000 Average: 11298.1027 StdDev: 42.18 Min: 0 Median: 7722.0822 Max: 6398720 Percentiles: P50: 7722.08 P75: 14294.68 P99: 47522.95 P99.9: 85292.16 P99.99: 228077.78 ------------------------------------------------------ [ 0, 1 ] 109 0.000% 0.000% ( 2900, 4400 ] 793 0.001% 0.001% ( 4400, 6600 ] 34054563 42.568% 42.569% ######### ( 6600, 9900 ] 17482646 21.853% 64.423% #### ( 9900, 14000 ] 7908180 9.885% 74.308% ## ( 14000, 22000 ] 15032072 18.790% 93.098% #### ( 22000, 33000 ] 3237834 4.047% 97.145% # ( 33000, 50000 ] 1736882 2.171% 99.316% ( 50000, 75000 ] 446851 0.559% 99.875% ( 75000, 110000 ] 68251 0.085% 99.960% ( 110000, 170000 ] 18592 0.023% 99.983% ( 170000, 250000 ] 7200 0.009% 99.992% ( 250000, 380000 ] 3334 0.004% 99.997% ( 380000, 570000 ] 1393 0.002% 99.998% ( 570000, 860000 ] 700 0.001% 99.999% ( 860000, 1200000 ] 293 0.000% 100.000% ( 1200000, 1900000 ] 196 0.000% 100.000% ( 1900000, 2900000 ] 69 0.000% 100.000% ( 2900000, 4300000 ] 32 0.000% 100.000% ( 4300000, 6500000 ] 10 0.000% 100.000% ``` New, gather_stats=true, 1 second delay between scans. Scans take about 1 second here so it's spending about 50% time scanning. Still the effect on ops/sec and latency seems to be in the noise. Median thread ops/sec of 5 runs: ``` Complete in 91.890 s; Rough parallel ops/sec = 870608 Thread ops/sec = 54551 Operation latency (ns): Count: 80000000 Average: 11311.2629 StdDev: 45.28 Min: 0 Median: 7686.5458 Max: 10018340 Percentiles: P50: 7686.55 P75: 14481.95 P99: 47232.60 P99.9: 79230.18 P99.99: 232998.86 ------------------------------------------------------ [ 0, 1 ] 71 0.000% 0.000% ( 2900, 4400 ] 291 0.000% 0.000% ( 4400, 6600 ] 34492060 43.115% 43.116% ######### ( 6600, 9900 ] 16727328 20.909% 64.025% #### ( 9900, 14000 ] 7845828 9.807% 73.832% ## ( 14000, 22000 ] 15510654 19.388% 93.220% #### ( 22000, 33000 ] 3216533 4.021% 97.241% # ( 33000, 50000 ] 1680859 2.101% 99.342% ( 50000, 75000 ] 439059 0.549% 99.891% ( 75000, 110000 ] 60540 0.076% 99.967% ( 110000, 170000 ] 14649 0.018% 99.985% ( 170000, 250000 ] 5242 0.007% 99.991% ( 250000, 380000 ] 3260 0.004% 99.995% ( 380000, 570000 ] 1599 0.002% 99.997% ( 570000, 860000 ] 1043 0.001% 99.999% ( 860000, 1200000 ] 471 0.001% 99.999% ( 1200000, 1900000 ] 275 0.000% 100.000% ( 1900000, 2900000 ] 143 0.000% 100.000% ( 2900000, 4300000 ] 60 0.000% 100.000% ( 4300000, 6500000 ] 27 0.000% 100.000% ( 6500000, 9800000 ] 7 0.000% 100.000% ( 9800000, 14000000 ] 1 0.000% 100.000% Gather stats latency (us): Count: 46 Average: 980387.5870 StdDev: 60911.18 Min: 879155 Median: 1033777.7778 Max: 1261431 Percentiles: P50: 1033777.78 P75: 1120666.67 P99: 1261431.00 P99.9: 1261431.00 P99.99: 1261431.00 ------------------------------------------------------ ( 860000, 1200000 ] 45 97.826% 97.826% #################### ( 1200000, 1900000 ] 1 2.174% 100.000% Most recent cache entry stats: Number of entries: 1295133 Total charge: 9.88 GB Average key size: 23.4982 Average charge: 8.00 KB Unique deleters: 3 ``` Reviewed By: mrambacher Differential Revision: D28295742 Pulled By: pdillinger fbshipit-source-id: bbc4a552f91ba0fe10e5cc025c42cef5a81f2b95
4 years ago
for (uint32_t i = 0; i < old_length; i++) {
LRUHandle* h = list_[i];
while (h != nullptr) {
LRUHandle* next = h->next_hash;
uint32_t hash = h->hash;
New Cache API for gathering statistics (#8225) Summary: Adds a new Cache::ApplyToAllEntries API that we expect to use (in follow-up PRs) for efficiently gathering block cache statistics. Notable features vs. old ApplyToAllCacheEntries: * Includes key and deleter (in addition to value and charge). We could have passed in a Handle but then more virtual function calls would be needed to get the "fields" of each entry. We expect to use the 'deleter' to identify the origin of entries, perhaps even more. * Heavily tuned to minimize latency impact on operating cache. It does this by iterating over small sections of each cache shard while cycling through the shards. * Supports tuning roughly how many entries to operate on for each lock acquire and release, to control the impact on the latency of other operations without excessive lock acquire & release. The right balance can depend on the cost of the callback. Good default seems to be around 256. * There should be no need to disable thread safety. (I would expect uncontended locks to be sufficiently fast.) I have enhanced cache_bench to validate this approach: * Reports a histogram of ns per operation, so we can look at the ditribution of times, not just throughput (average). * Can add a thread for simulated "gather stats" which calls ApplyToAllEntries at a specified interval. We also generate a histogram of time to run ApplyToAllEntries. To make the iteration over some entries of each shard work as cleanly as possible, even with resize between next set of entries, I have re-arranged which hash bits are used for sharding and which for indexing within a shard. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8225 Test Plan: A couple of unit tests are added, but primary validation is manual, as the primary risk is to performance. The primary validation is using cache_bench to ensure that neither the minor hashing changes nor the simulated stats gathering significantly impact QPS or latency distribution. Note that adding op latency histogram seriously impacts the benchmark QPS, so for a fair baseline, we need the cache_bench changes (except remove simulated stat gathering to make it compile). In short, we don't see any reproducible difference in ops/sec or op latency unless we are gathering stats nearly continuously. Test uses 10GB block cache with 8KB values to be somewhat realistic in the number of items to iterate over. Baseline typical output: ``` Complete in 92.017 s; Rough parallel ops/sec = 869401 Thread ops/sec = 54662 Operation latency (ns): Count: 80000000 Average: 11223.9494 StdDev: 29.61 Min: 0 Median: 7759.3973 Max: 9620500 Percentiles: P50: 7759.40 P75: 14190.73 P99: 46922.75 P99.9: 77509.84 P99.99: 217030.58 ------------------------------------------------------ [ 0, 1 ] 68 0.000% 0.000% ( 2900, 4400 ] 89 0.000% 0.000% ( 4400, 6600 ] 33630240 42.038% 42.038% ######## ( 6600, 9900 ] 18129842 22.662% 64.700% ##### ( 9900, 14000 ] 7877533 9.847% 74.547% ## ( 14000, 22000 ] 15193238 18.992% 93.539% #### ( 22000, 33000 ] 3037061 3.796% 97.335% # ( 33000, 50000 ] 1626316 2.033% 99.368% ( 50000, 75000 ] 421532 0.527% 99.895% ( 75000, 110000 ] 56910 0.071% 99.966% ( 110000, 170000 ] 16134 0.020% 99.986% ( 170000, 250000 ] 5166 0.006% 99.993% ( 250000, 380000 ] 3017 0.004% 99.996% ( 380000, 570000 ] 1337 0.002% 99.998% ( 570000, 860000 ] 805 0.001% 99.999% ( 860000, 1200000 ] 319 0.000% 100.000% ( 1200000, 1900000 ] 231 0.000% 100.000% ( 1900000, 2900000 ] 100 0.000% 100.000% ( 2900000, 4300000 ] 39 0.000% 100.000% ( 4300000, 6500000 ] 16 0.000% 100.000% ( 6500000, 9800000 ] 7 0.000% 100.000% ``` New, gather_stats=false. Median thread ops/sec of 5 runs: ``` Complete in 92.030 s; Rough parallel ops/sec = 869285 Thread ops/sec = 54458 Operation latency (ns): Count: 80000000 Average: 11298.1027 StdDev: 42.18 Min: 0 Median: 7722.0822 Max: 6398720 Percentiles: P50: 7722.08 P75: 14294.68 P99: 47522.95 P99.9: 85292.16 P99.99: 228077.78 ------------------------------------------------------ [ 0, 1 ] 109 0.000% 0.000% ( 2900, 4400 ] 793 0.001% 0.001% ( 4400, 6600 ] 34054563 42.568% 42.569% ######### ( 6600, 9900 ] 17482646 21.853% 64.423% #### ( 9900, 14000 ] 7908180 9.885% 74.308% ## ( 14000, 22000 ] 15032072 18.790% 93.098% #### ( 22000, 33000 ] 3237834 4.047% 97.145% # ( 33000, 50000 ] 1736882 2.171% 99.316% ( 50000, 75000 ] 446851 0.559% 99.875% ( 75000, 110000 ] 68251 0.085% 99.960% ( 110000, 170000 ] 18592 0.023% 99.983% ( 170000, 250000 ] 7200 0.009% 99.992% ( 250000, 380000 ] 3334 0.004% 99.997% ( 380000, 570000 ] 1393 0.002% 99.998% ( 570000, 860000 ] 700 0.001% 99.999% ( 860000, 1200000 ] 293 0.000% 100.000% ( 1200000, 1900000 ] 196 0.000% 100.000% ( 1900000, 2900000 ] 69 0.000% 100.000% ( 2900000, 4300000 ] 32 0.000% 100.000% ( 4300000, 6500000 ] 10 0.000% 100.000% ``` New, gather_stats=true, 1 second delay between scans. Scans take about 1 second here so it's spending about 50% time scanning. Still the effect on ops/sec and latency seems to be in the noise. Median thread ops/sec of 5 runs: ``` Complete in 91.890 s; Rough parallel ops/sec = 870608 Thread ops/sec = 54551 Operation latency (ns): Count: 80000000 Average: 11311.2629 StdDev: 45.28 Min: 0 Median: 7686.5458 Max: 10018340 Percentiles: P50: 7686.55 P75: 14481.95 P99: 47232.60 P99.9: 79230.18 P99.99: 232998.86 ------------------------------------------------------ [ 0, 1 ] 71 0.000% 0.000% ( 2900, 4400 ] 291 0.000% 0.000% ( 4400, 6600 ] 34492060 43.115% 43.116% ######### ( 6600, 9900 ] 16727328 20.909% 64.025% #### ( 9900, 14000 ] 7845828 9.807% 73.832% ## ( 14000, 22000 ] 15510654 19.388% 93.220% #### ( 22000, 33000 ] 3216533 4.021% 97.241% # ( 33000, 50000 ] 1680859 2.101% 99.342% ( 50000, 75000 ] 439059 0.549% 99.891% ( 75000, 110000 ] 60540 0.076% 99.967% ( 110000, 170000 ] 14649 0.018% 99.985% ( 170000, 250000 ] 5242 0.007% 99.991% ( 250000, 380000 ] 3260 0.004% 99.995% ( 380000, 570000 ] 1599 0.002% 99.997% ( 570000, 860000 ] 1043 0.001% 99.999% ( 860000, 1200000 ] 471 0.001% 99.999% ( 1200000, 1900000 ] 275 0.000% 100.000% ( 1900000, 2900000 ] 143 0.000% 100.000% ( 2900000, 4300000 ] 60 0.000% 100.000% ( 4300000, 6500000 ] 27 0.000% 100.000% ( 6500000, 9800000 ] 7 0.000% 100.000% ( 9800000, 14000000 ] 1 0.000% 100.000% Gather stats latency (us): Count: 46 Average: 980387.5870 StdDev: 60911.18 Min: 879155 Median: 1033777.7778 Max: 1261431 Percentiles: P50: 1033777.78 P75: 1120666.67 P99: 1261431.00 P99.9: 1261431.00 P99.99: 1261431.00 ------------------------------------------------------ ( 860000, 1200000 ] 45 97.826% 97.826% #################### ( 1200000, 1900000 ] 1 2.174% 100.000% Most recent cache entry stats: Number of entries: 1295133 Total charge: 9.88 GB Average key size: 23.4982 Average charge: 8.00 KB Unique deleters: 3 ``` Reviewed By: mrambacher Differential Revision: D28295742 Pulled By: pdillinger fbshipit-source-id: bbc4a552f91ba0fe10e5cc025c42cef5a81f2b95
4 years ago
LRUHandle** ptr = &new_list[hash >> (32 - new_length_bits)];
h->next_hash = *ptr;
*ptr = h;
h = next;
count++;
}
}
assert(elems_ == count);
New Cache API for gathering statistics (#8225) Summary: Adds a new Cache::ApplyToAllEntries API that we expect to use (in follow-up PRs) for efficiently gathering block cache statistics. Notable features vs. old ApplyToAllCacheEntries: * Includes key and deleter (in addition to value and charge). We could have passed in a Handle but then more virtual function calls would be needed to get the "fields" of each entry. We expect to use the 'deleter' to identify the origin of entries, perhaps even more. * Heavily tuned to minimize latency impact on operating cache. It does this by iterating over small sections of each cache shard while cycling through the shards. * Supports tuning roughly how many entries to operate on for each lock acquire and release, to control the impact on the latency of other operations without excessive lock acquire & release. The right balance can depend on the cost of the callback. Good default seems to be around 256. * There should be no need to disable thread safety. (I would expect uncontended locks to be sufficiently fast.) I have enhanced cache_bench to validate this approach: * Reports a histogram of ns per operation, so we can look at the ditribution of times, not just throughput (average). * Can add a thread for simulated "gather stats" which calls ApplyToAllEntries at a specified interval. We also generate a histogram of time to run ApplyToAllEntries. To make the iteration over some entries of each shard work as cleanly as possible, even with resize between next set of entries, I have re-arranged which hash bits are used for sharding and which for indexing within a shard. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8225 Test Plan: A couple of unit tests are added, but primary validation is manual, as the primary risk is to performance. The primary validation is using cache_bench to ensure that neither the minor hashing changes nor the simulated stats gathering significantly impact QPS or latency distribution. Note that adding op latency histogram seriously impacts the benchmark QPS, so for a fair baseline, we need the cache_bench changes (except remove simulated stat gathering to make it compile). In short, we don't see any reproducible difference in ops/sec or op latency unless we are gathering stats nearly continuously. Test uses 10GB block cache with 8KB values to be somewhat realistic in the number of items to iterate over. Baseline typical output: ``` Complete in 92.017 s; Rough parallel ops/sec = 869401 Thread ops/sec = 54662 Operation latency (ns): Count: 80000000 Average: 11223.9494 StdDev: 29.61 Min: 0 Median: 7759.3973 Max: 9620500 Percentiles: P50: 7759.40 P75: 14190.73 P99: 46922.75 P99.9: 77509.84 P99.99: 217030.58 ------------------------------------------------------ [ 0, 1 ] 68 0.000% 0.000% ( 2900, 4400 ] 89 0.000% 0.000% ( 4400, 6600 ] 33630240 42.038% 42.038% ######## ( 6600, 9900 ] 18129842 22.662% 64.700% ##### ( 9900, 14000 ] 7877533 9.847% 74.547% ## ( 14000, 22000 ] 15193238 18.992% 93.539% #### ( 22000, 33000 ] 3037061 3.796% 97.335% # ( 33000, 50000 ] 1626316 2.033% 99.368% ( 50000, 75000 ] 421532 0.527% 99.895% ( 75000, 110000 ] 56910 0.071% 99.966% ( 110000, 170000 ] 16134 0.020% 99.986% ( 170000, 250000 ] 5166 0.006% 99.993% ( 250000, 380000 ] 3017 0.004% 99.996% ( 380000, 570000 ] 1337 0.002% 99.998% ( 570000, 860000 ] 805 0.001% 99.999% ( 860000, 1200000 ] 319 0.000% 100.000% ( 1200000, 1900000 ] 231 0.000% 100.000% ( 1900000, 2900000 ] 100 0.000% 100.000% ( 2900000, 4300000 ] 39 0.000% 100.000% ( 4300000, 6500000 ] 16 0.000% 100.000% ( 6500000, 9800000 ] 7 0.000% 100.000% ``` New, gather_stats=false. Median thread ops/sec of 5 runs: ``` Complete in 92.030 s; Rough parallel ops/sec = 869285 Thread ops/sec = 54458 Operation latency (ns): Count: 80000000 Average: 11298.1027 StdDev: 42.18 Min: 0 Median: 7722.0822 Max: 6398720 Percentiles: P50: 7722.08 P75: 14294.68 P99: 47522.95 P99.9: 85292.16 P99.99: 228077.78 ------------------------------------------------------ [ 0, 1 ] 109 0.000% 0.000% ( 2900, 4400 ] 793 0.001% 0.001% ( 4400, 6600 ] 34054563 42.568% 42.569% ######### ( 6600, 9900 ] 17482646 21.853% 64.423% #### ( 9900, 14000 ] 7908180 9.885% 74.308% ## ( 14000, 22000 ] 15032072 18.790% 93.098% #### ( 22000, 33000 ] 3237834 4.047% 97.145% # ( 33000, 50000 ] 1736882 2.171% 99.316% ( 50000, 75000 ] 446851 0.559% 99.875% ( 75000, 110000 ] 68251 0.085% 99.960% ( 110000, 170000 ] 18592 0.023% 99.983% ( 170000, 250000 ] 7200 0.009% 99.992% ( 250000, 380000 ] 3334 0.004% 99.997% ( 380000, 570000 ] 1393 0.002% 99.998% ( 570000, 860000 ] 700 0.001% 99.999% ( 860000, 1200000 ] 293 0.000% 100.000% ( 1200000, 1900000 ] 196 0.000% 100.000% ( 1900000, 2900000 ] 69 0.000% 100.000% ( 2900000, 4300000 ] 32 0.000% 100.000% ( 4300000, 6500000 ] 10 0.000% 100.000% ``` New, gather_stats=true, 1 second delay between scans. Scans take about 1 second here so it's spending about 50% time scanning. Still the effect on ops/sec and latency seems to be in the noise. Median thread ops/sec of 5 runs: ``` Complete in 91.890 s; Rough parallel ops/sec = 870608 Thread ops/sec = 54551 Operation latency (ns): Count: 80000000 Average: 11311.2629 StdDev: 45.28 Min: 0 Median: 7686.5458 Max: 10018340 Percentiles: P50: 7686.55 P75: 14481.95 P99: 47232.60 P99.9: 79230.18 P99.99: 232998.86 ------------------------------------------------------ [ 0, 1 ] 71 0.000% 0.000% ( 2900, 4400 ] 291 0.000% 0.000% ( 4400, 6600 ] 34492060 43.115% 43.116% ######### ( 6600, 9900 ] 16727328 20.909% 64.025% #### ( 9900, 14000 ] 7845828 9.807% 73.832% ## ( 14000, 22000 ] 15510654 19.388% 93.220% #### ( 22000, 33000 ] 3216533 4.021% 97.241% # ( 33000, 50000 ] 1680859 2.101% 99.342% ( 50000, 75000 ] 439059 0.549% 99.891% ( 75000, 110000 ] 60540 0.076% 99.967% ( 110000, 170000 ] 14649 0.018% 99.985% ( 170000, 250000 ] 5242 0.007% 99.991% ( 250000, 380000 ] 3260 0.004% 99.995% ( 380000, 570000 ] 1599 0.002% 99.997% ( 570000, 860000 ] 1043 0.001% 99.999% ( 860000, 1200000 ] 471 0.001% 99.999% ( 1200000, 1900000 ] 275 0.000% 100.000% ( 1900000, 2900000 ] 143 0.000% 100.000% ( 2900000, 4300000 ] 60 0.000% 100.000% ( 4300000, 6500000 ] 27 0.000% 100.000% ( 6500000, 9800000 ] 7 0.000% 100.000% ( 9800000, 14000000 ] 1 0.000% 100.000% Gather stats latency (us): Count: 46 Average: 980387.5870 StdDev: 60911.18 Min: 879155 Median: 1033777.7778 Max: 1261431 Percentiles: P50: 1033777.78 P75: 1120666.67 P99: 1261431.00 P99.9: 1261431.00 P99.99: 1261431.00 ------------------------------------------------------ ( 860000, 1200000 ] 45 97.826% 97.826% #################### ( 1200000, 1900000 ] 1 2.174% 100.000% Most recent cache entry stats: Number of entries: 1295133 Total charge: 9.88 GB Average key size: 23.4982 Average charge: 8.00 KB Unique deleters: 3 ``` Reviewed By: mrambacher Differential Revision: D28295742 Pulled By: pdillinger fbshipit-source-id: bbc4a552f91ba0fe10e5cc025c42cef5a81f2b95
4 years ago
list_ = std::move(new_list);
length_bits_ = new_length_bits;
}
Initial support for secondary cache in LRUCache (#8271) Summary: Defined the abstract interface for a secondary cache in include/rocksdb/secondary_cache.h, and updated LRUCacheOptions to take a std::shared_ptr<SecondaryCache>. An item is initially inserted into the LRU (primary) cache. When it ages out and evicted from memory, its inserted into the secondary cache. On a LRU cache miss and successful lookup in the secondary cache, the item is promoted to the LRU cache. Only support synchronous lookup currently. The secondary cache would be used to implement a persistent (flash cache) or compressed cache. Tests: Results from cache_bench and db_bench don't show any regression due to these changes. cache_bench results before and after this change - Command ```./cache_bench -ops_per_thread=10000000 -threads=1``` Before ```Complete in 40.688 s; QPS = 245774``` ```Complete in 40.486 s; QPS = 246996``` ```Complete in 42.019 s; QPS = 237989``` After ```Complete in 40.672 s; QPS = 245869``` ```Complete in 44.622 s; QPS = 224107``` ```Complete in 42.445 s; QPS = 235599``` db_bench results before this change, and with this change + https://github.com/facebook/rocksdb/issues/8213 and https://github.com/facebook/rocksdb/issues/8191 - Commands ```./db_bench --benchmarks="fillseq,compact" -num=30000000 -key_size=32 -value_size=256 -use_direct_io_for_flush_and_compaction=true -db=/home/anand76/nvm_cache/db -partition_index_and_filters=true``` ```./db_bench -db=/home/anand76/nvm_cache/db -use_existing_db=true -benchmarks=readrandom -num=30000000 -key_size=32 -value_size=256 -use_direct_reads=true -cache_size=1073741824 -cache_numshardbits=6 -cache_index_and_filter_blocks=true -read_random_exp_range=17 -statistics -partition_index_and_filters=true -threads=16 -duration=300``` Before ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 80.702 micros/op 198104 ops/sec; 54.4 MB/s (3708999 of 3708999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 87.124 micros/op 183625 ops/sec; 50.4 MB/s (3439999 of 3439999 found) ``` After ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 77.653 micros/op 206025 ops/sec; 56.6 MB/s (3866999 of 3866999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 84.962 micros/op 188299 ops/sec; 51.7 MB/s (3535999 of 3535999 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8271 Reviewed By: zhichao-cao Differential Revision: D28357511 Pulled By: anand1976 fbshipit-source-id: d1cfa236f00e649a18c53328be10a8062a4b6da2
4 years ago
LRUCacheShard::LRUCacheShard(
size_t capacity, bool strict_capacity_limit, double high_pri_pool_ratio,
double low_pri_pool_ratio, bool use_adaptive_mutex,
CacheMetadataChargePolicy metadata_charge_policy, int max_upper_hash_bits,
Initial support for secondary cache in LRUCache (#8271) Summary: Defined the abstract interface for a secondary cache in include/rocksdb/secondary_cache.h, and updated LRUCacheOptions to take a std::shared_ptr<SecondaryCache>. An item is initially inserted into the LRU (primary) cache. When it ages out and evicted from memory, its inserted into the secondary cache. On a LRU cache miss and successful lookup in the secondary cache, the item is promoted to the LRU cache. Only support synchronous lookup currently. The secondary cache would be used to implement a persistent (flash cache) or compressed cache. Tests: Results from cache_bench and db_bench don't show any regression due to these changes. cache_bench results before and after this change - Command ```./cache_bench -ops_per_thread=10000000 -threads=1``` Before ```Complete in 40.688 s; QPS = 245774``` ```Complete in 40.486 s; QPS = 246996``` ```Complete in 42.019 s; QPS = 237989``` After ```Complete in 40.672 s; QPS = 245869``` ```Complete in 44.622 s; QPS = 224107``` ```Complete in 42.445 s; QPS = 235599``` db_bench results before this change, and with this change + https://github.com/facebook/rocksdb/issues/8213 and https://github.com/facebook/rocksdb/issues/8191 - Commands ```./db_bench --benchmarks="fillseq,compact" -num=30000000 -key_size=32 -value_size=256 -use_direct_io_for_flush_and_compaction=true -db=/home/anand76/nvm_cache/db -partition_index_and_filters=true``` ```./db_bench -db=/home/anand76/nvm_cache/db -use_existing_db=true -benchmarks=readrandom -num=30000000 -key_size=32 -value_size=256 -use_direct_reads=true -cache_size=1073741824 -cache_numshardbits=6 -cache_index_and_filter_blocks=true -read_random_exp_range=17 -statistics -partition_index_and_filters=true -threads=16 -duration=300``` Before ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 80.702 micros/op 198104 ops/sec; 54.4 MB/s (3708999 of 3708999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 87.124 micros/op 183625 ops/sec; 50.4 MB/s (3439999 of 3439999 found) ``` After ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 77.653 micros/op 206025 ops/sec; 56.6 MB/s (3866999 of 3866999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 84.962 micros/op 188299 ops/sec; 51.7 MB/s (3535999 of 3535999 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8271 Reviewed By: zhichao-cao Differential Revision: D28357511 Pulled By: anand1976 fbshipit-source-id: d1cfa236f00e649a18c53328be10a8062a4b6da2
4 years ago
const std::shared_ptr<SecondaryCache>& secondary_cache)
Revamp, optimize new experimental clock cache (#10626) Summary: * Consolidates most metadata into a single word per slot so that more can be accomplished with a single atomic update. In the common case, Lookup was previously about 4 atomic updates, now just 1 atomic update. Common case Release was previously 1 atomic read + 1 atomic update, now just 1 atomic update. * Eliminate spins / waits / yields, which likely threaten some "lock free" benefits. Compare-exchange loops are only used in explicit Erase, and strict_capacity_limit=true Insert. Eviction uses opportunistic compare- exchange. * Relaxes some aggressiveness and guarantees. For example, * Duplicate Inserts will sometimes go undetected and the shadow duplicate will age out with eviction. * In many cases, the older Inserted value for a given cache key will be kept (i.e. Insert does not support overwrite). * Entries explicitly erased (rather than evicted) might not be freed immediately in some rare cases. * With strict_capacity_limit=false, capacity limit is not tracked/enforced as precisely as LRUCache, but is self-correcting and should only deviate by a very small number of extra or fewer entries. * Use smaller "computed default" number of cache shards in many cases, because benefits to larger usage tracking / eviction pools outweigh the small cost of more lock-free atomic contention. The improvement in CPU and I/O is dramatic in some limit-memory cases. * Even without the sharding change, the eviction algorithm is likely more effective than LRU overall because it's more stateful, even though the "hot path" state tracking for it is essentially free with ref counting. It is like a generalized CLOCK with aging (see code comments). I don't have performance numbers showing a specific improvement, but in theory, for a Poisson access pattern to each block, keeping some state allows better estimation of time to next access (Poisson interval) than strict LRU. The bounded randomness in CLOCK can also reduce "cliff" effect for repeated range scans approaching and exceeding cache size. ## Hot path algorithm comparison Rough descriptions, focusing on number and kind of atomic operations: * Old `Lookup()` (2-5 atomic updates per probe): ``` Loop: Increment internal ref count at slot If possible hit: Check flags atomic (and non-atomic fields) If cache hit: Three distinct updates to 'flags' atomic Increment refs for internal-to-external Return Decrement internal ref count while atomic read 'displacements' > 0 ``` * New `Lookup()` (1-2 atomic updates per probe): ``` Loop: Increment acquire counter in meta word (optimistic) If visible entry (already read meta word): If match (read non-atomic fields): Return Else: Decrement acquire counter in meta word Else if invisible entry (rare, already read meta word): Decrement acquire counter in meta word while atomic read 'displacements' > 0 ``` * Old `Release()` (1 atomic update, conditional on atomic read, rarely more): ``` Read atomic ref count If last reference and invisible (rare): Use CAS etc. to remove Return Else: Decrement ref count ``` * New `Release()` (1 unconditional atomic update, rarely more): ``` Increment release counter in meta word If last reference and invisible (rare): Use CAS etc. to remove Return ``` ## Performance test setup Build DB with ``` TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=fillrandom -num=30000000 -disable_wal=1 -bloom_bits=16 ``` Test with ``` TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=readrandom -readonly -num=30000000 -bloom_bits=16 -cache_index_and_filter_blocks=1 -cache_size=${CACHE_MB}000000 -duration 60 -threads=$THREADS -statistics ``` Numbers on a single socket Skylake Xeon system with 48 hardware threads, DEBUG_LEVEL=0 PORTABLE=0. Very similar story on a dual socket system with 80 hardware threads. Using (every 2nd) Fibonacci MB cache sizes to sample the territory between powers of two. Configurations: base: LRUCache before this change, but with db_bench change to default cache_numshardbits=-1 (instead of fixed at 6) folly: LRUCache before this change, with folly enabled (distributed mutex) but on an old compiler (sorry) gt_clock: experimental ClockCache before this change new_clock: experimental ClockCache with this change ## Performance test results First test "hot path" read performance, with block cache large enough for whole DB: 4181MB 1thread base -> kops/s: 47.761 4181MB 1thread folly -> kops/s: 45.877 4181MB 1thread gt_clock -> kops/s: 51.092 4181MB 1thread new_clock -> kops/s: 53.944 4181MB 16thread base -> kops/s: 284.567 4181MB 16thread folly -> kops/s: 249.015 4181MB 16thread gt_clock -> kops/s: 743.762 4181MB 16thread new_clock -> kops/s: 861.821 4181MB 24thread base -> kops/s: 303.415 4181MB 24thread folly -> kops/s: 266.548 4181MB 24thread gt_clock -> kops/s: 975.706 4181MB 24thread new_clock -> kops/s: 1205.64 (~= 24 * 53.944) 4181MB 32thread base -> kops/s: 311.251 4181MB 32thread folly -> kops/s: 274.952 4181MB 32thread gt_clock -> kops/s: 1045.98 4181MB 32thread new_clock -> kops/s: 1370.38 4181MB 48thread base -> kops/s: 310.504 4181MB 48thread folly -> kops/s: 268.322 4181MB 48thread gt_clock -> kops/s: 1195.65 4181MB 48thread new_clock -> kops/s: 1604.85 (~= 24 * 1.25 * 53.944) 4181MB 64thread base -> kops/s: 307.839 4181MB 64thread folly -> kops/s: 272.172 4181MB 64thread gt_clock -> kops/s: 1204.47 4181MB 64thread new_clock -> kops/s: 1615.37 4181MB 128thread base -> kops/s: 310.934 4181MB 128thread folly -> kops/s: 267.468 4181MB 128thread gt_clock -> kops/s: 1188.75 4181MB 128thread new_clock -> kops/s: 1595.46 Whether we have just one thread on a quiet system or an overload of threads, the new version wins every time in thousand-ops per second, sometimes dramatically so. Mutex-based implementation quickly becomes contention-limited. New clock cache shows essentially perfect scaling up to number of physical cores (24), and then each hyperthreaded core adding about 1/4 the throughput of an additional physical core (see 48 thread case). Block cache miss rates (omitted above) are negligible across the board. With partitioned instead of full filters, the maximum speed-up vs. base is more like 2.5x rather than 5x. Now test a large block cache with low miss ratio, but some eviction is required: 1597MB 1thread base -> kops/s: 46.603 io_bytes/op: 1584.63 miss_ratio: 0.0201066 max_rss_mb: 1589.23 1597MB 1thread folly -> kops/s: 45.079 io_bytes/op: 1530.03 miss_ratio: 0.019872 max_rss_mb: 1550.43 1597MB 1thread gt_clock -> kops/s: 48.711 io_bytes/op: 1566.63 miss_ratio: 0.0198923 max_rss_mb: 1691.4 1597MB 1thread new_clock -> kops/s: 51.531 io_bytes/op: 1589.07 miss_ratio: 0.0201969 max_rss_mb: 1583.56 1597MB 32thread base -> kops/s: 301.174 io_bytes/op: 1439.52 miss_ratio: 0.0184218 max_rss_mb: 1656.59 1597MB 32thread folly -> kops/s: 273.09 io_bytes/op: 1375.12 miss_ratio: 0.0180002 max_rss_mb: 1586.8 1597MB 32thread gt_clock -> kops/s: 904.497 io_bytes/op: 1411.29 miss_ratio: 0.0179934 max_rss_mb: 1775.89 1597MB 32thread new_clock -> kops/s: 1182.59 io_bytes/op: 1440.77 miss_ratio: 0.0185449 max_rss_mb: 1636.45 1597MB 128thread base -> kops/s: 309.91 io_bytes/op: 1438.25 miss_ratio: 0.018399 max_rss_mb: 1689.98 1597MB 128thread folly -> kops/s: 267.605 io_bytes/op: 1394.16 miss_ratio: 0.0180286 max_rss_mb: 1631.91 1597MB 128thread gt_clock -> kops/s: 691.518 io_bytes/op: 9056.73 miss_ratio: 0.0186572 max_rss_mb: 1982.26 1597MB 128thread new_clock -> kops/s: 1406.12 io_bytes/op: 1440.82 miss_ratio: 0.0185463 max_rss_mb: 1685.63 610MB 1thread base -> kops/s: 45.511 io_bytes/op: 2279.61 miss_ratio: 0.0290528 max_rss_mb: 615.137 610MB 1thread folly -> kops/s: 43.386 io_bytes/op: 2217.29 miss_ratio: 0.0289282 max_rss_mb: 600.996 610MB 1thread gt_clock -> kops/s: 46.207 io_bytes/op: 2275.51 miss_ratio: 0.0290057 max_rss_mb: 637.934 610MB 1thread new_clock -> kops/s: 48.879 io_bytes/op: 2283.1 miss_ratio: 0.0291253 max_rss_mb: 613.5 610MB 32thread base -> kops/s: 306.59 io_bytes/op: 2250 miss_ratio: 0.0288721 max_rss_mb: 683.402 610MB 32thread folly -> kops/s: 269.176 io_bytes/op: 2187.86 miss_ratio: 0.0286938 max_rss_mb: 628.742 610MB 32thread gt_clock -> kops/s: 855.097 io_bytes/op: 2279.26 miss_ratio: 0.0288009 max_rss_mb: 733.062 610MB 32thread new_clock -> kops/s: 1121.47 io_bytes/op: 2244.29 miss_ratio: 0.0289046 max_rss_mb: 666.453 610MB 128thread base -> kops/s: 305.079 io_bytes/op: 2252.43 miss_ratio: 0.0288884 max_rss_mb: 723.457 610MB 128thread folly -> kops/s: 269.583 io_bytes/op: 2204.58 miss_ratio: 0.0287001 max_rss_mb: 676.426 610MB 128thread gt_clock -> kops/s: 53.298 io_bytes/op: 8128.98 miss_ratio: 0.0292452 max_rss_mb: 956.273 610MB 128thread new_clock -> kops/s: 1301.09 io_bytes/op: 2246.04 miss_ratio: 0.0289171 max_rss_mb: 788.812 The new version is still winning every time, sometimes dramatically so, and we can tell from the maximum resident memory numbers (which contain some noise, by the way) that the new cache is not cheating on memory usage. IMPORTANT: The previous generation experimental clock cache appears to hit a serious bottleneck in the higher thread count configurations, presumably due to some of its waiting functionality. (The same bottleneck is not seen with partitioned index+filters.) Now we consider even smaller cache sizes, with higher miss ratios, eviction work, etc. 233MB 1thread base -> kops/s: 10.557 io_bytes/op: 227040 miss_ratio: 0.0403105 max_rss_mb: 247.371 233MB 1thread folly -> kops/s: 15.348 io_bytes/op: 112007 miss_ratio: 0.0372238 max_rss_mb: 245.293 233MB 1thread gt_clock -> kops/s: 6.365 io_bytes/op: 244854 miss_ratio: 0.0413873 max_rss_mb: 259.844 233MB 1thread new_clock -> kops/s: 47.501 io_bytes/op: 2591.93 miss_ratio: 0.0330989 max_rss_mb: 242.461 233MB 32thread base -> kops/s: 96.498 io_bytes/op: 363379 miss_ratio: 0.0459966 max_rss_mb: 479.227 233MB 32thread folly -> kops/s: 109.95 io_bytes/op: 314799 miss_ratio: 0.0450032 max_rss_mb: 400.738 233MB 32thread gt_clock -> kops/s: 2.353 io_bytes/op: 385397 miss_ratio: 0.048445 max_rss_mb: 500.688 233MB 32thread new_clock -> kops/s: 1088.95 io_bytes/op: 2567.02 miss_ratio: 0.0330593 max_rss_mb: 303.402 233MB 128thread base -> kops/s: 84.302 io_bytes/op: 378020 miss_ratio: 0.0466558 max_rss_mb: 1051.84 233MB 128thread folly -> kops/s: 89.921 io_bytes/op: 338242 miss_ratio: 0.0460309 max_rss_mb: 812.785 233MB 128thread gt_clock -> kops/s: 2.588 io_bytes/op: 462833 miss_ratio: 0.0509158 max_rss_mb: 1109.94 233MB 128thread new_clock -> kops/s: 1299.26 io_bytes/op: 2565.94 miss_ratio: 0.0330531 max_rss_mb: 361.016 89MB 1thread base -> kops/s: 0.574 io_bytes/op: 5.35977e+06 miss_ratio: 0.274427 max_rss_mb: 91.3086 89MB 1thread folly -> kops/s: 0.578 io_bytes/op: 5.16549e+06 miss_ratio: 0.27276 max_rss_mb: 96.8984 89MB 1thread gt_clock -> kops/s: 0.512 io_bytes/op: 4.13111e+06 miss_ratio: 0.242817 max_rss_mb: 119.441 89MB 1thread new_clock -> kops/s: 48.172 io_bytes/op: 2709.76 miss_ratio: 0.0346162 max_rss_mb: 100.754 89MB 32thread base -> kops/s: 5.779 io_bytes/op: 6.14192e+06 miss_ratio: 0.320399 max_rss_mb: 311.812 89MB 32thread folly -> kops/s: 5.601 io_bytes/op: 5.83838e+06 miss_ratio: 0.313123 max_rss_mb: 252.418 89MB 32thread gt_clock -> kops/s: 0.77 io_bytes/op: 3.99236e+06 miss_ratio: 0.236296 max_rss_mb: 396.422 89MB 32thread new_clock -> kops/s: 1064.97 io_bytes/op: 2687.23 miss_ratio: 0.0346134 max_rss_mb: 155.293 89MB 128thread base -> kops/s: 4.959 io_bytes/op: 6.20297e+06 miss_ratio: 0.323945 max_rss_mb: 823.43 89MB 128thread folly -> kops/s: 4.962 io_bytes/op: 5.9601e+06 miss_ratio: 0.319857 max_rss_mb: 626.824 89MB 128thread gt_clock -> kops/s: 1.009 io_bytes/op: 4.1083e+06 miss_ratio: 0.242512 max_rss_mb: 1095.32 89MB 128thread new_clock -> kops/s: 1224.39 io_bytes/op: 2688.2 miss_ratio: 0.0346207 max_rss_mb: 218.223 ^ Now something interesting has happened: the new clock cache has gained a dramatic lead in the single-threaded case, and this is because the cache is so small, and full filters are so big, that dividing the cache into 64 shards leads to significant (random) imbalances in cache shards and excessive churn in imbalanced shards. This new clock cache only uses two shards for this configuration, and that helps to ensure that entries are part of a sufficiently big pool that their eviction order resembles the single-shard order. (This effect is not seen with partitioned index+filters.) Even smaller cache size: 34MB 1thread base -> kops/s: 0.198 io_bytes/op: 1.65342e+07 miss_ratio: 0.939466 max_rss_mb: 48.6914 34MB 1thread folly -> kops/s: 0.201 io_bytes/op: 1.63416e+07 miss_ratio: 0.939081 max_rss_mb: 45.3281 34MB 1thread gt_clock -> kops/s: 0.448 io_bytes/op: 4.43957e+06 miss_ratio: 0.266749 max_rss_mb: 100.523 34MB 1thread new_clock -> kops/s: 1.055 io_bytes/op: 1.85439e+06 miss_ratio: 0.107512 max_rss_mb: 75.3125 34MB 32thread base -> kops/s: 3.346 io_bytes/op: 1.64852e+07 miss_ratio: 0.93596 max_rss_mb: 180.48 34MB 32thread folly -> kops/s: 3.431 io_bytes/op: 1.62857e+07 miss_ratio: 0.935693 max_rss_mb: 137.531 34MB 32thread gt_clock -> kops/s: 1.47 io_bytes/op: 4.89704e+06 miss_ratio: 0.295081 max_rss_mb: 392.465 34MB 32thread new_clock -> kops/s: 8.19 io_bytes/op: 3.70456e+06 miss_ratio: 0.20826 max_rss_mb: 519.793 34MB 128thread base -> kops/s: 2.293 io_bytes/op: 1.64351e+07 miss_ratio: 0.931866 max_rss_mb: 449.484 34MB 128thread folly -> kops/s: 2.34 io_bytes/op: 1.6219e+07 miss_ratio: 0.932023 max_rss_mb: 396.457 34MB 128thread gt_clock -> kops/s: 1.798 io_bytes/op: 5.4241e+06 miss_ratio: 0.324881 max_rss_mb: 1104.41 34MB 128thread new_clock -> kops/s: 10.519 io_bytes/op: 2.39354e+06 miss_ratio: 0.136147 max_rss_mb: 1050.52 As the miss ratio gets higher (say, above 10%), the CPU time spent in eviction starts to erode the advantage of using fewer shards (13% miss rate much lower than 94%). LRU's O(1) eviction time can eventually pay off when there's enough block cache churn: 13MB 1thread base -> kops/s: 0.195 io_bytes/op: 1.65732e+07 miss_ratio: 0.946604 max_rss_mb: 45.6328 13MB 1thread folly -> kops/s: 0.197 io_bytes/op: 1.63793e+07 miss_ratio: 0.94661 max_rss_mb: 33.8633 13MB 1thread gt_clock -> kops/s: 0.519 io_bytes/op: 4.43316e+06 miss_ratio: 0.269379 max_rss_mb: 100.684 13MB 1thread new_clock -> kops/s: 0.176 io_bytes/op: 1.54148e+07 miss_ratio: 0.91545 max_rss_mb: 66.2383 13MB 32thread base -> kops/s: 3.266 io_bytes/op: 1.65544e+07 miss_ratio: 0.943386 max_rss_mb: 132.492 13MB 32thread folly -> kops/s: 3.396 io_bytes/op: 1.63142e+07 miss_ratio: 0.943243 max_rss_mb: 101.863 13MB 32thread gt_clock -> kops/s: 2.758 io_bytes/op: 5.13714e+06 miss_ratio: 0.310652 max_rss_mb: 396.121 13MB 32thread new_clock -> kops/s: 3.11 io_bytes/op: 1.23419e+07 miss_ratio: 0.708425 max_rss_mb: 321.758 13MB 128thread base -> kops/s: 2.31 io_bytes/op: 1.64823e+07 miss_ratio: 0.939543 max_rss_mb: 425.539 13MB 128thread folly -> kops/s: 2.339 io_bytes/op: 1.6242e+07 miss_ratio: 0.939966 max_rss_mb: 346.098 13MB 128thread gt_clock -> kops/s: 3.223 io_bytes/op: 5.76928e+06 miss_ratio: 0.345899 max_rss_mb: 1087.77 13MB 128thread new_clock -> kops/s: 2.984 io_bytes/op: 1.05341e+07 miss_ratio: 0.606198 max_rss_mb: 898.27 gt_clock is clearly blowing way past its memory budget for lower miss rates and best throughput. new_clock also seems to be exceeding budgets, and this warrants more investigation but is not the use case we are targeting with the new cache. With partitioned index+filter, the miss ratio is much better, and although still high enough that the eviction CPU time is definitely offsetting mutex contention: 13MB 1thread base -> kops/s: 16.326 io_bytes/op: 23743.9 miss_ratio: 0.205362 max_rss_mb: 65.2852 13MB 1thread folly -> kops/s: 15.574 io_bytes/op: 19415 miss_ratio: 0.184157 max_rss_mb: 56.3516 13MB 1thread gt_clock -> kops/s: 14.459 io_bytes/op: 22873 miss_ratio: 0.198355 max_rss_mb: 63.9688 13MB 1thread new_clock -> kops/s: 16.34 io_bytes/op: 24386.5 miss_ratio: 0.210512 max_rss_mb: 61.707 13MB 128thread base -> kops/s: 289.786 io_bytes/op: 23710.9 miss_ratio: 0.205056 max_rss_mb: 103.57 13MB 128thread folly -> kops/s: 185.282 io_bytes/op: 19433.1 miss_ratio: 0.184275 max_rss_mb: 116.219 13MB 128thread gt_clock -> kops/s: 354.451 io_bytes/op: 23150.6 miss_ratio: 0.200495 max_rss_mb: 102.871 13MB 128thread new_clock -> kops/s: 295.359 io_bytes/op: 24626.4 miss_ratio: 0.212452 max_rss_mb: 121.109 Pull Request resolved: https://github.com/facebook/rocksdb/pull/10626 Test Plan: updated unit tests, stress/crash test runs including with TSAN, ASAN, UBSAN Reviewed By: anand1976 Differential Revision: D39368406 Pulled By: pdillinger fbshipit-source-id: 5afc44da4c656f8f751b44552bbf27bd3ca6fef9
2 years ago
: CacheShard(metadata_charge_policy),
capacity_(0),
high_pri_pool_usage_(0),
low_pri_pool_usage_(0),
strict_capacity_limit_(strict_capacity_limit),
high_pri_pool_ratio_(high_pri_pool_ratio),
high_pri_pool_capacity_(0),
low_pri_pool_ratio_(low_pri_pool_ratio),
low_pri_pool_capacity_(0),
New Cache API for gathering statistics (#8225) Summary: Adds a new Cache::ApplyToAllEntries API that we expect to use (in follow-up PRs) for efficiently gathering block cache statistics. Notable features vs. old ApplyToAllCacheEntries: * Includes key and deleter (in addition to value and charge). We could have passed in a Handle but then more virtual function calls would be needed to get the "fields" of each entry. We expect to use the 'deleter' to identify the origin of entries, perhaps even more. * Heavily tuned to minimize latency impact on operating cache. It does this by iterating over small sections of each cache shard while cycling through the shards. * Supports tuning roughly how many entries to operate on for each lock acquire and release, to control the impact on the latency of other operations without excessive lock acquire & release. The right balance can depend on the cost of the callback. Good default seems to be around 256. * There should be no need to disable thread safety. (I would expect uncontended locks to be sufficiently fast.) I have enhanced cache_bench to validate this approach: * Reports a histogram of ns per operation, so we can look at the ditribution of times, not just throughput (average). * Can add a thread for simulated "gather stats" which calls ApplyToAllEntries at a specified interval. We also generate a histogram of time to run ApplyToAllEntries. To make the iteration over some entries of each shard work as cleanly as possible, even with resize between next set of entries, I have re-arranged which hash bits are used for sharding and which for indexing within a shard. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8225 Test Plan: A couple of unit tests are added, but primary validation is manual, as the primary risk is to performance. The primary validation is using cache_bench to ensure that neither the minor hashing changes nor the simulated stats gathering significantly impact QPS or latency distribution. Note that adding op latency histogram seriously impacts the benchmark QPS, so for a fair baseline, we need the cache_bench changes (except remove simulated stat gathering to make it compile). In short, we don't see any reproducible difference in ops/sec or op latency unless we are gathering stats nearly continuously. Test uses 10GB block cache with 8KB values to be somewhat realistic in the number of items to iterate over. Baseline typical output: ``` Complete in 92.017 s; Rough parallel ops/sec = 869401 Thread ops/sec = 54662 Operation latency (ns): Count: 80000000 Average: 11223.9494 StdDev: 29.61 Min: 0 Median: 7759.3973 Max: 9620500 Percentiles: P50: 7759.40 P75: 14190.73 P99: 46922.75 P99.9: 77509.84 P99.99: 217030.58 ------------------------------------------------------ [ 0, 1 ] 68 0.000% 0.000% ( 2900, 4400 ] 89 0.000% 0.000% ( 4400, 6600 ] 33630240 42.038% 42.038% ######## ( 6600, 9900 ] 18129842 22.662% 64.700% ##### ( 9900, 14000 ] 7877533 9.847% 74.547% ## ( 14000, 22000 ] 15193238 18.992% 93.539% #### ( 22000, 33000 ] 3037061 3.796% 97.335% # ( 33000, 50000 ] 1626316 2.033% 99.368% ( 50000, 75000 ] 421532 0.527% 99.895% ( 75000, 110000 ] 56910 0.071% 99.966% ( 110000, 170000 ] 16134 0.020% 99.986% ( 170000, 250000 ] 5166 0.006% 99.993% ( 250000, 380000 ] 3017 0.004% 99.996% ( 380000, 570000 ] 1337 0.002% 99.998% ( 570000, 860000 ] 805 0.001% 99.999% ( 860000, 1200000 ] 319 0.000% 100.000% ( 1200000, 1900000 ] 231 0.000% 100.000% ( 1900000, 2900000 ] 100 0.000% 100.000% ( 2900000, 4300000 ] 39 0.000% 100.000% ( 4300000, 6500000 ] 16 0.000% 100.000% ( 6500000, 9800000 ] 7 0.000% 100.000% ``` New, gather_stats=false. Median thread ops/sec of 5 runs: ``` Complete in 92.030 s; Rough parallel ops/sec = 869285 Thread ops/sec = 54458 Operation latency (ns): Count: 80000000 Average: 11298.1027 StdDev: 42.18 Min: 0 Median: 7722.0822 Max: 6398720 Percentiles: P50: 7722.08 P75: 14294.68 P99: 47522.95 P99.9: 85292.16 P99.99: 228077.78 ------------------------------------------------------ [ 0, 1 ] 109 0.000% 0.000% ( 2900, 4400 ] 793 0.001% 0.001% ( 4400, 6600 ] 34054563 42.568% 42.569% ######### ( 6600, 9900 ] 17482646 21.853% 64.423% #### ( 9900, 14000 ] 7908180 9.885% 74.308% ## ( 14000, 22000 ] 15032072 18.790% 93.098% #### ( 22000, 33000 ] 3237834 4.047% 97.145% # ( 33000, 50000 ] 1736882 2.171% 99.316% ( 50000, 75000 ] 446851 0.559% 99.875% ( 75000, 110000 ] 68251 0.085% 99.960% ( 110000, 170000 ] 18592 0.023% 99.983% ( 170000, 250000 ] 7200 0.009% 99.992% ( 250000, 380000 ] 3334 0.004% 99.997% ( 380000, 570000 ] 1393 0.002% 99.998% ( 570000, 860000 ] 700 0.001% 99.999% ( 860000, 1200000 ] 293 0.000% 100.000% ( 1200000, 1900000 ] 196 0.000% 100.000% ( 1900000, 2900000 ] 69 0.000% 100.000% ( 2900000, 4300000 ] 32 0.000% 100.000% ( 4300000, 6500000 ] 10 0.000% 100.000% ``` New, gather_stats=true, 1 second delay between scans. Scans take about 1 second here so it's spending about 50% time scanning. Still the effect on ops/sec and latency seems to be in the noise. Median thread ops/sec of 5 runs: ``` Complete in 91.890 s; Rough parallel ops/sec = 870608 Thread ops/sec = 54551 Operation latency (ns): Count: 80000000 Average: 11311.2629 StdDev: 45.28 Min: 0 Median: 7686.5458 Max: 10018340 Percentiles: P50: 7686.55 P75: 14481.95 P99: 47232.60 P99.9: 79230.18 P99.99: 232998.86 ------------------------------------------------------ [ 0, 1 ] 71 0.000% 0.000% ( 2900, 4400 ] 291 0.000% 0.000% ( 4400, 6600 ] 34492060 43.115% 43.116% ######### ( 6600, 9900 ] 16727328 20.909% 64.025% #### ( 9900, 14000 ] 7845828 9.807% 73.832% ## ( 14000, 22000 ] 15510654 19.388% 93.220% #### ( 22000, 33000 ] 3216533 4.021% 97.241% # ( 33000, 50000 ] 1680859 2.101% 99.342% ( 50000, 75000 ] 439059 0.549% 99.891% ( 75000, 110000 ] 60540 0.076% 99.967% ( 110000, 170000 ] 14649 0.018% 99.985% ( 170000, 250000 ] 5242 0.007% 99.991% ( 250000, 380000 ] 3260 0.004% 99.995% ( 380000, 570000 ] 1599 0.002% 99.997% ( 570000, 860000 ] 1043 0.001% 99.999% ( 860000, 1200000 ] 471 0.001% 99.999% ( 1200000, 1900000 ] 275 0.000% 100.000% ( 1900000, 2900000 ] 143 0.000% 100.000% ( 2900000, 4300000 ] 60 0.000% 100.000% ( 4300000, 6500000 ] 27 0.000% 100.000% ( 6500000, 9800000 ] 7 0.000% 100.000% ( 9800000, 14000000 ] 1 0.000% 100.000% Gather stats latency (us): Count: 46 Average: 980387.5870 StdDev: 60911.18 Min: 879155 Median: 1033777.7778 Max: 1261431 Percentiles: P50: 1033777.78 P75: 1120666.67 P99: 1261431.00 P99.9: 1261431.00 P99.99: 1261431.00 ------------------------------------------------------ ( 860000, 1200000 ] 45 97.826% 97.826% #################### ( 1200000, 1900000 ] 1 2.174% 100.000% Most recent cache entry stats: Number of entries: 1295133 Total charge: 9.88 GB Average key size: 23.4982 Average charge: 8.00 KB Unique deleters: 3 ``` Reviewed By: mrambacher Differential Revision: D28295742 Pulled By: pdillinger fbshipit-source-id: bbc4a552f91ba0fe10e5cc025c42cef5a81f2b95
4 years ago
table_(max_upper_hash_bits),
usage_(0),
lru_usage_(0),
Initial support for secondary cache in LRUCache (#8271) Summary: Defined the abstract interface for a secondary cache in include/rocksdb/secondary_cache.h, and updated LRUCacheOptions to take a std::shared_ptr<SecondaryCache>. An item is initially inserted into the LRU (primary) cache. When it ages out and evicted from memory, its inserted into the secondary cache. On a LRU cache miss and successful lookup in the secondary cache, the item is promoted to the LRU cache. Only support synchronous lookup currently. The secondary cache would be used to implement a persistent (flash cache) or compressed cache. Tests: Results from cache_bench and db_bench don't show any regression due to these changes. cache_bench results before and after this change - Command ```./cache_bench -ops_per_thread=10000000 -threads=1``` Before ```Complete in 40.688 s; QPS = 245774``` ```Complete in 40.486 s; QPS = 246996``` ```Complete in 42.019 s; QPS = 237989``` After ```Complete in 40.672 s; QPS = 245869``` ```Complete in 44.622 s; QPS = 224107``` ```Complete in 42.445 s; QPS = 235599``` db_bench results before this change, and with this change + https://github.com/facebook/rocksdb/issues/8213 and https://github.com/facebook/rocksdb/issues/8191 - Commands ```./db_bench --benchmarks="fillseq,compact" -num=30000000 -key_size=32 -value_size=256 -use_direct_io_for_flush_and_compaction=true -db=/home/anand76/nvm_cache/db -partition_index_and_filters=true``` ```./db_bench -db=/home/anand76/nvm_cache/db -use_existing_db=true -benchmarks=readrandom -num=30000000 -key_size=32 -value_size=256 -use_direct_reads=true -cache_size=1073741824 -cache_numshardbits=6 -cache_index_and_filter_blocks=true -read_random_exp_range=17 -statistics -partition_index_and_filters=true -threads=16 -duration=300``` Before ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 80.702 micros/op 198104 ops/sec; 54.4 MB/s (3708999 of 3708999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 87.124 micros/op 183625 ops/sec; 50.4 MB/s (3439999 of 3439999 found) ``` After ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 77.653 micros/op 206025 ops/sec; 56.6 MB/s (3866999 of 3866999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 84.962 micros/op 188299 ops/sec; 51.7 MB/s (3535999 of 3535999 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8271 Reviewed By: zhichao-cao Differential Revision: D28357511 Pulled By: anand1976 fbshipit-source-id: d1cfa236f00e649a18c53328be10a8062a4b6da2
4 years ago
mutex_(use_adaptive_mutex),
secondary_cache_(secondary_cache) {
// Make empty circular linked list.
lru_.next = &lru_;
lru_.prev = &lru_;
lru_low_pri_ = &lru_;
lru_bottom_pri_ = &lru_;
SetCapacity(capacity);
}
void LRUCacheShard::EraseUnRefEntries() {
autovector<LRUHandle*> last_reference_list;
{
Use optimized folly DistributedMutex in LRUCache when available (#10179) Summary: folly DistributedMutex is faster than standard mutexes though imposes some static obligations on usage. See https://github.com/facebook/folly/blob/main/folly/synchronization/DistributedMutex.h for details. Here we use this alternative for our Cache implementations (especially LRUCache) for better locking performance, when RocksDB is compiled with folly. Also added information about which distributed mutex implementation is being used to cache_bench output and to DB LOG. Intended follow-up: * Use DMutex in more places, perhaps improving API to support non-scoped locking * Fix linking with fbcode compiler (needs ROCKSDB_NO_FBCODE=1 currently) Credit: Thanks Siying for reminding me about this line of work that was previously left unfinished. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10179 Test Plan: for correctness, existing tests. CircleCI config updated. Also Meta-internal buck build updated. For performance, ran simultaneous before & after cache_bench. Out of three comparison runs, the middle improvement to ops/sec was +21%: Baseline: USE_CLANG=1 DEBUG_LEVEL=0 make -j24 cache_bench (fbcode compiler) ``` Complete in 20.201 s; Rough parallel ops/sec = 1584062 Thread ops/sec = 107176 Operation latency (ns): Count: 32000000 Average: 9257.9421 StdDev: 122412.04 Min: 134 Median: 3623.0493 Max: 56918500 Percentiles: P50: 3623.05 P75: 10288.02 P99: 30219.35 P99.9: 683522.04 P99.99: 7302791.63 ``` New: (add USE_FOLLY=1) ``` Complete in 16.674 s; Rough parallel ops/sec = 1919135 (+21%) Thread ops/sec = 135487 Operation latency (ns): Count: 32000000 Average: 7304.9294 StdDev: 108530.28 Min: 132 Median: 3777.6012 Max: 91030902 Percentiles: P50: 3777.60 P75: 10169.89 P99: 24504.51 P99.9: 59721.59 P99.99: 1861151.83 ``` Reviewed By: anand1976 Differential Revision: D37182983 Pulled By: pdillinger fbshipit-source-id: a17eb05f25b832b6a2c1356f5c657e831a5af8d1
2 years ago
DMutexLock l(mutex_);
while (lru_.next != &lru_) {
LRUHandle* old = lru_.next;
// LRU list contains only elements which can be evicted.
assert(old->InCache() && !old->HasRefs());
LRU_Remove(old);
table_.Remove(old->key(), old->hash);
old->SetInCache(false);
assert(usage_ >= old->total_charge);
usage_ -= old->total_charge;
last_reference_list.push_back(old);
}
}
for (auto entry : last_reference_list) {
entry->Free();
}
}
New Cache API for gathering statistics (#8225) Summary: Adds a new Cache::ApplyToAllEntries API that we expect to use (in follow-up PRs) for efficiently gathering block cache statistics. Notable features vs. old ApplyToAllCacheEntries: * Includes key and deleter (in addition to value and charge). We could have passed in a Handle but then more virtual function calls would be needed to get the "fields" of each entry. We expect to use the 'deleter' to identify the origin of entries, perhaps even more. * Heavily tuned to minimize latency impact on operating cache. It does this by iterating over small sections of each cache shard while cycling through the shards. * Supports tuning roughly how many entries to operate on for each lock acquire and release, to control the impact on the latency of other operations without excessive lock acquire & release. The right balance can depend on the cost of the callback. Good default seems to be around 256. * There should be no need to disable thread safety. (I would expect uncontended locks to be sufficiently fast.) I have enhanced cache_bench to validate this approach: * Reports a histogram of ns per operation, so we can look at the ditribution of times, not just throughput (average). * Can add a thread for simulated "gather stats" which calls ApplyToAllEntries at a specified interval. We also generate a histogram of time to run ApplyToAllEntries. To make the iteration over some entries of each shard work as cleanly as possible, even with resize between next set of entries, I have re-arranged which hash bits are used for sharding and which for indexing within a shard. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8225 Test Plan: A couple of unit tests are added, but primary validation is manual, as the primary risk is to performance. The primary validation is using cache_bench to ensure that neither the minor hashing changes nor the simulated stats gathering significantly impact QPS or latency distribution. Note that adding op latency histogram seriously impacts the benchmark QPS, so for a fair baseline, we need the cache_bench changes (except remove simulated stat gathering to make it compile). In short, we don't see any reproducible difference in ops/sec or op latency unless we are gathering stats nearly continuously. Test uses 10GB block cache with 8KB values to be somewhat realistic in the number of items to iterate over. Baseline typical output: ``` Complete in 92.017 s; Rough parallel ops/sec = 869401 Thread ops/sec = 54662 Operation latency (ns): Count: 80000000 Average: 11223.9494 StdDev: 29.61 Min: 0 Median: 7759.3973 Max: 9620500 Percentiles: P50: 7759.40 P75: 14190.73 P99: 46922.75 P99.9: 77509.84 P99.99: 217030.58 ------------------------------------------------------ [ 0, 1 ] 68 0.000% 0.000% ( 2900, 4400 ] 89 0.000% 0.000% ( 4400, 6600 ] 33630240 42.038% 42.038% ######## ( 6600, 9900 ] 18129842 22.662% 64.700% ##### ( 9900, 14000 ] 7877533 9.847% 74.547% ## ( 14000, 22000 ] 15193238 18.992% 93.539% #### ( 22000, 33000 ] 3037061 3.796% 97.335% # ( 33000, 50000 ] 1626316 2.033% 99.368% ( 50000, 75000 ] 421532 0.527% 99.895% ( 75000, 110000 ] 56910 0.071% 99.966% ( 110000, 170000 ] 16134 0.020% 99.986% ( 170000, 250000 ] 5166 0.006% 99.993% ( 250000, 380000 ] 3017 0.004% 99.996% ( 380000, 570000 ] 1337 0.002% 99.998% ( 570000, 860000 ] 805 0.001% 99.999% ( 860000, 1200000 ] 319 0.000% 100.000% ( 1200000, 1900000 ] 231 0.000% 100.000% ( 1900000, 2900000 ] 100 0.000% 100.000% ( 2900000, 4300000 ] 39 0.000% 100.000% ( 4300000, 6500000 ] 16 0.000% 100.000% ( 6500000, 9800000 ] 7 0.000% 100.000% ``` New, gather_stats=false. Median thread ops/sec of 5 runs: ``` Complete in 92.030 s; Rough parallel ops/sec = 869285 Thread ops/sec = 54458 Operation latency (ns): Count: 80000000 Average: 11298.1027 StdDev: 42.18 Min: 0 Median: 7722.0822 Max: 6398720 Percentiles: P50: 7722.08 P75: 14294.68 P99: 47522.95 P99.9: 85292.16 P99.99: 228077.78 ------------------------------------------------------ [ 0, 1 ] 109 0.000% 0.000% ( 2900, 4400 ] 793 0.001% 0.001% ( 4400, 6600 ] 34054563 42.568% 42.569% ######### ( 6600, 9900 ] 17482646 21.853% 64.423% #### ( 9900, 14000 ] 7908180 9.885% 74.308% ## ( 14000, 22000 ] 15032072 18.790% 93.098% #### ( 22000, 33000 ] 3237834 4.047% 97.145% # ( 33000, 50000 ] 1736882 2.171% 99.316% ( 50000, 75000 ] 446851 0.559% 99.875% ( 75000, 110000 ] 68251 0.085% 99.960% ( 110000, 170000 ] 18592 0.023% 99.983% ( 170000, 250000 ] 7200 0.009% 99.992% ( 250000, 380000 ] 3334 0.004% 99.997% ( 380000, 570000 ] 1393 0.002% 99.998% ( 570000, 860000 ] 700 0.001% 99.999% ( 860000, 1200000 ] 293 0.000% 100.000% ( 1200000, 1900000 ] 196 0.000% 100.000% ( 1900000, 2900000 ] 69 0.000% 100.000% ( 2900000, 4300000 ] 32 0.000% 100.000% ( 4300000, 6500000 ] 10 0.000% 100.000% ``` New, gather_stats=true, 1 second delay between scans. Scans take about 1 second here so it's spending about 50% time scanning. Still the effect on ops/sec and latency seems to be in the noise. Median thread ops/sec of 5 runs: ``` Complete in 91.890 s; Rough parallel ops/sec = 870608 Thread ops/sec = 54551 Operation latency (ns): Count: 80000000 Average: 11311.2629 StdDev: 45.28 Min: 0 Median: 7686.5458 Max: 10018340 Percentiles: P50: 7686.55 P75: 14481.95 P99: 47232.60 P99.9: 79230.18 P99.99: 232998.86 ------------------------------------------------------ [ 0, 1 ] 71 0.000% 0.000% ( 2900, 4400 ] 291 0.000% 0.000% ( 4400, 6600 ] 34492060 43.115% 43.116% ######### ( 6600, 9900 ] 16727328 20.909% 64.025% #### ( 9900, 14000 ] 7845828 9.807% 73.832% ## ( 14000, 22000 ] 15510654 19.388% 93.220% #### ( 22000, 33000 ] 3216533 4.021% 97.241% # ( 33000, 50000 ] 1680859 2.101% 99.342% ( 50000, 75000 ] 439059 0.549% 99.891% ( 75000, 110000 ] 60540 0.076% 99.967% ( 110000, 170000 ] 14649 0.018% 99.985% ( 170000, 250000 ] 5242 0.007% 99.991% ( 250000, 380000 ] 3260 0.004% 99.995% ( 380000, 570000 ] 1599 0.002% 99.997% ( 570000, 860000 ] 1043 0.001% 99.999% ( 860000, 1200000 ] 471 0.001% 99.999% ( 1200000, 1900000 ] 275 0.000% 100.000% ( 1900000, 2900000 ] 143 0.000% 100.000% ( 2900000, 4300000 ] 60 0.000% 100.000% ( 4300000, 6500000 ] 27 0.000% 100.000% ( 6500000, 9800000 ] 7 0.000% 100.000% ( 9800000, 14000000 ] 1 0.000% 100.000% Gather stats latency (us): Count: 46 Average: 980387.5870 StdDev: 60911.18 Min: 879155 Median: 1033777.7778 Max: 1261431 Percentiles: P50: 1033777.78 P75: 1120666.67 P99: 1261431.00 P99.9: 1261431.00 P99.99: 1261431.00 ------------------------------------------------------ ( 860000, 1200000 ] 45 97.826% 97.826% #################### ( 1200000, 1900000 ] 1 2.174% 100.000% Most recent cache entry stats: Number of entries: 1295133 Total charge: 9.88 GB Average key size: 23.4982 Average charge: 8.00 KB Unique deleters: 3 ``` Reviewed By: mrambacher Differential Revision: D28295742 Pulled By: pdillinger fbshipit-source-id: bbc4a552f91ba0fe10e5cc025c42cef5a81f2b95
4 years ago
void LRUCacheShard::ApplyToSomeEntries(
const std::function<void(const Slice& key, void* value, size_t charge,
DeleterFn deleter)>& callback,
uint32_t average_entries_per_lock, uint32_t* state) {
// The state is essentially going to be the starting hash, which works
// nicely even if we resize between calls because we use upper-most
// hash bits for table indexes.
Use optimized folly DistributedMutex in LRUCache when available (#10179) Summary: folly DistributedMutex is faster than standard mutexes though imposes some static obligations on usage. See https://github.com/facebook/folly/blob/main/folly/synchronization/DistributedMutex.h for details. Here we use this alternative for our Cache implementations (especially LRUCache) for better locking performance, when RocksDB is compiled with folly. Also added information about which distributed mutex implementation is being used to cache_bench output and to DB LOG. Intended follow-up: * Use DMutex in more places, perhaps improving API to support non-scoped locking * Fix linking with fbcode compiler (needs ROCKSDB_NO_FBCODE=1 currently) Credit: Thanks Siying for reminding me about this line of work that was previously left unfinished. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10179 Test Plan: for correctness, existing tests. CircleCI config updated. Also Meta-internal buck build updated. For performance, ran simultaneous before & after cache_bench. Out of three comparison runs, the middle improvement to ops/sec was +21%: Baseline: USE_CLANG=1 DEBUG_LEVEL=0 make -j24 cache_bench (fbcode compiler) ``` Complete in 20.201 s; Rough parallel ops/sec = 1584062 Thread ops/sec = 107176 Operation latency (ns): Count: 32000000 Average: 9257.9421 StdDev: 122412.04 Min: 134 Median: 3623.0493 Max: 56918500 Percentiles: P50: 3623.05 P75: 10288.02 P99: 30219.35 P99.9: 683522.04 P99.99: 7302791.63 ``` New: (add USE_FOLLY=1) ``` Complete in 16.674 s; Rough parallel ops/sec = 1919135 (+21%) Thread ops/sec = 135487 Operation latency (ns): Count: 32000000 Average: 7304.9294 StdDev: 108530.28 Min: 132 Median: 3777.6012 Max: 91030902 Percentiles: P50: 3777.60 P75: 10169.89 P99: 24504.51 P99.9: 59721.59 P99.99: 1861151.83 ``` Reviewed By: anand1976 Differential Revision: D37182983 Pulled By: pdillinger fbshipit-source-id: a17eb05f25b832b6a2c1356f5c657e831a5af8d1
2 years ago
DMutexLock l(mutex_);
New Cache API for gathering statistics (#8225) Summary: Adds a new Cache::ApplyToAllEntries API that we expect to use (in follow-up PRs) for efficiently gathering block cache statistics. Notable features vs. old ApplyToAllCacheEntries: * Includes key and deleter (in addition to value and charge). We could have passed in a Handle but then more virtual function calls would be needed to get the "fields" of each entry. We expect to use the 'deleter' to identify the origin of entries, perhaps even more. * Heavily tuned to minimize latency impact on operating cache. It does this by iterating over small sections of each cache shard while cycling through the shards. * Supports tuning roughly how many entries to operate on for each lock acquire and release, to control the impact on the latency of other operations without excessive lock acquire & release. The right balance can depend on the cost of the callback. Good default seems to be around 256. * There should be no need to disable thread safety. (I would expect uncontended locks to be sufficiently fast.) I have enhanced cache_bench to validate this approach: * Reports a histogram of ns per operation, so we can look at the ditribution of times, not just throughput (average). * Can add a thread for simulated "gather stats" which calls ApplyToAllEntries at a specified interval. We also generate a histogram of time to run ApplyToAllEntries. To make the iteration over some entries of each shard work as cleanly as possible, even with resize between next set of entries, I have re-arranged which hash bits are used for sharding and which for indexing within a shard. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8225 Test Plan: A couple of unit tests are added, but primary validation is manual, as the primary risk is to performance. The primary validation is using cache_bench to ensure that neither the minor hashing changes nor the simulated stats gathering significantly impact QPS or latency distribution. Note that adding op latency histogram seriously impacts the benchmark QPS, so for a fair baseline, we need the cache_bench changes (except remove simulated stat gathering to make it compile). In short, we don't see any reproducible difference in ops/sec or op latency unless we are gathering stats nearly continuously. Test uses 10GB block cache with 8KB values to be somewhat realistic in the number of items to iterate over. Baseline typical output: ``` Complete in 92.017 s; Rough parallel ops/sec = 869401 Thread ops/sec = 54662 Operation latency (ns): Count: 80000000 Average: 11223.9494 StdDev: 29.61 Min: 0 Median: 7759.3973 Max: 9620500 Percentiles: P50: 7759.40 P75: 14190.73 P99: 46922.75 P99.9: 77509.84 P99.99: 217030.58 ------------------------------------------------------ [ 0, 1 ] 68 0.000% 0.000% ( 2900, 4400 ] 89 0.000% 0.000% ( 4400, 6600 ] 33630240 42.038% 42.038% ######## ( 6600, 9900 ] 18129842 22.662% 64.700% ##### ( 9900, 14000 ] 7877533 9.847% 74.547% ## ( 14000, 22000 ] 15193238 18.992% 93.539% #### ( 22000, 33000 ] 3037061 3.796% 97.335% # ( 33000, 50000 ] 1626316 2.033% 99.368% ( 50000, 75000 ] 421532 0.527% 99.895% ( 75000, 110000 ] 56910 0.071% 99.966% ( 110000, 170000 ] 16134 0.020% 99.986% ( 170000, 250000 ] 5166 0.006% 99.993% ( 250000, 380000 ] 3017 0.004% 99.996% ( 380000, 570000 ] 1337 0.002% 99.998% ( 570000, 860000 ] 805 0.001% 99.999% ( 860000, 1200000 ] 319 0.000% 100.000% ( 1200000, 1900000 ] 231 0.000% 100.000% ( 1900000, 2900000 ] 100 0.000% 100.000% ( 2900000, 4300000 ] 39 0.000% 100.000% ( 4300000, 6500000 ] 16 0.000% 100.000% ( 6500000, 9800000 ] 7 0.000% 100.000% ``` New, gather_stats=false. Median thread ops/sec of 5 runs: ``` Complete in 92.030 s; Rough parallel ops/sec = 869285 Thread ops/sec = 54458 Operation latency (ns): Count: 80000000 Average: 11298.1027 StdDev: 42.18 Min: 0 Median: 7722.0822 Max: 6398720 Percentiles: P50: 7722.08 P75: 14294.68 P99: 47522.95 P99.9: 85292.16 P99.99: 228077.78 ------------------------------------------------------ [ 0, 1 ] 109 0.000% 0.000% ( 2900, 4400 ] 793 0.001% 0.001% ( 4400, 6600 ] 34054563 42.568% 42.569% ######### ( 6600, 9900 ] 17482646 21.853% 64.423% #### ( 9900, 14000 ] 7908180 9.885% 74.308% ## ( 14000, 22000 ] 15032072 18.790% 93.098% #### ( 22000, 33000 ] 3237834 4.047% 97.145% # ( 33000, 50000 ] 1736882 2.171% 99.316% ( 50000, 75000 ] 446851 0.559% 99.875% ( 75000, 110000 ] 68251 0.085% 99.960% ( 110000, 170000 ] 18592 0.023% 99.983% ( 170000, 250000 ] 7200 0.009% 99.992% ( 250000, 380000 ] 3334 0.004% 99.997% ( 380000, 570000 ] 1393 0.002% 99.998% ( 570000, 860000 ] 700 0.001% 99.999% ( 860000, 1200000 ] 293 0.000% 100.000% ( 1200000, 1900000 ] 196 0.000% 100.000% ( 1900000, 2900000 ] 69 0.000% 100.000% ( 2900000, 4300000 ] 32 0.000% 100.000% ( 4300000, 6500000 ] 10 0.000% 100.000% ``` New, gather_stats=true, 1 second delay between scans. Scans take about 1 second here so it's spending about 50% time scanning. Still the effect on ops/sec and latency seems to be in the noise. Median thread ops/sec of 5 runs: ``` Complete in 91.890 s; Rough parallel ops/sec = 870608 Thread ops/sec = 54551 Operation latency (ns): Count: 80000000 Average: 11311.2629 StdDev: 45.28 Min: 0 Median: 7686.5458 Max: 10018340 Percentiles: P50: 7686.55 P75: 14481.95 P99: 47232.60 P99.9: 79230.18 P99.99: 232998.86 ------------------------------------------------------ [ 0, 1 ] 71 0.000% 0.000% ( 2900, 4400 ] 291 0.000% 0.000% ( 4400, 6600 ] 34492060 43.115% 43.116% ######### ( 6600, 9900 ] 16727328 20.909% 64.025% #### ( 9900, 14000 ] 7845828 9.807% 73.832% ## ( 14000, 22000 ] 15510654 19.388% 93.220% #### ( 22000, 33000 ] 3216533 4.021% 97.241% # ( 33000, 50000 ] 1680859 2.101% 99.342% ( 50000, 75000 ] 439059 0.549% 99.891% ( 75000, 110000 ] 60540 0.076% 99.967% ( 110000, 170000 ] 14649 0.018% 99.985% ( 170000, 250000 ] 5242 0.007% 99.991% ( 250000, 380000 ] 3260 0.004% 99.995% ( 380000, 570000 ] 1599 0.002% 99.997% ( 570000, 860000 ] 1043 0.001% 99.999% ( 860000, 1200000 ] 471 0.001% 99.999% ( 1200000, 1900000 ] 275 0.000% 100.000% ( 1900000, 2900000 ] 143 0.000% 100.000% ( 2900000, 4300000 ] 60 0.000% 100.000% ( 4300000, 6500000 ] 27 0.000% 100.000% ( 6500000, 9800000 ] 7 0.000% 100.000% ( 9800000, 14000000 ] 1 0.000% 100.000% Gather stats latency (us): Count: 46 Average: 980387.5870 StdDev: 60911.18 Min: 879155 Median: 1033777.7778 Max: 1261431 Percentiles: P50: 1033777.78 P75: 1120666.67 P99: 1261431.00 P99.9: 1261431.00 P99.99: 1261431.00 ------------------------------------------------------ ( 860000, 1200000 ] 45 97.826% 97.826% #################### ( 1200000, 1900000 ] 1 2.174% 100.000% Most recent cache entry stats: Number of entries: 1295133 Total charge: 9.88 GB Average key size: 23.4982 Average charge: 8.00 KB Unique deleters: 3 ``` Reviewed By: mrambacher Differential Revision: D28295742 Pulled By: pdillinger fbshipit-source-id: bbc4a552f91ba0fe10e5cc025c42cef5a81f2b95
4 years ago
uint32_t length_bits = table_.GetLengthBits();
uint32_t length = uint32_t{1} << length_bits;
assert(average_entries_per_lock > 0);
// Assuming we are called with same average_entries_per_lock repeatedly,
// this simplifies some logic (index_end will not overflow).
New Cache API for gathering statistics (#8225) Summary: Adds a new Cache::ApplyToAllEntries API that we expect to use (in follow-up PRs) for efficiently gathering block cache statistics. Notable features vs. old ApplyToAllCacheEntries: * Includes key and deleter (in addition to value and charge). We could have passed in a Handle but then more virtual function calls would be needed to get the "fields" of each entry. We expect to use the 'deleter' to identify the origin of entries, perhaps even more. * Heavily tuned to minimize latency impact on operating cache. It does this by iterating over small sections of each cache shard while cycling through the shards. * Supports tuning roughly how many entries to operate on for each lock acquire and release, to control the impact on the latency of other operations without excessive lock acquire & release. The right balance can depend on the cost of the callback. Good default seems to be around 256. * There should be no need to disable thread safety. (I would expect uncontended locks to be sufficiently fast.) I have enhanced cache_bench to validate this approach: * Reports a histogram of ns per operation, so we can look at the ditribution of times, not just throughput (average). * Can add a thread for simulated "gather stats" which calls ApplyToAllEntries at a specified interval. We also generate a histogram of time to run ApplyToAllEntries. To make the iteration over some entries of each shard work as cleanly as possible, even with resize between next set of entries, I have re-arranged which hash bits are used for sharding and which for indexing within a shard. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8225 Test Plan: A couple of unit tests are added, but primary validation is manual, as the primary risk is to performance. The primary validation is using cache_bench to ensure that neither the minor hashing changes nor the simulated stats gathering significantly impact QPS or latency distribution. Note that adding op latency histogram seriously impacts the benchmark QPS, so for a fair baseline, we need the cache_bench changes (except remove simulated stat gathering to make it compile). In short, we don't see any reproducible difference in ops/sec or op latency unless we are gathering stats nearly continuously. Test uses 10GB block cache with 8KB values to be somewhat realistic in the number of items to iterate over. Baseline typical output: ``` Complete in 92.017 s; Rough parallel ops/sec = 869401 Thread ops/sec = 54662 Operation latency (ns): Count: 80000000 Average: 11223.9494 StdDev: 29.61 Min: 0 Median: 7759.3973 Max: 9620500 Percentiles: P50: 7759.40 P75: 14190.73 P99: 46922.75 P99.9: 77509.84 P99.99: 217030.58 ------------------------------------------------------ [ 0, 1 ] 68 0.000% 0.000% ( 2900, 4400 ] 89 0.000% 0.000% ( 4400, 6600 ] 33630240 42.038% 42.038% ######## ( 6600, 9900 ] 18129842 22.662% 64.700% ##### ( 9900, 14000 ] 7877533 9.847% 74.547% ## ( 14000, 22000 ] 15193238 18.992% 93.539% #### ( 22000, 33000 ] 3037061 3.796% 97.335% # ( 33000, 50000 ] 1626316 2.033% 99.368% ( 50000, 75000 ] 421532 0.527% 99.895% ( 75000, 110000 ] 56910 0.071% 99.966% ( 110000, 170000 ] 16134 0.020% 99.986% ( 170000, 250000 ] 5166 0.006% 99.993% ( 250000, 380000 ] 3017 0.004% 99.996% ( 380000, 570000 ] 1337 0.002% 99.998% ( 570000, 860000 ] 805 0.001% 99.999% ( 860000, 1200000 ] 319 0.000% 100.000% ( 1200000, 1900000 ] 231 0.000% 100.000% ( 1900000, 2900000 ] 100 0.000% 100.000% ( 2900000, 4300000 ] 39 0.000% 100.000% ( 4300000, 6500000 ] 16 0.000% 100.000% ( 6500000, 9800000 ] 7 0.000% 100.000% ``` New, gather_stats=false. Median thread ops/sec of 5 runs: ``` Complete in 92.030 s; Rough parallel ops/sec = 869285 Thread ops/sec = 54458 Operation latency (ns): Count: 80000000 Average: 11298.1027 StdDev: 42.18 Min: 0 Median: 7722.0822 Max: 6398720 Percentiles: P50: 7722.08 P75: 14294.68 P99: 47522.95 P99.9: 85292.16 P99.99: 228077.78 ------------------------------------------------------ [ 0, 1 ] 109 0.000% 0.000% ( 2900, 4400 ] 793 0.001% 0.001% ( 4400, 6600 ] 34054563 42.568% 42.569% ######### ( 6600, 9900 ] 17482646 21.853% 64.423% #### ( 9900, 14000 ] 7908180 9.885% 74.308% ## ( 14000, 22000 ] 15032072 18.790% 93.098% #### ( 22000, 33000 ] 3237834 4.047% 97.145% # ( 33000, 50000 ] 1736882 2.171% 99.316% ( 50000, 75000 ] 446851 0.559% 99.875% ( 75000, 110000 ] 68251 0.085% 99.960% ( 110000, 170000 ] 18592 0.023% 99.983% ( 170000, 250000 ] 7200 0.009% 99.992% ( 250000, 380000 ] 3334 0.004% 99.997% ( 380000, 570000 ] 1393 0.002% 99.998% ( 570000, 860000 ] 700 0.001% 99.999% ( 860000, 1200000 ] 293 0.000% 100.000% ( 1200000, 1900000 ] 196 0.000% 100.000% ( 1900000, 2900000 ] 69 0.000% 100.000% ( 2900000, 4300000 ] 32 0.000% 100.000% ( 4300000, 6500000 ] 10 0.000% 100.000% ``` New, gather_stats=true, 1 second delay between scans. Scans take about 1 second here so it's spending about 50% time scanning. Still the effect on ops/sec and latency seems to be in the noise. Median thread ops/sec of 5 runs: ``` Complete in 91.890 s; Rough parallel ops/sec = 870608 Thread ops/sec = 54551 Operation latency (ns): Count: 80000000 Average: 11311.2629 StdDev: 45.28 Min: 0 Median: 7686.5458 Max: 10018340 Percentiles: P50: 7686.55 P75: 14481.95 P99: 47232.60 P99.9: 79230.18 P99.99: 232998.86 ------------------------------------------------------ [ 0, 1 ] 71 0.000% 0.000% ( 2900, 4400 ] 291 0.000% 0.000% ( 4400, 6600 ] 34492060 43.115% 43.116% ######### ( 6600, 9900 ] 16727328 20.909% 64.025% #### ( 9900, 14000 ] 7845828 9.807% 73.832% ## ( 14000, 22000 ] 15510654 19.388% 93.220% #### ( 22000, 33000 ] 3216533 4.021% 97.241% # ( 33000, 50000 ] 1680859 2.101% 99.342% ( 50000, 75000 ] 439059 0.549% 99.891% ( 75000, 110000 ] 60540 0.076% 99.967% ( 110000, 170000 ] 14649 0.018% 99.985% ( 170000, 250000 ] 5242 0.007% 99.991% ( 250000, 380000 ] 3260 0.004% 99.995% ( 380000, 570000 ] 1599 0.002% 99.997% ( 570000, 860000 ] 1043 0.001% 99.999% ( 860000, 1200000 ] 471 0.001% 99.999% ( 1200000, 1900000 ] 275 0.000% 100.000% ( 1900000, 2900000 ] 143 0.000% 100.000% ( 2900000, 4300000 ] 60 0.000% 100.000% ( 4300000, 6500000 ] 27 0.000% 100.000% ( 6500000, 9800000 ] 7 0.000% 100.000% ( 9800000, 14000000 ] 1 0.000% 100.000% Gather stats latency (us): Count: 46 Average: 980387.5870 StdDev: 60911.18 Min: 879155 Median: 1033777.7778 Max: 1261431 Percentiles: P50: 1033777.78 P75: 1120666.67 P99: 1261431.00 P99.9: 1261431.00 P99.99: 1261431.00 ------------------------------------------------------ ( 860000, 1200000 ] 45 97.826% 97.826% #################### ( 1200000, 1900000 ] 1 2.174% 100.000% Most recent cache entry stats: Number of entries: 1295133 Total charge: 9.88 GB Average key size: 23.4982 Average charge: 8.00 KB Unique deleters: 3 ``` Reviewed By: mrambacher Differential Revision: D28295742 Pulled By: pdillinger fbshipit-source-id: bbc4a552f91ba0fe10e5cc025c42cef5a81f2b95
4 years ago
assert(average_entries_per_lock < length || *state == 0);
uint32_t index_begin = *state >> (32 - length_bits);
uint32_t index_end = index_begin + average_entries_per_lock;
if (index_end >= length) {
// Going to end
index_end = length;
*state = UINT32_MAX;
} else {
New Cache API for gathering statistics (#8225) Summary: Adds a new Cache::ApplyToAllEntries API that we expect to use (in follow-up PRs) for efficiently gathering block cache statistics. Notable features vs. old ApplyToAllCacheEntries: * Includes key and deleter (in addition to value and charge). We could have passed in a Handle but then more virtual function calls would be needed to get the "fields" of each entry. We expect to use the 'deleter' to identify the origin of entries, perhaps even more. * Heavily tuned to minimize latency impact on operating cache. It does this by iterating over small sections of each cache shard while cycling through the shards. * Supports tuning roughly how many entries to operate on for each lock acquire and release, to control the impact on the latency of other operations without excessive lock acquire & release. The right balance can depend on the cost of the callback. Good default seems to be around 256. * There should be no need to disable thread safety. (I would expect uncontended locks to be sufficiently fast.) I have enhanced cache_bench to validate this approach: * Reports a histogram of ns per operation, so we can look at the ditribution of times, not just throughput (average). * Can add a thread for simulated "gather stats" which calls ApplyToAllEntries at a specified interval. We also generate a histogram of time to run ApplyToAllEntries. To make the iteration over some entries of each shard work as cleanly as possible, even with resize between next set of entries, I have re-arranged which hash bits are used for sharding and which for indexing within a shard. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8225 Test Plan: A couple of unit tests are added, but primary validation is manual, as the primary risk is to performance. The primary validation is using cache_bench to ensure that neither the minor hashing changes nor the simulated stats gathering significantly impact QPS or latency distribution. Note that adding op latency histogram seriously impacts the benchmark QPS, so for a fair baseline, we need the cache_bench changes (except remove simulated stat gathering to make it compile). In short, we don't see any reproducible difference in ops/sec or op latency unless we are gathering stats nearly continuously. Test uses 10GB block cache with 8KB values to be somewhat realistic in the number of items to iterate over. Baseline typical output: ``` Complete in 92.017 s; Rough parallel ops/sec = 869401 Thread ops/sec = 54662 Operation latency (ns): Count: 80000000 Average: 11223.9494 StdDev: 29.61 Min: 0 Median: 7759.3973 Max: 9620500 Percentiles: P50: 7759.40 P75: 14190.73 P99: 46922.75 P99.9: 77509.84 P99.99: 217030.58 ------------------------------------------------------ [ 0, 1 ] 68 0.000% 0.000% ( 2900, 4400 ] 89 0.000% 0.000% ( 4400, 6600 ] 33630240 42.038% 42.038% ######## ( 6600, 9900 ] 18129842 22.662% 64.700% ##### ( 9900, 14000 ] 7877533 9.847% 74.547% ## ( 14000, 22000 ] 15193238 18.992% 93.539% #### ( 22000, 33000 ] 3037061 3.796% 97.335% # ( 33000, 50000 ] 1626316 2.033% 99.368% ( 50000, 75000 ] 421532 0.527% 99.895% ( 75000, 110000 ] 56910 0.071% 99.966% ( 110000, 170000 ] 16134 0.020% 99.986% ( 170000, 250000 ] 5166 0.006% 99.993% ( 250000, 380000 ] 3017 0.004% 99.996% ( 380000, 570000 ] 1337 0.002% 99.998% ( 570000, 860000 ] 805 0.001% 99.999% ( 860000, 1200000 ] 319 0.000% 100.000% ( 1200000, 1900000 ] 231 0.000% 100.000% ( 1900000, 2900000 ] 100 0.000% 100.000% ( 2900000, 4300000 ] 39 0.000% 100.000% ( 4300000, 6500000 ] 16 0.000% 100.000% ( 6500000, 9800000 ] 7 0.000% 100.000% ``` New, gather_stats=false. Median thread ops/sec of 5 runs: ``` Complete in 92.030 s; Rough parallel ops/sec = 869285 Thread ops/sec = 54458 Operation latency (ns): Count: 80000000 Average: 11298.1027 StdDev: 42.18 Min: 0 Median: 7722.0822 Max: 6398720 Percentiles: P50: 7722.08 P75: 14294.68 P99: 47522.95 P99.9: 85292.16 P99.99: 228077.78 ------------------------------------------------------ [ 0, 1 ] 109 0.000% 0.000% ( 2900, 4400 ] 793 0.001% 0.001% ( 4400, 6600 ] 34054563 42.568% 42.569% ######### ( 6600, 9900 ] 17482646 21.853% 64.423% #### ( 9900, 14000 ] 7908180 9.885% 74.308% ## ( 14000, 22000 ] 15032072 18.790% 93.098% #### ( 22000, 33000 ] 3237834 4.047% 97.145% # ( 33000, 50000 ] 1736882 2.171% 99.316% ( 50000, 75000 ] 446851 0.559% 99.875% ( 75000, 110000 ] 68251 0.085% 99.960% ( 110000, 170000 ] 18592 0.023% 99.983% ( 170000, 250000 ] 7200 0.009% 99.992% ( 250000, 380000 ] 3334 0.004% 99.997% ( 380000, 570000 ] 1393 0.002% 99.998% ( 570000, 860000 ] 700 0.001% 99.999% ( 860000, 1200000 ] 293 0.000% 100.000% ( 1200000, 1900000 ] 196 0.000% 100.000% ( 1900000, 2900000 ] 69 0.000% 100.000% ( 2900000, 4300000 ] 32 0.000% 100.000% ( 4300000, 6500000 ] 10 0.000% 100.000% ``` New, gather_stats=true, 1 second delay between scans. Scans take about 1 second here so it's spending about 50% time scanning. Still the effect on ops/sec and latency seems to be in the noise. Median thread ops/sec of 5 runs: ``` Complete in 91.890 s; Rough parallel ops/sec = 870608 Thread ops/sec = 54551 Operation latency (ns): Count: 80000000 Average: 11311.2629 StdDev: 45.28 Min: 0 Median: 7686.5458 Max: 10018340 Percentiles: P50: 7686.55 P75: 14481.95 P99: 47232.60 P99.9: 79230.18 P99.99: 232998.86 ------------------------------------------------------ [ 0, 1 ] 71 0.000% 0.000% ( 2900, 4400 ] 291 0.000% 0.000% ( 4400, 6600 ] 34492060 43.115% 43.116% ######### ( 6600, 9900 ] 16727328 20.909% 64.025% #### ( 9900, 14000 ] 7845828 9.807% 73.832% ## ( 14000, 22000 ] 15510654 19.388% 93.220% #### ( 22000, 33000 ] 3216533 4.021% 97.241% # ( 33000, 50000 ] 1680859 2.101% 99.342% ( 50000, 75000 ] 439059 0.549% 99.891% ( 75000, 110000 ] 60540 0.076% 99.967% ( 110000, 170000 ] 14649 0.018% 99.985% ( 170000, 250000 ] 5242 0.007% 99.991% ( 250000, 380000 ] 3260 0.004% 99.995% ( 380000, 570000 ] 1599 0.002% 99.997% ( 570000, 860000 ] 1043 0.001% 99.999% ( 860000, 1200000 ] 471 0.001% 99.999% ( 1200000, 1900000 ] 275 0.000% 100.000% ( 1900000, 2900000 ] 143 0.000% 100.000% ( 2900000, 4300000 ] 60 0.000% 100.000% ( 4300000, 6500000 ] 27 0.000% 100.000% ( 6500000, 9800000 ] 7 0.000% 100.000% ( 9800000, 14000000 ] 1 0.000% 100.000% Gather stats latency (us): Count: 46 Average: 980387.5870 StdDev: 60911.18 Min: 879155 Median: 1033777.7778 Max: 1261431 Percentiles: P50: 1033777.78 P75: 1120666.67 P99: 1261431.00 P99.9: 1261431.00 P99.99: 1261431.00 ------------------------------------------------------ ( 860000, 1200000 ] 45 97.826% 97.826% #################### ( 1200000, 1900000 ] 1 2.174% 100.000% Most recent cache entry stats: Number of entries: 1295133 Total charge: 9.88 GB Average key size: 23.4982 Average charge: 8.00 KB Unique deleters: 3 ``` Reviewed By: mrambacher Differential Revision: D28295742 Pulled By: pdillinger fbshipit-source-id: bbc4a552f91ba0fe10e5cc025c42cef5a81f2b95
4 years ago
*state = index_end << (32 - length_bits);
}
New Cache API for gathering statistics (#8225) Summary: Adds a new Cache::ApplyToAllEntries API that we expect to use (in follow-up PRs) for efficiently gathering block cache statistics. Notable features vs. old ApplyToAllCacheEntries: * Includes key and deleter (in addition to value and charge). We could have passed in a Handle but then more virtual function calls would be needed to get the "fields" of each entry. We expect to use the 'deleter' to identify the origin of entries, perhaps even more. * Heavily tuned to minimize latency impact on operating cache. It does this by iterating over small sections of each cache shard while cycling through the shards. * Supports tuning roughly how many entries to operate on for each lock acquire and release, to control the impact on the latency of other operations without excessive lock acquire & release. The right balance can depend on the cost of the callback. Good default seems to be around 256. * There should be no need to disable thread safety. (I would expect uncontended locks to be sufficiently fast.) I have enhanced cache_bench to validate this approach: * Reports a histogram of ns per operation, so we can look at the ditribution of times, not just throughput (average). * Can add a thread for simulated "gather stats" which calls ApplyToAllEntries at a specified interval. We also generate a histogram of time to run ApplyToAllEntries. To make the iteration over some entries of each shard work as cleanly as possible, even with resize between next set of entries, I have re-arranged which hash bits are used for sharding and which for indexing within a shard. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8225 Test Plan: A couple of unit tests are added, but primary validation is manual, as the primary risk is to performance. The primary validation is using cache_bench to ensure that neither the minor hashing changes nor the simulated stats gathering significantly impact QPS or latency distribution. Note that adding op latency histogram seriously impacts the benchmark QPS, so for a fair baseline, we need the cache_bench changes (except remove simulated stat gathering to make it compile). In short, we don't see any reproducible difference in ops/sec or op latency unless we are gathering stats nearly continuously. Test uses 10GB block cache with 8KB values to be somewhat realistic in the number of items to iterate over. Baseline typical output: ``` Complete in 92.017 s; Rough parallel ops/sec = 869401 Thread ops/sec = 54662 Operation latency (ns): Count: 80000000 Average: 11223.9494 StdDev: 29.61 Min: 0 Median: 7759.3973 Max: 9620500 Percentiles: P50: 7759.40 P75: 14190.73 P99: 46922.75 P99.9: 77509.84 P99.99: 217030.58 ------------------------------------------------------ [ 0, 1 ] 68 0.000% 0.000% ( 2900, 4400 ] 89 0.000% 0.000% ( 4400, 6600 ] 33630240 42.038% 42.038% ######## ( 6600, 9900 ] 18129842 22.662% 64.700% ##### ( 9900, 14000 ] 7877533 9.847% 74.547% ## ( 14000, 22000 ] 15193238 18.992% 93.539% #### ( 22000, 33000 ] 3037061 3.796% 97.335% # ( 33000, 50000 ] 1626316 2.033% 99.368% ( 50000, 75000 ] 421532 0.527% 99.895% ( 75000, 110000 ] 56910 0.071% 99.966% ( 110000, 170000 ] 16134 0.020% 99.986% ( 170000, 250000 ] 5166 0.006% 99.993% ( 250000, 380000 ] 3017 0.004% 99.996% ( 380000, 570000 ] 1337 0.002% 99.998% ( 570000, 860000 ] 805 0.001% 99.999% ( 860000, 1200000 ] 319 0.000% 100.000% ( 1200000, 1900000 ] 231 0.000% 100.000% ( 1900000, 2900000 ] 100 0.000% 100.000% ( 2900000, 4300000 ] 39 0.000% 100.000% ( 4300000, 6500000 ] 16 0.000% 100.000% ( 6500000, 9800000 ] 7 0.000% 100.000% ``` New, gather_stats=false. Median thread ops/sec of 5 runs: ``` Complete in 92.030 s; Rough parallel ops/sec = 869285 Thread ops/sec = 54458 Operation latency (ns): Count: 80000000 Average: 11298.1027 StdDev: 42.18 Min: 0 Median: 7722.0822 Max: 6398720 Percentiles: P50: 7722.08 P75: 14294.68 P99: 47522.95 P99.9: 85292.16 P99.99: 228077.78 ------------------------------------------------------ [ 0, 1 ] 109 0.000% 0.000% ( 2900, 4400 ] 793 0.001% 0.001% ( 4400, 6600 ] 34054563 42.568% 42.569% ######### ( 6600, 9900 ] 17482646 21.853% 64.423% #### ( 9900, 14000 ] 7908180 9.885% 74.308% ## ( 14000, 22000 ] 15032072 18.790% 93.098% #### ( 22000, 33000 ] 3237834 4.047% 97.145% # ( 33000, 50000 ] 1736882 2.171% 99.316% ( 50000, 75000 ] 446851 0.559% 99.875% ( 75000, 110000 ] 68251 0.085% 99.960% ( 110000, 170000 ] 18592 0.023% 99.983% ( 170000, 250000 ] 7200 0.009% 99.992% ( 250000, 380000 ] 3334 0.004% 99.997% ( 380000, 570000 ] 1393 0.002% 99.998% ( 570000, 860000 ] 700 0.001% 99.999% ( 860000, 1200000 ] 293 0.000% 100.000% ( 1200000, 1900000 ] 196 0.000% 100.000% ( 1900000, 2900000 ] 69 0.000% 100.000% ( 2900000, 4300000 ] 32 0.000% 100.000% ( 4300000, 6500000 ] 10 0.000% 100.000% ``` New, gather_stats=true, 1 second delay between scans. Scans take about 1 second here so it's spending about 50% time scanning. Still the effect on ops/sec and latency seems to be in the noise. Median thread ops/sec of 5 runs: ``` Complete in 91.890 s; Rough parallel ops/sec = 870608 Thread ops/sec = 54551 Operation latency (ns): Count: 80000000 Average: 11311.2629 StdDev: 45.28 Min: 0 Median: 7686.5458 Max: 10018340 Percentiles: P50: 7686.55 P75: 14481.95 P99: 47232.60 P99.9: 79230.18 P99.99: 232998.86 ------------------------------------------------------ [ 0, 1 ] 71 0.000% 0.000% ( 2900, 4400 ] 291 0.000% 0.000% ( 4400, 6600 ] 34492060 43.115% 43.116% ######### ( 6600, 9900 ] 16727328 20.909% 64.025% #### ( 9900, 14000 ] 7845828 9.807% 73.832% ## ( 14000, 22000 ] 15510654 19.388% 93.220% #### ( 22000, 33000 ] 3216533 4.021% 97.241% # ( 33000, 50000 ] 1680859 2.101% 99.342% ( 50000, 75000 ] 439059 0.549% 99.891% ( 75000, 110000 ] 60540 0.076% 99.967% ( 110000, 170000 ] 14649 0.018% 99.985% ( 170000, 250000 ] 5242 0.007% 99.991% ( 250000, 380000 ] 3260 0.004% 99.995% ( 380000, 570000 ] 1599 0.002% 99.997% ( 570000, 860000 ] 1043 0.001% 99.999% ( 860000, 1200000 ] 471 0.001% 99.999% ( 1200000, 1900000 ] 275 0.000% 100.000% ( 1900000, 2900000 ] 143 0.000% 100.000% ( 2900000, 4300000 ] 60 0.000% 100.000% ( 4300000, 6500000 ] 27 0.000% 100.000% ( 6500000, 9800000 ] 7 0.000% 100.000% ( 9800000, 14000000 ] 1 0.000% 100.000% Gather stats latency (us): Count: 46 Average: 980387.5870 StdDev: 60911.18 Min: 879155 Median: 1033777.7778 Max: 1261431 Percentiles: P50: 1033777.78 P75: 1120666.67 P99: 1261431.00 P99.9: 1261431.00 P99.99: 1261431.00 ------------------------------------------------------ ( 860000, 1200000 ] 45 97.826% 97.826% #################### ( 1200000, 1900000 ] 1 2.174% 100.000% Most recent cache entry stats: Number of entries: 1295133 Total charge: 9.88 GB Average key size: 23.4982 Average charge: 8.00 KB Unique deleters: 3 ``` Reviewed By: mrambacher Differential Revision: D28295742 Pulled By: pdillinger fbshipit-source-id: bbc4a552f91ba0fe10e5cc025c42cef5a81f2b95
4 years ago
table_.ApplyToEntriesRange(
[callback,
metadata_charge_policy = metadata_charge_policy_](LRUHandle* h) {
Initial support for secondary cache in LRUCache (#8271) Summary: Defined the abstract interface for a secondary cache in include/rocksdb/secondary_cache.h, and updated LRUCacheOptions to take a std::shared_ptr<SecondaryCache>. An item is initially inserted into the LRU (primary) cache. When it ages out and evicted from memory, its inserted into the secondary cache. On a LRU cache miss and successful lookup in the secondary cache, the item is promoted to the LRU cache. Only support synchronous lookup currently. The secondary cache would be used to implement a persistent (flash cache) or compressed cache. Tests: Results from cache_bench and db_bench don't show any regression due to these changes. cache_bench results before and after this change - Command ```./cache_bench -ops_per_thread=10000000 -threads=1``` Before ```Complete in 40.688 s; QPS = 245774``` ```Complete in 40.486 s; QPS = 246996``` ```Complete in 42.019 s; QPS = 237989``` After ```Complete in 40.672 s; QPS = 245869``` ```Complete in 44.622 s; QPS = 224107``` ```Complete in 42.445 s; QPS = 235599``` db_bench results before this change, and with this change + https://github.com/facebook/rocksdb/issues/8213 and https://github.com/facebook/rocksdb/issues/8191 - Commands ```./db_bench --benchmarks="fillseq,compact" -num=30000000 -key_size=32 -value_size=256 -use_direct_io_for_flush_and_compaction=true -db=/home/anand76/nvm_cache/db -partition_index_and_filters=true``` ```./db_bench -db=/home/anand76/nvm_cache/db -use_existing_db=true -benchmarks=readrandom -num=30000000 -key_size=32 -value_size=256 -use_direct_reads=true -cache_size=1073741824 -cache_numshardbits=6 -cache_index_and_filter_blocks=true -read_random_exp_range=17 -statistics -partition_index_and_filters=true -threads=16 -duration=300``` Before ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 80.702 micros/op 198104 ops/sec; 54.4 MB/s (3708999 of 3708999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 87.124 micros/op 183625 ops/sec; 50.4 MB/s (3439999 of 3439999 found) ``` After ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 77.653 micros/op 206025 ops/sec; 56.6 MB/s (3866999 of 3866999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 84.962 micros/op 188299 ops/sec; 51.7 MB/s (3535999 of 3535999 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8271 Reviewed By: zhichao-cao Differential Revision: D28357511 Pulled By: anand1976 fbshipit-source-id: d1cfa236f00e649a18c53328be10a8062a4b6da2
4 years ago
DeleterFn deleter = h->IsSecondaryCacheCompatible()
? h->info_.helper->del_cb
: h->info_.deleter;
callback(h->key(), h->value, h->GetCharge(metadata_charge_policy),
deleter);
New Cache API for gathering statistics (#8225) Summary: Adds a new Cache::ApplyToAllEntries API that we expect to use (in follow-up PRs) for efficiently gathering block cache statistics. Notable features vs. old ApplyToAllCacheEntries: * Includes key and deleter (in addition to value and charge). We could have passed in a Handle but then more virtual function calls would be needed to get the "fields" of each entry. We expect to use the 'deleter' to identify the origin of entries, perhaps even more. * Heavily tuned to minimize latency impact on operating cache. It does this by iterating over small sections of each cache shard while cycling through the shards. * Supports tuning roughly how many entries to operate on for each lock acquire and release, to control the impact on the latency of other operations without excessive lock acquire & release. The right balance can depend on the cost of the callback. Good default seems to be around 256. * There should be no need to disable thread safety. (I would expect uncontended locks to be sufficiently fast.) I have enhanced cache_bench to validate this approach: * Reports a histogram of ns per operation, so we can look at the ditribution of times, not just throughput (average). * Can add a thread for simulated "gather stats" which calls ApplyToAllEntries at a specified interval. We also generate a histogram of time to run ApplyToAllEntries. To make the iteration over some entries of each shard work as cleanly as possible, even with resize between next set of entries, I have re-arranged which hash bits are used for sharding and which for indexing within a shard. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8225 Test Plan: A couple of unit tests are added, but primary validation is manual, as the primary risk is to performance. The primary validation is using cache_bench to ensure that neither the minor hashing changes nor the simulated stats gathering significantly impact QPS or latency distribution. Note that adding op latency histogram seriously impacts the benchmark QPS, so for a fair baseline, we need the cache_bench changes (except remove simulated stat gathering to make it compile). In short, we don't see any reproducible difference in ops/sec or op latency unless we are gathering stats nearly continuously. Test uses 10GB block cache with 8KB values to be somewhat realistic in the number of items to iterate over. Baseline typical output: ``` Complete in 92.017 s; Rough parallel ops/sec = 869401 Thread ops/sec = 54662 Operation latency (ns): Count: 80000000 Average: 11223.9494 StdDev: 29.61 Min: 0 Median: 7759.3973 Max: 9620500 Percentiles: P50: 7759.40 P75: 14190.73 P99: 46922.75 P99.9: 77509.84 P99.99: 217030.58 ------------------------------------------------------ [ 0, 1 ] 68 0.000% 0.000% ( 2900, 4400 ] 89 0.000% 0.000% ( 4400, 6600 ] 33630240 42.038% 42.038% ######## ( 6600, 9900 ] 18129842 22.662% 64.700% ##### ( 9900, 14000 ] 7877533 9.847% 74.547% ## ( 14000, 22000 ] 15193238 18.992% 93.539% #### ( 22000, 33000 ] 3037061 3.796% 97.335% # ( 33000, 50000 ] 1626316 2.033% 99.368% ( 50000, 75000 ] 421532 0.527% 99.895% ( 75000, 110000 ] 56910 0.071% 99.966% ( 110000, 170000 ] 16134 0.020% 99.986% ( 170000, 250000 ] 5166 0.006% 99.993% ( 250000, 380000 ] 3017 0.004% 99.996% ( 380000, 570000 ] 1337 0.002% 99.998% ( 570000, 860000 ] 805 0.001% 99.999% ( 860000, 1200000 ] 319 0.000% 100.000% ( 1200000, 1900000 ] 231 0.000% 100.000% ( 1900000, 2900000 ] 100 0.000% 100.000% ( 2900000, 4300000 ] 39 0.000% 100.000% ( 4300000, 6500000 ] 16 0.000% 100.000% ( 6500000, 9800000 ] 7 0.000% 100.000% ``` New, gather_stats=false. Median thread ops/sec of 5 runs: ``` Complete in 92.030 s; Rough parallel ops/sec = 869285 Thread ops/sec = 54458 Operation latency (ns): Count: 80000000 Average: 11298.1027 StdDev: 42.18 Min: 0 Median: 7722.0822 Max: 6398720 Percentiles: P50: 7722.08 P75: 14294.68 P99: 47522.95 P99.9: 85292.16 P99.99: 228077.78 ------------------------------------------------------ [ 0, 1 ] 109 0.000% 0.000% ( 2900, 4400 ] 793 0.001% 0.001% ( 4400, 6600 ] 34054563 42.568% 42.569% ######### ( 6600, 9900 ] 17482646 21.853% 64.423% #### ( 9900, 14000 ] 7908180 9.885% 74.308% ## ( 14000, 22000 ] 15032072 18.790% 93.098% #### ( 22000, 33000 ] 3237834 4.047% 97.145% # ( 33000, 50000 ] 1736882 2.171% 99.316% ( 50000, 75000 ] 446851 0.559% 99.875% ( 75000, 110000 ] 68251 0.085% 99.960% ( 110000, 170000 ] 18592 0.023% 99.983% ( 170000, 250000 ] 7200 0.009% 99.992% ( 250000, 380000 ] 3334 0.004% 99.997% ( 380000, 570000 ] 1393 0.002% 99.998% ( 570000, 860000 ] 700 0.001% 99.999% ( 860000, 1200000 ] 293 0.000% 100.000% ( 1200000, 1900000 ] 196 0.000% 100.000% ( 1900000, 2900000 ] 69 0.000% 100.000% ( 2900000, 4300000 ] 32 0.000% 100.000% ( 4300000, 6500000 ] 10 0.000% 100.000% ``` New, gather_stats=true, 1 second delay between scans. Scans take about 1 second here so it's spending about 50% time scanning. Still the effect on ops/sec and latency seems to be in the noise. Median thread ops/sec of 5 runs: ``` Complete in 91.890 s; Rough parallel ops/sec = 870608 Thread ops/sec = 54551 Operation latency (ns): Count: 80000000 Average: 11311.2629 StdDev: 45.28 Min: 0 Median: 7686.5458 Max: 10018340 Percentiles: P50: 7686.55 P75: 14481.95 P99: 47232.60 P99.9: 79230.18 P99.99: 232998.86 ------------------------------------------------------ [ 0, 1 ] 71 0.000% 0.000% ( 2900, 4400 ] 291 0.000% 0.000% ( 4400, 6600 ] 34492060 43.115% 43.116% ######### ( 6600, 9900 ] 16727328 20.909% 64.025% #### ( 9900, 14000 ] 7845828 9.807% 73.832% ## ( 14000, 22000 ] 15510654 19.388% 93.220% #### ( 22000, 33000 ] 3216533 4.021% 97.241% # ( 33000, 50000 ] 1680859 2.101% 99.342% ( 50000, 75000 ] 439059 0.549% 99.891% ( 75000, 110000 ] 60540 0.076% 99.967% ( 110000, 170000 ] 14649 0.018% 99.985% ( 170000, 250000 ] 5242 0.007% 99.991% ( 250000, 380000 ] 3260 0.004% 99.995% ( 380000, 570000 ] 1599 0.002% 99.997% ( 570000, 860000 ] 1043 0.001% 99.999% ( 860000, 1200000 ] 471 0.001% 99.999% ( 1200000, 1900000 ] 275 0.000% 100.000% ( 1900000, 2900000 ] 143 0.000% 100.000% ( 2900000, 4300000 ] 60 0.000% 100.000% ( 4300000, 6500000 ] 27 0.000% 100.000% ( 6500000, 9800000 ] 7 0.000% 100.000% ( 9800000, 14000000 ] 1 0.000% 100.000% Gather stats latency (us): Count: 46 Average: 980387.5870 StdDev: 60911.18 Min: 879155 Median: 1033777.7778 Max: 1261431 Percentiles: P50: 1033777.78 P75: 1120666.67 P99: 1261431.00 P99.9: 1261431.00 P99.99: 1261431.00 ------------------------------------------------------ ( 860000, 1200000 ] 45 97.826% 97.826% #################### ( 1200000, 1900000 ] 1 2.174% 100.000% Most recent cache entry stats: Number of entries: 1295133 Total charge: 9.88 GB Average key size: 23.4982 Average charge: 8.00 KB Unique deleters: 3 ``` Reviewed By: mrambacher Differential Revision: D28295742 Pulled By: pdillinger fbshipit-source-id: bbc4a552f91ba0fe10e5cc025c42cef5a81f2b95
4 years ago
},
index_begin, index_end);
}
void LRUCacheShard::TEST_GetLRUList(LRUHandle** lru, LRUHandle** lru_low_pri,
LRUHandle** lru_bottom_pri) {
Use optimized folly DistributedMutex in LRUCache when available (#10179) Summary: folly DistributedMutex is faster than standard mutexes though imposes some static obligations on usage. See https://github.com/facebook/folly/blob/main/folly/synchronization/DistributedMutex.h for details. Here we use this alternative for our Cache implementations (especially LRUCache) for better locking performance, when RocksDB is compiled with folly. Also added information about which distributed mutex implementation is being used to cache_bench output and to DB LOG. Intended follow-up: * Use DMutex in more places, perhaps improving API to support non-scoped locking * Fix linking with fbcode compiler (needs ROCKSDB_NO_FBCODE=1 currently) Credit: Thanks Siying for reminding me about this line of work that was previously left unfinished. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10179 Test Plan: for correctness, existing tests. CircleCI config updated. Also Meta-internal buck build updated. For performance, ran simultaneous before & after cache_bench. Out of three comparison runs, the middle improvement to ops/sec was +21%: Baseline: USE_CLANG=1 DEBUG_LEVEL=0 make -j24 cache_bench (fbcode compiler) ``` Complete in 20.201 s; Rough parallel ops/sec = 1584062 Thread ops/sec = 107176 Operation latency (ns): Count: 32000000 Average: 9257.9421 StdDev: 122412.04 Min: 134 Median: 3623.0493 Max: 56918500 Percentiles: P50: 3623.05 P75: 10288.02 P99: 30219.35 P99.9: 683522.04 P99.99: 7302791.63 ``` New: (add USE_FOLLY=1) ``` Complete in 16.674 s; Rough parallel ops/sec = 1919135 (+21%) Thread ops/sec = 135487 Operation latency (ns): Count: 32000000 Average: 7304.9294 StdDev: 108530.28 Min: 132 Median: 3777.6012 Max: 91030902 Percentiles: P50: 3777.60 P75: 10169.89 P99: 24504.51 P99.9: 59721.59 P99.99: 1861151.83 ``` Reviewed By: anand1976 Differential Revision: D37182983 Pulled By: pdillinger fbshipit-source-id: a17eb05f25b832b6a2c1356f5c657e831a5af8d1
2 years ago
DMutexLock l(mutex_);
*lru = &lru_;
*lru_low_pri = lru_low_pri_;
*lru_bottom_pri = lru_bottom_pri_;
}
size_t LRUCacheShard::TEST_GetLRUSize() {
Use optimized folly DistributedMutex in LRUCache when available (#10179) Summary: folly DistributedMutex is faster than standard mutexes though imposes some static obligations on usage. See https://github.com/facebook/folly/blob/main/folly/synchronization/DistributedMutex.h for details. Here we use this alternative for our Cache implementations (especially LRUCache) for better locking performance, when RocksDB is compiled with folly. Also added information about which distributed mutex implementation is being used to cache_bench output and to DB LOG. Intended follow-up: * Use DMutex in more places, perhaps improving API to support non-scoped locking * Fix linking with fbcode compiler (needs ROCKSDB_NO_FBCODE=1 currently) Credit: Thanks Siying for reminding me about this line of work that was previously left unfinished. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10179 Test Plan: for correctness, existing tests. CircleCI config updated. Also Meta-internal buck build updated. For performance, ran simultaneous before & after cache_bench. Out of three comparison runs, the middle improvement to ops/sec was +21%: Baseline: USE_CLANG=1 DEBUG_LEVEL=0 make -j24 cache_bench (fbcode compiler) ``` Complete in 20.201 s; Rough parallel ops/sec = 1584062 Thread ops/sec = 107176 Operation latency (ns): Count: 32000000 Average: 9257.9421 StdDev: 122412.04 Min: 134 Median: 3623.0493 Max: 56918500 Percentiles: P50: 3623.05 P75: 10288.02 P99: 30219.35 P99.9: 683522.04 P99.99: 7302791.63 ``` New: (add USE_FOLLY=1) ``` Complete in 16.674 s; Rough parallel ops/sec = 1919135 (+21%) Thread ops/sec = 135487 Operation latency (ns): Count: 32000000 Average: 7304.9294 StdDev: 108530.28 Min: 132 Median: 3777.6012 Max: 91030902 Percentiles: P50: 3777.60 P75: 10169.89 P99: 24504.51 P99.9: 59721.59 P99.99: 1861151.83 ``` Reviewed By: anand1976 Differential Revision: D37182983 Pulled By: pdillinger fbshipit-source-id: a17eb05f25b832b6a2c1356f5c657e831a5af8d1
2 years ago
DMutexLock l(mutex_);
LRUHandle* lru_handle = lru_.next;
size_t lru_size = 0;
while (lru_handle != &lru_) {
lru_size++;
lru_handle = lru_handle->next;
}
return lru_size;
}
double LRUCacheShard::GetHighPriPoolRatio() {
Use optimized folly DistributedMutex in LRUCache when available (#10179) Summary: folly DistributedMutex is faster than standard mutexes though imposes some static obligations on usage. See https://github.com/facebook/folly/blob/main/folly/synchronization/DistributedMutex.h for details. Here we use this alternative for our Cache implementations (especially LRUCache) for better locking performance, when RocksDB is compiled with folly. Also added information about which distributed mutex implementation is being used to cache_bench output and to DB LOG. Intended follow-up: * Use DMutex in more places, perhaps improving API to support non-scoped locking * Fix linking with fbcode compiler (needs ROCKSDB_NO_FBCODE=1 currently) Credit: Thanks Siying for reminding me about this line of work that was previously left unfinished. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10179 Test Plan: for correctness, existing tests. CircleCI config updated. Also Meta-internal buck build updated. For performance, ran simultaneous before & after cache_bench. Out of three comparison runs, the middle improvement to ops/sec was +21%: Baseline: USE_CLANG=1 DEBUG_LEVEL=0 make -j24 cache_bench (fbcode compiler) ``` Complete in 20.201 s; Rough parallel ops/sec = 1584062 Thread ops/sec = 107176 Operation latency (ns): Count: 32000000 Average: 9257.9421 StdDev: 122412.04 Min: 134 Median: 3623.0493 Max: 56918500 Percentiles: P50: 3623.05 P75: 10288.02 P99: 30219.35 P99.9: 683522.04 P99.99: 7302791.63 ``` New: (add USE_FOLLY=1) ``` Complete in 16.674 s; Rough parallel ops/sec = 1919135 (+21%) Thread ops/sec = 135487 Operation latency (ns): Count: 32000000 Average: 7304.9294 StdDev: 108530.28 Min: 132 Median: 3777.6012 Max: 91030902 Percentiles: P50: 3777.60 P75: 10169.89 P99: 24504.51 P99.9: 59721.59 P99.99: 1861151.83 ``` Reviewed By: anand1976 Differential Revision: D37182983 Pulled By: pdillinger fbshipit-source-id: a17eb05f25b832b6a2c1356f5c657e831a5af8d1
2 years ago
DMutexLock l(mutex_);
return high_pri_pool_ratio_;
}
double LRUCacheShard::GetLowPriPoolRatio() {
DMutexLock l(mutex_);
return low_pri_pool_ratio_;
}
void LRUCacheShard::LRU_Remove(LRUHandle* e) {
Modifed the LRU cache eviction code so that it doesn't evict blocks which have exteranl references Summary: Currently, blocks which have more than one reference (ie referenced by something other than cache itself) are evicted from cache. This doesn't make much sense: - blocks are still in RAM, so the RAM usage reported by the cache is incorrect - if the same block is needed by another iterator, it will be loaded and decompressed again This diff changes the reference counting scheme a bit. Previously, if the cache contained the block, this was accounted for in its refcount. After this change, the refcount is only used to track external references. There is a boolean flag which indicates whether or not the block is contained in the cache. This diff also changes how LRU list is used. Previously, both hashtable and the LRU list contained all blocks. After this change, the LRU list contains blocks with the refcount==0, ie those which can be evicted from the cache. Note that this change still allows for cache to grow beyond its capacity. This happens when all blocks are pinned (ie refcount>0). This is consistent with the current behavior. The cache's insert function never fails. I spent lots of time trying to make table_reader and other places work with the insert which might failed. It turned out to be pretty hard. It might really destabilize some customers, so finally, I decided against doing this. table_cache_remove_scan_count_limit option will be unneeded after this change, but I will remove it in the following diff, if this one gets approved Test Plan: Ran tests, made sure they pass Reviewers: sdong, ljin Differential Revision: https://reviews.facebook.net/D25503
10 years ago
assert(e->next != nullptr);
assert(e->prev != nullptr);
if (lru_low_pri_ == e) {
lru_low_pri_ = e->prev;
}
if (lru_bottom_pri_ == e) {
lru_bottom_pri_ = e->prev;
}
e->next->prev = e->prev;
e->prev->next = e->next;
Modifed the LRU cache eviction code so that it doesn't evict blocks which have exteranl references Summary: Currently, blocks which have more than one reference (ie referenced by something other than cache itself) are evicted from cache. This doesn't make much sense: - blocks are still in RAM, so the RAM usage reported by the cache is incorrect - if the same block is needed by another iterator, it will be loaded and decompressed again This diff changes the reference counting scheme a bit. Previously, if the cache contained the block, this was accounted for in its refcount. After this change, the refcount is only used to track external references. There is a boolean flag which indicates whether or not the block is contained in the cache. This diff also changes how LRU list is used. Previously, both hashtable and the LRU list contained all blocks. After this change, the LRU list contains blocks with the refcount==0, ie those which can be evicted from the cache. Note that this change still allows for cache to grow beyond its capacity. This happens when all blocks are pinned (ie refcount>0). This is consistent with the current behavior. The cache's insert function never fails. I spent lots of time trying to make table_reader and other places work with the insert which might failed. It turned out to be pretty hard. It might really destabilize some customers, so finally, I decided against doing this. table_cache_remove_scan_count_limit option will be unneeded after this change, but I will remove it in the following diff, if this one gets approved Test Plan: Ran tests, made sure they pass Reviewers: sdong, ljin Differential Revision: https://reviews.facebook.net/D25503
10 years ago
e->prev = e->next = nullptr;
assert(lru_usage_ >= e->total_charge);
lru_usage_ -= e->total_charge;
assert(!e->InHighPriPool() || !e->InLowPriPool());
if (e->InHighPriPool()) {
assert(high_pri_pool_usage_ >= e->total_charge);
high_pri_pool_usage_ -= e->total_charge;
} else if (e->InLowPriPool()) {
assert(low_pri_pool_usage_ >= e->total_charge);
low_pri_pool_usage_ -= e->total_charge;
}
}
void LRUCacheShard::LRU_Insert(LRUHandle* e) {
Modifed the LRU cache eviction code so that it doesn't evict blocks which have exteranl references Summary: Currently, blocks which have more than one reference (ie referenced by something other than cache itself) are evicted from cache. This doesn't make much sense: - blocks are still in RAM, so the RAM usage reported by the cache is incorrect - if the same block is needed by another iterator, it will be loaded and decompressed again This diff changes the reference counting scheme a bit. Previously, if the cache contained the block, this was accounted for in its refcount. After this change, the refcount is only used to track external references. There is a boolean flag which indicates whether or not the block is contained in the cache. This diff also changes how LRU list is used. Previously, both hashtable and the LRU list contained all blocks. After this change, the LRU list contains blocks with the refcount==0, ie those which can be evicted from the cache. Note that this change still allows for cache to grow beyond its capacity. This happens when all blocks are pinned (ie refcount>0). This is consistent with the current behavior. The cache's insert function never fails. I spent lots of time trying to make table_reader and other places work with the insert which might failed. It turned out to be pretty hard. It might really destabilize some customers, so finally, I decided against doing this. table_cache_remove_scan_count_limit option will be unneeded after this change, but I will remove it in the following diff, if this one gets approved Test Plan: Ran tests, made sure they pass Reviewers: sdong, ljin Differential Revision: https://reviews.facebook.net/D25503
10 years ago
assert(e->next == nullptr);
assert(e->prev == nullptr);
if (high_pri_pool_ratio_ > 0 && (e->IsHighPri() || e->HasHit())) {
// Inset "e" to head of LRU list.
e->next = &lru_;
e->prev = lru_.prev;
e->prev->next = e;
e->next->prev = e;
e->SetInHighPriPool(true);
e->SetInLowPriPool(false);
high_pri_pool_usage_ += e->total_charge;
MaintainPoolSize();
} else if (low_pri_pool_ratio_ > 0 &&
(e->IsHighPri() || e->IsLowPri() || e->HasHit())) {
// Insert "e" to the head of low-pri pool.
e->next = lru_low_pri_->next;
e->prev = lru_low_pri_;
e->prev->next = e;
e->next->prev = e;
e->SetInHighPriPool(false);
e->SetInLowPriPool(true);
low_pri_pool_usage_ += e->total_charge;
MaintainPoolSize();
lru_low_pri_ = e;
} else {
// Insert "e" to the head of bottom-pri pool.
e->next = lru_bottom_pri_->next;
e->prev = lru_bottom_pri_;
e->prev->next = e;
e->next->prev = e;
e->SetInHighPriPool(false);
e->SetInLowPriPool(false);
// if the low-pri pool is empty, lru_low_pri_ also needs to be updated.
if (lru_bottom_pri_ == lru_low_pri_) {
lru_low_pri_ = e;
}
lru_bottom_pri_ = e;
}
lru_usage_ += e->total_charge;
}
void LRUCacheShard::MaintainPoolSize() {
while (high_pri_pool_usage_ > high_pri_pool_capacity_) {
// Overflow last entry in high-pri pool to low-pri pool.
lru_low_pri_ = lru_low_pri_->next;
assert(lru_low_pri_ != &lru_);
lru_low_pri_->SetInHighPriPool(false);
lru_low_pri_->SetInLowPriPool(true);
assert(high_pri_pool_usage_ >= lru_low_pri_->total_charge);
high_pri_pool_usage_ -= lru_low_pri_->total_charge;
low_pri_pool_usage_ += lru_low_pri_->total_charge;
}
while (low_pri_pool_usage_ > low_pri_pool_capacity_) {
// Overflow last entry in low-pri pool to bottom-pri pool.
lru_bottom_pri_ = lru_bottom_pri_->next;
assert(lru_bottom_pri_ != &lru_);
lru_bottom_pri_->SetInHighPriPool(false);
lru_bottom_pri_->SetInLowPriPool(false);
assert(low_pri_pool_usage_ >= lru_bottom_pri_->total_charge);
low_pri_pool_usage_ -= lru_bottom_pri_->total_charge;
}
}
void LRUCacheShard::EvictFromLRU(size_t charge,
autovector<LRUHandle*>* deleted) {
while ((usage_ + charge) > capacity_ && lru_.next != &lru_) {
LRUHandle* old = lru_.next;
// LRU list contains only elements which can be evicted.
assert(old->InCache() && !old->HasRefs());
LRU_Remove(old);
table_.Remove(old->key(), old->hash);
old->SetInCache(false);
assert(usage_ >= old->total_charge);
usage_ -= old->total_charge;
deleted->push_back(old);
}
}
Avoid recompressing cold block in CompressedSecondaryCache (#10527) Summary: **Summary:** When a block is firstly `Lookup` from the secondary cache, we just insert a dummy block in the primary cache (charging the actual size of the block) and don’t erase the block from the secondary cache. A standalone handle is returned from `Lookup`. Only if the block is hit again, we erase it from the secondary cache and add it into the primary cache. When a block is firstly evicted from the primary cache to the secondary cache, we just insert a dummy block (size 0) in the secondary cache. When the block is evicted again, it is treated as a hot block and is inserted into the secondary cache. **Implementation Details** Add a new state of LRUHandle: The handle is never inserted into the LRUCache (both hash table and LRU list) and it doesn't experience the above three states. The entry can be freed when refs becomes 0. (refs >= 1 && in_cache == false && IS_STANDALONE == true) The behaviors of `LRUCacheShard::Lookup()` are updated if the secondary_cache is CompressedSecondaryCache: 1. If a handle is found in primary cache: 1.1. If the handle's value is not nullptr, it is returned immediately. 1.2. If the handle's value is nullptr, this means the handle is a dummy one. For a dummy handle, if it was retrieved from secondary cache, it may still exist in secondary cache. - 1.2.1. If no valid handle can be `Lookup` from secondary cache, return nullptr. - 1.2.2. If the handle from secondary cache is valid, erase it from the secondary cache and add it into the primary cache. 2. If a handle is not found in primary cache: 2.1. If no valid handle can be `Lookup` from secondary cache, return nullptr. 2.2. If the handle from secondary cache is valid, insert a dummy block in the primary cache (charging the actual size of the block) and return a standalone handle. The behaviors of `LRUCacheShard::Promote()` are updated as follows: 1. If `e->sec_handle` has value, one of the following steps can happen: 1.1. Insert a dummy handle and return a standalone handle to caller when `secondary_cache_` is `CompressedSecondaryCache` and e is a standalone handle. 1.2. Insert the item into the primary cache and return the handle to caller. 1.3. Exception handling. 3. If `e->sec_handle` has no value, mark the item as not in cache and charge the cache as its only metadata that'll shortly be released. The behavior of `CompressedSecondaryCache::Insert()` is updated: 1. If a block is evicted from the primary cache for the first time, a dummy item is inserted. 4. If a dummy item is found for a block, the block is inserted into the secondary cache. The behavior of `CompressedSecondaryCache:::Lookup()` is updated: 1. If a handle is not found or it is a dummy item, a nullptr is returned. 2. If `erase_handle` is true, the handle is erased. The behaviors of `LRUCacheShard::Release()` are adjusted for the standalone handles. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10527 Test Plan: 1. stress tests. 5. unit tests. 6. CPU profiling for db_bench. Reviewed By: siying Differential Revision: D38747613 Pulled By: gitbw95 fbshipit-source-id: 74a1eba7e1957c9affb2bd2ae3e0194584fa6eca
2 years ago
void LRUCacheShard::TryInsertIntoSecondaryCache(
autovector<LRUHandle*> evicted_handles) {
for (auto entry : evicted_handles) {
if (secondary_cache_ && entry->IsSecondaryCacheCompatible() &&
!entry->IsInSecondaryCache()) {
secondary_cache_->Insert(entry->key(), entry->value, entry->info_.helper)
.PermitUncheckedError();
}
// Free the entries here outside of mutex for performance reasons.
entry->Free();
}
}
void LRUCacheShard::SetCapacity(size_t capacity) {
autovector<LRUHandle*> last_reference_list;
{
Use optimized folly DistributedMutex in LRUCache when available (#10179) Summary: folly DistributedMutex is faster than standard mutexes though imposes some static obligations on usage. See https://github.com/facebook/folly/blob/main/folly/synchronization/DistributedMutex.h for details. Here we use this alternative for our Cache implementations (especially LRUCache) for better locking performance, when RocksDB is compiled with folly. Also added information about which distributed mutex implementation is being used to cache_bench output and to DB LOG. Intended follow-up: * Use DMutex in more places, perhaps improving API to support non-scoped locking * Fix linking with fbcode compiler (needs ROCKSDB_NO_FBCODE=1 currently) Credit: Thanks Siying for reminding me about this line of work that was previously left unfinished. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10179 Test Plan: for correctness, existing tests. CircleCI config updated. Also Meta-internal buck build updated. For performance, ran simultaneous before & after cache_bench. Out of three comparison runs, the middle improvement to ops/sec was +21%: Baseline: USE_CLANG=1 DEBUG_LEVEL=0 make -j24 cache_bench (fbcode compiler) ``` Complete in 20.201 s; Rough parallel ops/sec = 1584062 Thread ops/sec = 107176 Operation latency (ns): Count: 32000000 Average: 9257.9421 StdDev: 122412.04 Min: 134 Median: 3623.0493 Max: 56918500 Percentiles: P50: 3623.05 P75: 10288.02 P99: 30219.35 P99.9: 683522.04 P99.99: 7302791.63 ``` New: (add USE_FOLLY=1) ``` Complete in 16.674 s; Rough parallel ops/sec = 1919135 (+21%) Thread ops/sec = 135487 Operation latency (ns): Count: 32000000 Average: 7304.9294 StdDev: 108530.28 Min: 132 Median: 3777.6012 Max: 91030902 Percentiles: P50: 3777.60 P75: 10169.89 P99: 24504.51 P99.9: 59721.59 P99.99: 1861151.83 ``` Reviewed By: anand1976 Differential Revision: D37182983 Pulled By: pdillinger fbshipit-source-id: a17eb05f25b832b6a2c1356f5c657e831a5af8d1
2 years ago
DMutexLock l(mutex_);
capacity_ = capacity;
high_pri_pool_capacity_ = capacity_ * high_pri_pool_ratio_;
low_pri_pool_capacity_ = capacity_ * low_pri_pool_ratio_;
EvictFromLRU(0, &last_reference_list);
}
Avoid recompressing cold block in CompressedSecondaryCache (#10527) Summary: **Summary:** When a block is firstly `Lookup` from the secondary cache, we just insert a dummy block in the primary cache (charging the actual size of the block) and don’t erase the block from the secondary cache. A standalone handle is returned from `Lookup`. Only if the block is hit again, we erase it from the secondary cache and add it into the primary cache. When a block is firstly evicted from the primary cache to the secondary cache, we just insert a dummy block (size 0) in the secondary cache. When the block is evicted again, it is treated as a hot block and is inserted into the secondary cache. **Implementation Details** Add a new state of LRUHandle: The handle is never inserted into the LRUCache (both hash table and LRU list) and it doesn't experience the above three states. The entry can be freed when refs becomes 0. (refs >= 1 && in_cache == false && IS_STANDALONE == true) The behaviors of `LRUCacheShard::Lookup()` are updated if the secondary_cache is CompressedSecondaryCache: 1. If a handle is found in primary cache: 1.1. If the handle's value is not nullptr, it is returned immediately. 1.2. If the handle's value is nullptr, this means the handle is a dummy one. For a dummy handle, if it was retrieved from secondary cache, it may still exist in secondary cache. - 1.2.1. If no valid handle can be `Lookup` from secondary cache, return nullptr. - 1.2.2. If the handle from secondary cache is valid, erase it from the secondary cache and add it into the primary cache. 2. If a handle is not found in primary cache: 2.1. If no valid handle can be `Lookup` from secondary cache, return nullptr. 2.2. If the handle from secondary cache is valid, insert a dummy block in the primary cache (charging the actual size of the block) and return a standalone handle. The behaviors of `LRUCacheShard::Promote()` are updated as follows: 1. If `e->sec_handle` has value, one of the following steps can happen: 1.1. Insert a dummy handle and return a standalone handle to caller when `secondary_cache_` is `CompressedSecondaryCache` and e is a standalone handle. 1.2. Insert the item into the primary cache and return the handle to caller. 1.3. Exception handling. 3. If `e->sec_handle` has no value, mark the item as not in cache and charge the cache as its only metadata that'll shortly be released. The behavior of `CompressedSecondaryCache::Insert()` is updated: 1. If a block is evicted from the primary cache for the first time, a dummy item is inserted. 4. If a dummy item is found for a block, the block is inserted into the secondary cache. The behavior of `CompressedSecondaryCache:::Lookup()` is updated: 1. If a handle is not found or it is a dummy item, a nullptr is returned. 2. If `erase_handle` is true, the handle is erased. The behaviors of `LRUCacheShard::Release()` are adjusted for the standalone handles. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10527 Test Plan: 1. stress tests. 5. unit tests. 6. CPU profiling for db_bench. Reviewed By: siying Differential Revision: D38747613 Pulled By: gitbw95 fbshipit-source-id: 74a1eba7e1957c9affb2bd2ae3e0194584fa6eca
2 years ago
TryInsertIntoSecondaryCache(last_reference_list);
}
void LRUCacheShard::SetStrictCapacityLimit(bool strict_capacity_limit) {
Use optimized folly DistributedMutex in LRUCache when available (#10179) Summary: folly DistributedMutex is faster than standard mutexes though imposes some static obligations on usage. See https://github.com/facebook/folly/blob/main/folly/synchronization/DistributedMutex.h for details. Here we use this alternative for our Cache implementations (especially LRUCache) for better locking performance, when RocksDB is compiled with folly. Also added information about which distributed mutex implementation is being used to cache_bench output and to DB LOG. Intended follow-up: * Use DMutex in more places, perhaps improving API to support non-scoped locking * Fix linking with fbcode compiler (needs ROCKSDB_NO_FBCODE=1 currently) Credit: Thanks Siying for reminding me about this line of work that was previously left unfinished. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10179 Test Plan: for correctness, existing tests. CircleCI config updated. Also Meta-internal buck build updated. For performance, ran simultaneous before & after cache_bench. Out of three comparison runs, the middle improvement to ops/sec was +21%: Baseline: USE_CLANG=1 DEBUG_LEVEL=0 make -j24 cache_bench (fbcode compiler) ``` Complete in 20.201 s; Rough parallel ops/sec = 1584062 Thread ops/sec = 107176 Operation latency (ns): Count: 32000000 Average: 9257.9421 StdDev: 122412.04 Min: 134 Median: 3623.0493 Max: 56918500 Percentiles: P50: 3623.05 P75: 10288.02 P99: 30219.35 P99.9: 683522.04 P99.99: 7302791.63 ``` New: (add USE_FOLLY=1) ``` Complete in 16.674 s; Rough parallel ops/sec = 1919135 (+21%) Thread ops/sec = 135487 Operation latency (ns): Count: 32000000 Average: 7304.9294 StdDev: 108530.28 Min: 132 Median: 3777.6012 Max: 91030902 Percentiles: P50: 3777.60 P75: 10169.89 P99: 24504.51 P99.9: 59721.59 P99.99: 1861151.83 ``` Reviewed By: anand1976 Differential Revision: D37182983 Pulled By: pdillinger fbshipit-source-id: a17eb05f25b832b6a2c1356f5c657e831a5af8d1
2 years ago
DMutexLock l(mutex_);
strict_capacity_limit_ = strict_capacity_limit;
}
Parallelize secondary cache lookup in MultiGet (#8405) Summary: Implement the ```WaitAll()``` interface in ```LRUCache``` to allow callers to issue multiple lookups in parallel and wait for all of them to complete. Modify ```MultiGet``` to use this to parallelize the secondary cache lookups in order to reduce the overall latency. A call to ```cache->Lookup()``` returns a handle that has an incomplete value (nullptr), and the caller can call ```cache->IsReady()``` to check whether the lookup is complete, and pass a vector of handles to ```WaitAll``` to wait for completion. If any of the lookups fail, ```MultiGet``` will read the block from the SST file. Another change in this PR is to rename ```SecondaryCacheHandle``` to ```SecondaryCacheResultHandle``` as it more accurately describes the return result of the secondary cache lookup, which is more like a future. Tests: 1. Add unit tests in lru_cache_test 2. Benchmark results with no secondary cache configured Master - ``` readrandom : 41.175 micros/op 388562 ops/sec; 106.7 MB/s (7277999 of 7277999 found) readrandom : 41.217 micros/op 388160 ops/sec; 106.6 MB/s (7274999 of 7274999 found) multireadrandom : 10.309 micros/op 1552082 ops/sec; (28908992 of 28908992 found) multireadrandom : 10.321 micros/op 1550218 ops/sec; (29081984 of 29081984 found) ``` This PR - ``` readrandom : 41.158 micros/op 388723 ops/sec; 106.8 MB/s (7290999 of 7290999 found) readrandom : 41.185 micros/op 388463 ops/sec; 106.7 MB/s (7287999 of 7287999 found) multireadrandom : 10.277 micros/op 1556801 ops/sec; (29346944 of 29346944 found) multireadrandom : 10.253 micros/op 1560539 ops/sec; (29274944 of 29274944 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8405 Reviewed By: zhichao-cao Differential Revision: D29190509 Pulled By: anand1976 fbshipit-source-id: 6f8eff6246712af8a297cfe22ea0d1c3b2a01bb0
3 years ago
Status LRUCacheShard::InsertItem(LRUHandle* e, Cache::Handle** handle,
bool free_handle_on_fail) {
Initial support for secondary cache in LRUCache (#8271) Summary: Defined the abstract interface for a secondary cache in include/rocksdb/secondary_cache.h, and updated LRUCacheOptions to take a std::shared_ptr<SecondaryCache>. An item is initially inserted into the LRU (primary) cache. When it ages out and evicted from memory, its inserted into the secondary cache. On a LRU cache miss and successful lookup in the secondary cache, the item is promoted to the LRU cache. Only support synchronous lookup currently. The secondary cache would be used to implement a persistent (flash cache) or compressed cache. Tests: Results from cache_bench and db_bench don't show any regression due to these changes. cache_bench results before and after this change - Command ```./cache_bench -ops_per_thread=10000000 -threads=1``` Before ```Complete in 40.688 s; QPS = 245774``` ```Complete in 40.486 s; QPS = 246996``` ```Complete in 42.019 s; QPS = 237989``` After ```Complete in 40.672 s; QPS = 245869``` ```Complete in 44.622 s; QPS = 224107``` ```Complete in 42.445 s; QPS = 235599``` db_bench results before this change, and with this change + https://github.com/facebook/rocksdb/issues/8213 and https://github.com/facebook/rocksdb/issues/8191 - Commands ```./db_bench --benchmarks="fillseq,compact" -num=30000000 -key_size=32 -value_size=256 -use_direct_io_for_flush_and_compaction=true -db=/home/anand76/nvm_cache/db -partition_index_and_filters=true``` ```./db_bench -db=/home/anand76/nvm_cache/db -use_existing_db=true -benchmarks=readrandom -num=30000000 -key_size=32 -value_size=256 -use_direct_reads=true -cache_size=1073741824 -cache_numshardbits=6 -cache_index_and_filter_blocks=true -read_random_exp_range=17 -statistics -partition_index_and_filters=true -threads=16 -duration=300``` Before ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 80.702 micros/op 198104 ops/sec; 54.4 MB/s (3708999 of 3708999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 87.124 micros/op 183625 ops/sec; 50.4 MB/s (3439999 of 3439999 found) ``` After ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 77.653 micros/op 206025 ops/sec; 56.6 MB/s (3866999 of 3866999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 84.962 micros/op 188299 ops/sec; 51.7 MB/s (3535999 of 3535999 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8271 Reviewed By: zhichao-cao Differential Revision: D28357511 Pulled By: anand1976 fbshipit-source-id: d1cfa236f00e649a18c53328be10a8062a4b6da2
4 years ago
Status s = Status::OK();
autovector<LRUHandle*> last_reference_list;
{
Use optimized folly DistributedMutex in LRUCache when available (#10179) Summary: folly DistributedMutex is faster than standard mutexes though imposes some static obligations on usage. See https://github.com/facebook/folly/blob/main/folly/synchronization/DistributedMutex.h for details. Here we use this alternative for our Cache implementations (especially LRUCache) for better locking performance, when RocksDB is compiled with folly. Also added information about which distributed mutex implementation is being used to cache_bench output and to DB LOG. Intended follow-up: * Use DMutex in more places, perhaps improving API to support non-scoped locking * Fix linking with fbcode compiler (needs ROCKSDB_NO_FBCODE=1 currently) Credit: Thanks Siying for reminding me about this line of work that was previously left unfinished. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10179 Test Plan: for correctness, existing tests. CircleCI config updated. Also Meta-internal buck build updated. For performance, ran simultaneous before & after cache_bench. Out of three comparison runs, the middle improvement to ops/sec was +21%: Baseline: USE_CLANG=1 DEBUG_LEVEL=0 make -j24 cache_bench (fbcode compiler) ``` Complete in 20.201 s; Rough parallel ops/sec = 1584062 Thread ops/sec = 107176 Operation latency (ns): Count: 32000000 Average: 9257.9421 StdDev: 122412.04 Min: 134 Median: 3623.0493 Max: 56918500 Percentiles: P50: 3623.05 P75: 10288.02 P99: 30219.35 P99.9: 683522.04 P99.99: 7302791.63 ``` New: (add USE_FOLLY=1) ``` Complete in 16.674 s; Rough parallel ops/sec = 1919135 (+21%) Thread ops/sec = 135487 Operation latency (ns): Count: 32000000 Average: 7304.9294 StdDev: 108530.28 Min: 132 Median: 3777.6012 Max: 91030902 Percentiles: P50: 3777.60 P75: 10169.89 P99: 24504.51 P99.9: 59721.59 P99.99: 1861151.83 ``` Reviewed By: anand1976 Differential Revision: D37182983 Pulled By: pdillinger fbshipit-source-id: a17eb05f25b832b6a2c1356f5c657e831a5af8d1
2 years ago
DMutexLock l(mutex_);
Initial support for secondary cache in LRUCache (#8271) Summary: Defined the abstract interface for a secondary cache in include/rocksdb/secondary_cache.h, and updated LRUCacheOptions to take a std::shared_ptr<SecondaryCache>. An item is initially inserted into the LRU (primary) cache. When it ages out and evicted from memory, its inserted into the secondary cache. On a LRU cache miss and successful lookup in the secondary cache, the item is promoted to the LRU cache. Only support synchronous lookup currently. The secondary cache would be used to implement a persistent (flash cache) or compressed cache. Tests: Results from cache_bench and db_bench don't show any regression due to these changes. cache_bench results before and after this change - Command ```./cache_bench -ops_per_thread=10000000 -threads=1``` Before ```Complete in 40.688 s; QPS = 245774``` ```Complete in 40.486 s; QPS = 246996``` ```Complete in 42.019 s; QPS = 237989``` After ```Complete in 40.672 s; QPS = 245869``` ```Complete in 44.622 s; QPS = 224107``` ```Complete in 42.445 s; QPS = 235599``` db_bench results before this change, and with this change + https://github.com/facebook/rocksdb/issues/8213 and https://github.com/facebook/rocksdb/issues/8191 - Commands ```./db_bench --benchmarks="fillseq,compact" -num=30000000 -key_size=32 -value_size=256 -use_direct_io_for_flush_and_compaction=true -db=/home/anand76/nvm_cache/db -partition_index_and_filters=true``` ```./db_bench -db=/home/anand76/nvm_cache/db -use_existing_db=true -benchmarks=readrandom -num=30000000 -key_size=32 -value_size=256 -use_direct_reads=true -cache_size=1073741824 -cache_numshardbits=6 -cache_index_and_filter_blocks=true -read_random_exp_range=17 -statistics -partition_index_and_filters=true -threads=16 -duration=300``` Before ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 80.702 micros/op 198104 ops/sec; 54.4 MB/s (3708999 of 3708999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 87.124 micros/op 183625 ops/sec; 50.4 MB/s (3439999 of 3439999 found) ``` After ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 77.653 micros/op 206025 ops/sec; 56.6 MB/s (3866999 of 3866999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 84.962 micros/op 188299 ops/sec; 51.7 MB/s (3535999 of 3535999 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8271 Reviewed By: zhichao-cao Differential Revision: D28357511 Pulled By: anand1976 fbshipit-source-id: d1cfa236f00e649a18c53328be10a8062a4b6da2
4 years ago
// Free the space following strict LRU policy until enough space
// is freed or the lru list is empty.
EvictFromLRU(e->total_charge, &last_reference_list);
Initial support for secondary cache in LRUCache (#8271) Summary: Defined the abstract interface for a secondary cache in include/rocksdb/secondary_cache.h, and updated LRUCacheOptions to take a std::shared_ptr<SecondaryCache>. An item is initially inserted into the LRU (primary) cache. When it ages out and evicted from memory, its inserted into the secondary cache. On a LRU cache miss and successful lookup in the secondary cache, the item is promoted to the LRU cache. Only support synchronous lookup currently. The secondary cache would be used to implement a persistent (flash cache) or compressed cache. Tests: Results from cache_bench and db_bench don't show any regression due to these changes. cache_bench results before and after this change - Command ```./cache_bench -ops_per_thread=10000000 -threads=1``` Before ```Complete in 40.688 s; QPS = 245774``` ```Complete in 40.486 s; QPS = 246996``` ```Complete in 42.019 s; QPS = 237989``` After ```Complete in 40.672 s; QPS = 245869``` ```Complete in 44.622 s; QPS = 224107``` ```Complete in 42.445 s; QPS = 235599``` db_bench results before this change, and with this change + https://github.com/facebook/rocksdb/issues/8213 and https://github.com/facebook/rocksdb/issues/8191 - Commands ```./db_bench --benchmarks="fillseq,compact" -num=30000000 -key_size=32 -value_size=256 -use_direct_io_for_flush_and_compaction=true -db=/home/anand76/nvm_cache/db -partition_index_and_filters=true``` ```./db_bench -db=/home/anand76/nvm_cache/db -use_existing_db=true -benchmarks=readrandom -num=30000000 -key_size=32 -value_size=256 -use_direct_reads=true -cache_size=1073741824 -cache_numshardbits=6 -cache_index_and_filter_blocks=true -read_random_exp_range=17 -statistics -partition_index_and_filters=true -threads=16 -duration=300``` Before ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 80.702 micros/op 198104 ops/sec; 54.4 MB/s (3708999 of 3708999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 87.124 micros/op 183625 ops/sec; 50.4 MB/s (3439999 of 3439999 found) ``` After ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 77.653 micros/op 206025 ops/sec; 56.6 MB/s (3866999 of 3866999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 84.962 micros/op 188299 ops/sec; 51.7 MB/s (3535999 of 3535999 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8271 Reviewed By: zhichao-cao Differential Revision: D28357511 Pulled By: anand1976 fbshipit-source-id: d1cfa236f00e649a18c53328be10a8062a4b6da2
4 years ago
if ((usage_ + e->total_charge) > capacity_ &&
Initial support for secondary cache in LRUCache (#8271) Summary: Defined the abstract interface for a secondary cache in include/rocksdb/secondary_cache.h, and updated LRUCacheOptions to take a std::shared_ptr<SecondaryCache>. An item is initially inserted into the LRU (primary) cache. When it ages out and evicted from memory, its inserted into the secondary cache. On a LRU cache miss and successful lookup in the secondary cache, the item is promoted to the LRU cache. Only support synchronous lookup currently. The secondary cache would be used to implement a persistent (flash cache) or compressed cache. Tests: Results from cache_bench and db_bench don't show any regression due to these changes. cache_bench results before and after this change - Command ```./cache_bench -ops_per_thread=10000000 -threads=1``` Before ```Complete in 40.688 s; QPS = 245774``` ```Complete in 40.486 s; QPS = 246996``` ```Complete in 42.019 s; QPS = 237989``` After ```Complete in 40.672 s; QPS = 245869``` ```Complete in 44.622 s; QPS = 224107``` ```Complete in 42.445 s; QPS = 235599``` db_bench results before this change, and with this change + https://github.com/facebook/rocksdb/issues/8213 and https://github.com/facebook/rocksdb/issues/8191 - Commands ```./db_bench --benchmarks="fillseq,compact" -num=30000000 -key_size=32 -value_size=256 -use_direct_io_for_flush_and_compaction=true -db=/home/anand76/nvm_cache/db -partition_index_and_filters=true``` ```./db_bench -db=/home/anand76/nvm_cache/db -use_existing_db=true -benchmarks=readrandom -num=30000000 -key_size=32 -value_size=256 -use_direct_reads=true -cache_size=1073741824 -cache_numshardbits=6 -cache_index_and_filter_blocks=true -read_random_exp_range=17 -statistics -partition_index_and_filters=true -threads=16 -duration=300``` Before ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 80.702 micros/op 198104 ops/sec; 54.4 MB/s (3708999 of 3708999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 87.124 micros/op 183625 ops/sec; 50.4 MB/s (3439999 of 3439999 found) ``` After ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 77.653 micros/op 206025 ops/sec; 56.6 MB/s (3866999 of 3866999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 84.962 micros/op 188299 ops/sec; 51.7 MB/s (3535999 of 3535999 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8271 Reviewed By: zhichao-cao Differential Revision: D28357511 Pulled By: anand1976 fbshipit-source-id: d1cfa236f00e649a18c53328be10a8062a4b6da2
4 years ago
(strict_capacity_limit_ || handle == nullptr)) {
Parallelize secondary cache lookup in MultiGet (#8405) Summary: Implement the ```WaitAll()``` interface in ```LRUCache``` to allow callers to issue multiple lookups in parallel and wait for all of them to complete. Modify ```MultiGet``` to use this to parallelize the secondary cache lookups in order to reduce the overall latency. A call to ```cache->Lookup()``` returns a handle that has an incomplete value (nullptr), and the caller can call ```cache->IsReady()``` to check whether the lookup is complete, and pass a vector of handles to ```WaitAll``` to wait for completion. If any of the lookups fail, ```MultiGet``` will read the block from the SST file. Another change in this PR is to rename ```SecondaryCacheHandle``` to ```SecondaryCacheResultHandle``` as it more accurately describes the return result of the secondary cache lookup, which is more like a future. Tests: 1. Add unit tests in lru_cache_test 2. Benchmark results with no secondary cache configured Master - ``` readrandom : 41.175 micros/op 388562 ops/sec; 106.7 MB/s (7277999 of 7277999 found) readrandom : 41.217 micros/op 388160 ops/sec; 106.6 MB/s (7274999 of 7274999 found) multireadrandom : 10.309 micros/op 1552082 ops/sec; (28908992 of 28908992 found) multireadrandom : 10.321 micros/op 1550218 ops/sec; (29081984 of 29081984 found) ``` This PR - ``` readrandom : 41.158 micros/op 388723 ops/sec; 106.8 MB/s (7290999 of 7290999 found) readrandom : 41.185 micros/op 388463 ops/sec; 106.7 MB/s (7287999 of 7287999 found) multireadrandom : 10.277 micros/op 1556801 ops/sec; (29346944 of 29346944 found) multireadrandom : 10.253 micros/op 1560539 ops/sec; (29274944 of 29274944 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8405 Reviewed By: zhichao-cao Differential Revision: D29190509 Pulled By: anand1976 fbshipit-source-id: 6f8eff6246712af8a297cfe22ea0d1c3b2a01bb0
3 years ago
e->SetInCache(false);
Initial support for secondary cache in LRUCache (#8271) Summary: Defined the abstract interface for a secondary cache in include/rocksdb/secondary_cache.h, and updated LRUCacheOptions to take a std::shared_ptr<SecondaryCache>. An item is initially inserted into the LRU (primary) cache. When it ages out and evicted from memory, its inserted into the secondary cache. On a LRU cache miss and successful lookup in the secondary cache, the item is promoted to the LRU cache. Only support synchronous lookup currently. The secondary cache would be used to implement a persistent (flash cache) or compressed cache. Tests: Results from cache_bench and db_bench don't show any regression due to these changes. cache_bench results before and after this change - Command ```./cache_bench -ops_per_thread=10000000 -threads=1``` Before ```Complete in 40.688 s; QPS = 245774``` ```Complete in 40.486 s; QPS = 246996``` ```Complete in 42.019 s; QPS = 237989``` After ```Complete in 40.672 s; QPS = 245869``` ```Complete in 44.622 s; QPS = 224107``` ```Complete in 42.445 s; QPS = 235599``` db_bench results before this change, and with this change + https://github.com/facebook/rocksdb/issues/8213 and https://github.com/facebook/rocksdb/issues/8191 - Commands ```./db_bench --benchmarks="fillseq,compact" -num=30000000 -key_size=32 -value_size=256 -use_direct_io_for_flush_and_compaction=true -db=/home/anand76/nvm_cache/db -partition_index_and_filters=true``` ```./db_bench -db=/home/anand76/nvm_cache/db -use_existing_db=true -benchmarks=readrandom -num=30000000 -key_size=32 -value_size=256 -use_direct_reads=true -cache_size=1073741824 -cache_numshardbits=6 -cache_index_and_filter_blocks=true -read_random_exp_range=17 -statistics -partition_index_and_filters=true -threads=16 -duration=300``` Before ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 80.702 micros/op 198104 ops/sec; 54.4 MB/s (3708999 of 3708999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 87.124 micros/op 183625 ops/sec; 50.4 MB/s (3439999 of 3439999 found) ``` After ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 77.653 micros/op 206025 ops/sec; 56.6 MB/s (3866999 of 3866999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 84.962 micros/op 188299 ops/sec; 51.7 MB/s (3535999 of 3535999 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8271 Reviewed By: zhichao-cao Differential Revision: D28357511 Pulled By: anand1976 fbshipit-source-id: d1cfa236f00e649a18c53328be10a8062a4b6da2
4 years ago
if (handle == nullptr) {
// Don't insert the entry but still return ok, as if the entry inserted
// into cache and get evicted immediately.
last_reference_list.push_back(e);
} else {
Parallelize secondary cache lookup in MultiGet (#8405) Summary: Implement the ```WaitAll()``` interface in ```LRUCache``` to allow callers to issue multiple lookups in parallel and wait for all of them to complete. Modify ```MultiGet``` to use this to parallelize the secondary cache lookups in order to reduce the overall latency. A call to ```cache->Lookup()``` returns a handle that has an incomplete value (nullptr), and the caller can call ```cache->IsReady()``` to check whether the lookup is complete, and pass a vector of handles to ```WaitAll``` to wait for completion. If any of the lookups fail, ```MultiGet``` will read the block from the SST file. Another change in this PR is to rename ```SecondaryCacheHandle``` to ```SecondaryCacheResultHandle``` as it more accurately describes the return result of the secondary cache lookup, which is more like a future. Tests: 1. Add unit tests in lru_cache_test 2. Benchmark results with no secondary cache configured Master - ``` readrandom : 41.175 micros/op 388562 ops/sec; 106.7 MB/s (7277999 of 7277999 found) readrandom : 41.217 micros/op 388160 ops/sec; 106.6 MB/s (7274999 of 7274999 found) multireadrandom : 10.309 micros/op 1552082 ops/sec; (28908992 of 28908992 found) multireadrandom : 10.321 micros/op 1550218 ops/sec; (29081984 of 29081984 found) ``` This PR - ``` readrandom : 41.158 micros/op 388723 ops/sec; 106.8 MB/s (7290999 of 7290999 found) readrandom : 41.185 micros/op 388463 ops/sec; 106.7 MB/s (7287999 of 7287999 found) multireadrandom : 10.277 micros/op 1556801 ops/sec; (29346944 of 29346944 found) multireadrandom : 10.253 micros/op 1560539 ops/sec; (29274944 of 29274944 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8405 Reviewed By: zhichao-cao Differential Revision: D29190509 Pulled By: anand1976 fbshipit-source-id: 6f8eff6246712af8a297cfe22ea0d1c3b2a01bb0
3 years ago
if (free_handle_on_fail) {
delete[] reinterpret_cast<char*>(e);
*handle = nullptr;
}
s = Status::MemoryLimit("Insert failed due to LRU cache being full.");
Initial support for secondary cache in LRUCache (#8271) Summary: Defined the abstract interface for a secondary cache in include/rocksdb/secondary_cache.h, and updated LRUCacheOptions to take a std::shared_ptr<SecondaryCache>. An item is initially inserted into the LRU (primary) cache. When it ages out and evicted from memory, its inserted into the secondary cache. On a LRU cache miss and successful lookup in the secondary cache, the item is promoted to the LRU cache. Only support synchronous lookup currently. The secondary cache would be used to implement a persistent (flash cache) or compressed cache. Tests: Results from cache_bench and db_bench don't show any regression due to these changes. cache_bench results before and after this change - Command ```./cache_bench -ops_per_thread=10000000 -threads=1``` Before ```Complete in 40.688 s; QPS = 245774``` ```Complete in 40.486 s; QPS = 246996``` ```Complete in 42.019 s; QPS = 237989``` After ```Complete in 40.672 s; QPS = 245869``` ```Complete in 44.622 s; QPS = 224107``` ```Complete in 42.445 s; QPS = 235599``` db_bench results before this change, and with this change + https://github.com/facebook/rocksdb/issues/8213 and https://github.com/facebook/rocksdb/issues/8191 - Commands ```./db_bench --benchmarks="fillseq,compact" -num=30000000 -key_size=32 -value_size=256 -use_direct_io_for_flush_and_compaction=true -db=/home/anand76/nvm_cache/db -partition_index_and_filters=true``` ```./db_bench -db=/home/anand76/nvm_cache/db -use_existing_db=true -benchmarks=readrandom -num=30000000 -key_size=32 -value_size=256 -use_direct_reads=true -cache_size=1073741824 -cache_numshardbits=6 -cache_index_and_filter_blocks=true -read_random_exp_range=17 -statistics -partition_index_and_filters=true -threads=16 -duration=300``` Before ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 80.702 micros/op 198104 ops/sec; 54.4 MB/s (3708999 of 3708999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 87.124 micros/op 183625 ops/sec; 50.4 MB/s (3439999 of 3439999 found) ``` After ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 77.653 micros/op 206025 ops/sec; 56.6 MB/s (3866999 of 3866999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 84.962 micros/op 188299 ops/sec; 51.7 MB/s (3535999 of 3535999 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8271 Reviewed By: zhichao-cao Differential Revision: D28357511 Pulled By: anand1976 fbshipit-source-id: d1cfa236f00e649a18c53328be10a8062a4b6da2
4 years ago
}
} else {
// Insert into the cache. Note that the cache might get larger than its
// capacity if not enough space was freed up.
LRUHandle* old = table_.Insert(e);
usage_ += e->total_charge;
Initial support for secondary cache in LRUCache (#8271) Summary: Defined the abstract interface for a secondary cache in include/rocksdb/secondary_cache.h, and updated LRUCacheOptions to take a std::shared_ptr<SecondaryCache>. An item is initially inserted into the LRU (primary) cache. When it ages out and evicted from memory, its inserted into the secondary cache. On a LRU cache miss and successful lookup in the secondary cache, the item is promoted to the LRU cache. Only support synchronous lookup currently. The secondary cache would be used to implement a persistent (flash cache) or compressed cache. Tests: Results from cache_bench and db_bench don't show any regression due to these changes. cache_bench results before and after this change - Command ```./cache_bench -ops_per_thread=10000000 -threads=1``` Before ```Complete in 40.688 s; QPS = 245774``` ```Complete in 40.486 s; QPS = 246996``` ```Complete in 42.019 s; QPS = 237989``` After ```Complete in 40.672 s; QPS = 245869``` ```Complete in 44.622 s; QPS = 224107``` ```Complete in 42.445 s; QPS = 235599``` db_bench results before this change, and with this change + https://github.com/facebook/rocksdb/issues/8213 and https://github.com/facebook/rocksdb/issues/8191 - Commands ```./db_bench --benchmarks="fillseq,compact" -num=30000000 -key_size=32 -value_size=256 -use_direct_io_for_flush_and_compaction=true -db=/home/anand76/nvm_cache/db -partition_index_and_filters=true``` ```./db_bench -db=/home/anand76/nvm_cache/db -use_existing_db=true -benchmarks=readrandom -num=30000000 -key_size=32 -value_size=256 -use_direct_reads=true -cache_size=1073741824 -cache_numshardbits=6 -cache_index_and_filter_blocks=true -read_random_exp_range=17 -statistics -partition_index_and_filters=true -threads=16 -duration=300``` Before ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 80.702 micros/op 198104 ops/sec; 54.4 MB/s (3708999 of 3708999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 87.124 micros/op 183625 ops/sec; 50.4 MB/s (3439999 of 3439999 found) ``` After ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 77.653 micros/op 206025 ops/sec; 56.6 MB/s (3866999 of 3866999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 84.962 micros/op 188299 ops/sec; 51.7 MB/s (3535999 of 3535999 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8271 Reviewed By: zhichao-cao Differential Revision: D28357511 Pulled By: anand1976 fbshipit-source-id: d1cfa236f00e649a18c53328be10a8062a4b6da2
4 years ago
if (old != nullptr) {
s = Status::OkOverwritten();
assert(old->InCache());
old->SetInCache(false);
if (!old->HasRefs()) {
// old is on LRU because it's in cache and its reference count is 0.
Initial support for secondary cache in LRUCache (#8271) Summary: Defined the abstract interface for a secondary cache in include/rocksdb/secondary_cache.h, and updated LRUCacheOptions to take a std::shared_ptr<SecondaryCache>. An item is initially inserted into the LRU (primary) cache. When it ages out and evicted from memory, its inserted into the secondary cache. On a LRU cache miss and successful lookup in the secondary cache, the item is promoted to the LRU cache. Only support synchronous lookup currently. The secondary cache would be used to implement a persistent (flash cache) or compressed cache. Tests: Results from cache_bench and db_bench don't show any regression due to these changes. cache_bench results before and after this change - Command ```./cache_bench -ops_per_thread=10000000 -threads=1``` Before ```Complete in 40.688 s; QPS = 245774``` ```Complete in 40.486 s; QPS = 246996``` ```Complete in 42.019 s; QPS = 237989``` After ```Complete in 40.672 s; QPS = 245869``` ```Complete in 44.622 s; QPS = 224107``` ```Complete in 42.445 s; QPS = 235599``` db_bench results before this change, and with this change + https://github.com/facebook/rocksdb/issues/8213 and https://github.com/facebook/rocksdb/issues/8191 - Commands ```./db_bench --benchmarks="fillseq,compact" -num=30000000 -key_size=32 -value_size=256 -use_direct_io_for_flush_and_compaction=true -db=/home/anand76/nvm_cache/db -partition_index_and_filters=true``` ```./db_bench -db=/home/anand76/nvm_cache/db -use_existing_db=true -benchmarks=readrandom -num=30000000 -key_size=32 -value_size=256 -use_direct_reads=true -cache_size=1073741824 -cache_numshardbits=6 -cache_index_and_filter_blocks=true -read_random_exp_range=17 -statistics -partition_index_and_filters=true -threads=16 -duration=300``` Before ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 80.702 micros/op 198104 ops/sec; 54.4 MB/s (3708999 of 3708999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 87.124 micros/op 183625 ops/sec; 50.4 MB/s (3439999 of 3439999 found) ``` After ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 77.653 micros/op 206025 ops/sec; 56.6 MB/s (3866999 of 3866999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 84.962 micros/op 188299 ops/sec; 51.7 MB/s (3535999 of 3535999 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8271 Reviewed By: zhichao-cao Differential Revision: D28357511 Pulled By: anand1976 fbshipit-source-id: d1cfa236f00e649a18c53328be10a8062a4b6da2
4 years ago
LRU_Remove(old);
assert(usage_ >= old->total_charge);
usage_ -= old->total_charge;
Initial support for secondary cache in LRUCache (#8271) Summary: Defined the abstract interface for a secondary cache in include/rocksdb/secondary_cache.h, and updated LRUCacheOptions to take a std::shared_ptr<SecondaryCache>. An item is initially inserted into the LRU (primary) cache. When it ages out and evicted from memory, its inserted into the secondary cache. On a LRU cache miss and successful lookup in the secondary cache, the item is promoted to the LRU cache. Only support synchronous lookup currently. The secondary cache would be used to implement a persistent (flash cache) or compressed cache. Tests: Results from cache_bench and db_bench don't show any regression due to these changes. cache_bench results before and after this change - Command ```./cache_bench -ops_per_thread=10000000 -threads=1``` Before ```Complete in 40.688 s; QPS = 245774``` ```Complete in 40.486 s; QPS = 246996``` ```Complete in 42.019 s; QPS = 237989``` After ```Complete in 40.672 s; QPS = 245869``` ```Complete in 44.622 s; QPS = 224107``` ```Complete in 42.445 s; QPS = 235599``` db_bench results before this change, and with this change + https://github.com/facebook/rocksdb/issues/8213 and https://github.com/facebook/rocksdb/issues/8191 - Commands ```./db_bench --benchmarks="fillseq,compact" -num=30000000 -key_size=32 -value_size=256 -use_direct_io_for_flush_and_compaction=true -db=/home/anand76/nvm_cache/db -partition_index_and_filters=true``` ```./db_bench -db=/home/anand76/nvm_cache/db -use_existing_db=true -benchmarks=readrandom -num=30000000 -key_size=32 -value_size=256 -use_direct_reads=true -cache_size=1073741824 -cache_numshardbits=6 -cache_index_and_filter_blocks=true -read_random_exp_range=17 -statistics -partition_index_and_filters=true -threads=16 -duration=300``` Before ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 80.702 micros/op 198104 ops/sec; 54.4 MB/s (3708999 of 3708999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 87.124 micros/op 183625 ops/sec; 50.4 MB/s (3439999 of 3439999 found) ``` After ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 77.653 micros/op 206025 ops/sec; 56.6 MB/s (3866999 of 3866999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 84.962 micros/op 188299 ops/sec; 51.7 MB/s (3535999 of 3535999 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8271 Reviewed By: zhichao-cao Differential Revision: D28357511 Pulled By: anand1976 fbshipit-source-id: d1cfa236f00e649a18c53328be10a8062a4b6da2
4 years ago
last_reference_list.push_back(old);
}
}
if (handle == nullptr) {
LRU_Insert(e);
} else {
// If caller already holds a ref, no need to take one here.
if (!e->HasRefs()) {
e->Ref();
}
Initial support for secondary cache in LRUCache (#8271) Summary: Defined the abstract interface for a secondary cache in include/rocksdb/secondary_cache.h, and updated LRUCacheOptions to take a std::shared_ptr<SecondaryCache>. An item is initially inserted into the LRU (primary) cache. When it ages out and evicted from memory, its inserted into the secondary cache. On a LRU cache miss and successful lookup in the secondary cache, the item is promoted to the LRU cache. Only support synchronous lookup currently. The secondary cache would be used to implement a persistent (flash cache) or compressed cache. Tests: Results from cache_bench and db_bench don't show any regression due to these changes. cache_bench results before and after this change - Command ```./cache_bench -ops_per_thread=10000000 -threads=1``` Before ```Complete in 40.688 s; QPS = 245774``` ```Complete in 40.486 s; QPS = 246996``` ```Complete in 42.019 s; QPS = 237989``` After ```Complete in 40.672 s; QPS = 245869``` ```Complete in 44.622 s; QPS = 224107``` ```Complete in 42.445 s; QPS = 235599``` db_bench results before this change, and with this change + https://github.com/facebook/rocksdb/issues/8213 and https://github.com/facebook/rocksdb/issues/8191 - Commands ```./db_bench --benchmarks="fillseq,compact" -num=30000000 -key_size=32 -value_size=256 -use_direct_io_for_flush_and_compaction=true -db=/home/anand76/nvm_cache/db -partition_index_and_filters=true``` ```./db_bench -db=/home/anand76/nvm_cache/db -use_existing_db=true -benchmarks=readrandom -num=30000000 -key_size=32 -value_size=256 -use_direct_reads=true -cache_size=1073741824 -cache_numshardbits=6 -cache_index_and_filter_blocks=true -read_random_exp_range=17 -statistics -partition_index_and_filters=true -threads=16 -duration=300``` Before ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 80.702 micros/op 198104 ops/sec; 54.4 MB/s (3708999 of 3708999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 87.124 micros/op 183625 ops/sec; 50.4 MB/s (3439999 of 3439999 found) ``` After ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 77.653 micros/op 206025 ops/sec; 56.6 MB/s (3866999 of 3866999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 84.962 micros/op 188299 ops/sec; 51.7 MB/s (3535999 of 3535999 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8271 Reviewed By: zhichao-cao Differential Revision: D28357511 Pulled By: anand1976 fbshipit-source-id: d1cfa236f00e649a18c53328be10a8062a4b6da2
4 years ago
*handle = reinterpret_cast<Cache::Handle*>(e);
}
}
}
Avoid recompressing cold block in CompressedSecondaryCache (#10527) Summary: **Summary:** When a block is firstly `Lookup` from the secondary cache, we just insert a dummy block in the primary cache (charging the actual size of the block) and don’t erase the block from the secondary cache. A standalone handle is returned from `Lookup`. Only if the block is hit again, we erase it from the secondary cache and add it into the primary cache. When a block is firstly evicted from the primary cache to the secondary cache, we just insert a dummy block (size 0) in the secondary cache. When the block is evicted again, it is treated as a hot block and is inserted into the secondary cache. **Implementation Details** Add a new state of LRUHandle: The handle is never inserted into the LRUCache (both hash table and LRU list) and it doesn't experience the above three states. The entry can be freed when refs becomes 0. (refs >= 1 && in_cache == false && IS_STANDALONE == true) The behaviors of `LRUCacheShard::Lookup()` are updated if the secondary_cache is CompressedSecondaryCache: 1. If a handle is found in primary cache: 1.1. If the handle's value is not nullptr, it is returned immediately. 1.2. If the handle's value is nullptr, this means the handle is a dummy one. For a dummy handle, if it was retrieved from secondary cache, it may still exist in secondary cache. - 1.2.1. If no valid handle can be `Lookup` from secondary cache, return nullptr. - 1.2.2. If the handle from secondary cache is valid, erase it from the secondary cache and add it into the primary cache. 2. If a handle is not found in primary cache: 2.1. If no valid handle can be `Lookup` from secondary cache, return nullptr. 2.2. If the handle from secondary cache is valid, insert a dummy block in the primary cache (charging the actual size of the block) and return a standalone handle. The behaviors of `LRUCacheShard::Promote()` are updated as follows: 1. If `e->sec_handle` has value, one of the following steps can happen: 1.1. Insert a dummy handle and return a standalone handle to caller when `secondary_cache_` is `CompressedSecondaryCache` and e is a standalone handle. 1.2. Insert the item into the primary cache and return the handle to caller. 1.3. Exception handling. 3. If `e->sec_handle` has no value, mark the item as not in cache and charge the cache as its only metadata that'll shortly be released. The behavior of `CompressedSecondaryCache::Insert()` is updated: 1. If a block is evicted from the primary cache for the first time, a dummy item is inserted. 4. If a dummy item is found for a block, the block is inserted into the secondary cache. The behavior of `CompressedSecondaryCache:::Lookup()` is updated: 1. If a handle is not found or it is a dummy item, a nullptr is returned. 2. If `erase_handle` is true, the handle is erased. The behaviors of `LRUCacheShard::Release()` are adjusted for the standalone handles. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10527 Test Plan: 1. stress tests. 5. unit tests. 6. CPU profiling for db_bench. Reviewed By: siying Differential Revision: D38747613 Pulled By: gitbw95 fbshipit-source-id: 74a1eba7e1957c9affb2bd2ae3e0194584fa6eca
2 years ago
TryInsertIntoSecondaryCache(last_reference_list);
Initial support for secondary cache in LRUCache (#8271) Summary: Defined the abstract interface for a secondary cache in include/rocksdb/secondary_cache.h, and updated LRUCacheOptions to take a std::shared_ptr<SecondaryCache>. An item is initially inserted into the LRU (primary) cache. When it ages out and evicted from memory, its inserted into the secondary cache. On a LRU cache miss and successful lookup in the secondary cache, the item is promoted to the LRU cache. Only support synchronous lookup currently. The secondary cache would be used to implement a persistent (flash cache) or compressed cache. Tests: Results from cache_bench and db_bench don't show any regression due to these changes. cache_bench results before and after this change - Command ```./cache_bench -ops_per_thread=10000000 -threads=1``` Before ```Complete in 40.688 s; QPS = 245774``` ```Complete in 40.486 s; QPS = 246996``` ```Complete in 42.019 s; QPS = 237989``` After ```Complete in 40.672 s; QPS = 245869``` ```Complete in 44.622 s; QPS = 224107``` ```Complete in 42.445 s; QPS = 235599``` db_bench results before this change, and with this change + https://github.com/facebook/rocksdb/issues/8213 and https://github.com/facebook/rocksdb/issues/8191 - Commands ```./db_bench --benchmarks="fillseq,compact" -num=30000000 -key_size=32 -value_size=256 -use_direct_io_for_flush_and_compaction=true -db=/home/anand76/nvm_cache/db -partition_index_and_filters=true``` ```./db_bench -db=/home/anand76/nvm_cache/db -use_existing_db=true -benchmarks=readrandom -num=30000000 -key_size=32 -value_size=256 -use_direct_reads=true -cache_size=1073741824 -cache_numshardbits=6 -cache_index_and_filter_blocks=true -read_random_exp_range=17 -statistics -partition_index_and_filters=true -threads=16 -duration=300``` Before ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 80.702 micros/op 198104 ops/sec; 54.4 MB/s (3708999 of 3708999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 87.124 micros/op 183625 ops/sec; 50.4 MB/s (3439999 of 3439999 found) ``` After ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 77.653 micros/op 206025 ops/sec; 56.6 MB/s (3866999 of 3866999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 84.962 micros/op 188299 ops/sec; 51.7 MB/s (3535999 of 3535999 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8271 Reviewed By: zhichao-cao Differential Revision: D28357511 Pulled By: anand1976 fbshipit-source-id: d1cfa236f00e649a18c53328be10a8062a4b6da2
4 years ago
return s;
}
Parallelize secondary cache lookup in MultiGet (#8405) Summary: Implement the ```WaitAll()``` interface in ```LRUCache``` to allow callers to issue multiple lookups in parallel and wait for all of them to complete. Modify ```MultiGet``` to use this to parallelize the secondary cache lookups in order to reduce the overall latency. A call to ```cache->Lookup()``` returns a handle that has an incomplete value (nullptr), and the caller can call ```cache->IsReady()``` to check whether the lookup is complete, and pass a vector of handles to ```WaitAll``` to wait for completion. If any of the lookups fail, ```MultiGet``` will read the block from the SST file. Another change in this PR is to rename ```SecondaryCacheHandle``` to ```SecondaryCacheResultHandle``` as it more accurately describes the return result of the secondary cache lookup, which is more like a future. Tests: 1. Add unit tests in lru_cache_test 2. Benchmark results with no secondary cache configured Master - ``` readrandom : 41.175 micros/op 388562 ops/sec; 106.7 MB/s (7277999 of 7277999 found) readrandom : 41.217 micros/op 388160 ops/sec; 106.6 MB/s (7274999 of 7274999 found) multireadrandom : 10.309 micros/op 1552082 ops/sec; (28908992 of 28908992 found) multireadrandom : 10.321 micros/op 1550218 ops/sec; (29081984 of 29081984 found) ``` This PR - ``` readrandom : 41.158 micros/op 388723 ops/sec; 106.8 MB/s (7290999 of 7290999 found) readrandom : 41.185 micros/op 388463 ops/sec; 106.7 MB/s (7287999 of 7287999 found) multireadrandom : 10.277 micros/op 1556801 ops/sec; (29346944 of 29346944 found) multireadrandom : 10.253 micros/op 1560539 ops/sec; (29274944 of 29274944 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8405 Reviewed By: zhichao-cao Differential Revision: D29190509 Pulled By: anand1976 fbshipit-source-id: 6f8eff6246712af8a297cfe22ea0d1c3b2a01bb0
3 years ago
void LRUCacheShard::Promote(LRUHandle* e) {
SecondaryCacheResultHandle* secondary_handle = e->sec_handle;
assert(secondary_handle->IsReady());
e->SetIncomplete(false);
Avoid recompressing cold block in CompressedSecondaryCache (#10527) Summary: **Summary:** When a block is firstly `Lookup` from the secondary cache, we just insert a dummy block in the primary cache (charging the actual size of the block) and don’t erase the block from the secondary cache. A standalone handle is returned from `Lookup`. Only if the block is hit again, we erase it from the secondary cache and add it into the primary cache. When a block is firstly evicted from the primary cache to the secondary cache, we just insert a dummy block (size 0) in the secondary cache. When the block is evicted again, it is treated as a hot block and is inserted into the secondary cache. **Implementation Details** Add a new state of LRUHandle: The handle is never inserted into the LRUCache (both hash table and LRU list) and it doesn't experience the above three states. The entry can be freed when refs becomes 0. (refs >= 1 && in_cache == false && IS_STANDALONE == true) The behaviors of `LRUCacheShard::Lookup()` are updated if the secondary_cache is CompressedSecondaryCache: 1. If a handle is found in primary cache: 1.1. If the handle's value is not nullptr, it is returned immediately. 1.2. If the handle's value is nullptr, this means the handle is a dummy one. For a dummy handle, if it was retrieved from secondary cache, it may still exist in secondary cache. - 1.2.1. If no valid handle can be `Lookup` from secondary cache, return nullptr. - 1.2.2. If the handle from secondary cache is valid, erase it from the secondary cache and add it into the primary cache. 2. If a handle is not found in primary cache: 2.1. If no valid handle can be `Lookup` from secondary cache, return nullptr. 2.2. If the handle from secondary cache is valid, insert a dummy block in the primary cache (charging the actual size of the block) and return a standalone handle. The behaviors of `LRUCacheShard::Promote()` are updated as follows: 1. If `e->sec_handle` has value, one of the following steps can happen: 1.1. Insert a dummy handle and return a standalone handle to caller when `secondary_cache_` is `CompressedSecondaryCache` and e is a standalone handle. 1.2. Insert the item into the primary cache and return the handle to caller. 1.3. Exception handling. 3. If `e->sec_handle` has no value, mark the item as not in cache and charge the cache as its only metadata that'll shortly be released. The behavior of `CompressedSecondaryCache::Insert()` is updated: 1. If a block is evicted from the primary cache for the first time, a dummy item is inserted. 4. If a dummy item is found for a block, the block is inserted into the secondary cache. The behavior of `CompressedSecondaryCache:::Lookup()` is updated: 1. If a handle is not found or it is a dummy item, a nullptr is returned. 2. If `erase_handle` is true, the handle is erased. The behaviors of `LRUCacheShard::Release()` are adjusted for the standalone handles. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10527 Test Plan: 1. stress tests. 5. unit tests. 6. CPU profiling for db_bench. Reviewed By: siying Differential Revision: D38747613 Pulled By: gitbw95 fbshipit-source-id: 74a1eba7e1957c9affb2bd2ae3e0194584fa6eca
2 years ago
e->SetInCache(false);
Parallelize secondary cache lookup in MultiGet (#8405) Summary: Implement the ```WaitAll()``` interface in ```LRUCache``` to allow callers to issue multiple lookups in parallel and wait for all of them to complete. Modify ```MultiGet``` to use this to parallelize the secondary cache lookups in order to reduce the overall latency. A call to ```cache->Lookup()``` returns a handle that has an incomplete value (nullptr), and the caller can call ```cache->IsReady()``` to check whether the lookup is complete, and pass a vector of handles to ```WaitAll``` to wait for completion. If any of the lookups fail, ```MultiGet``` will read the block from the SST file. Another change in this PR is to rename ```SecondaryCacheHandle``` to ```SecondaryCacheResultHandle``` as it more accurately describes the return result of the secondary cache lookup, which is more like a future. Tests: 1. Add unit tests in lru_cache_test 2. Benchmark results with no secondary cache configured Master - ``` readrandom : 41.175 micros/op 388562 ops/sec; 106.7 MB/s (7277999 of 7277999 found) readrandom : 41.217 micros/op 388160 ops/sec; 106.6 MB/s (7274999 of 7274999 found) multireadrandom : 10.309 micros/op 1552082 ops/sec; (28908992 of 28908992 found) multireadrandom : 10.321 micros/op 1550218 ops/sec; (29081984 of 29081984 found) ``` This PR - ``` readrandom : 41.158 micros/op 388723 ops/sec; 106.8 MB/s (7290999 of 7290999 found) readrandom : 41.185 micros/op 388463 ops/sec; 106.7 MB/s (7287999 of 7287999 found) multireadrandom : 10.277 micros/op 1556801 ops/sec; (29346944 of 29346944 found) multireadrandom : 10.253 micros/op 1560539 ops/sec; (29274944 of 29274944 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8405 Reviewed By: zhichao-cao Differential Revision: D29190509 Pulled By: anand1976 fbshipit-source-id: 6f8eff6246712af8a297cfe22ea0d1c3b2a01bb0
3 years ago
e->value = secondary_handle->Value();
e->CalcTotalCharge(secondary_handle->Size(), metadata_charge_policy_);
Parallelize secondary cache lookup in MultiGet (#8405) Summary: Implement the ```WaitAll()``` interface in ```LRUCache``` to allow callers to issue multiple lookups in parallel and wait for all of them to complete. Modify ```MultiGet``` to use this to parallelize the secondary cache lookups in order to reduce the overall latency. A call to ```cache->Lookup()``` returns a handle that has an incomplete value (nullptr), and the caller can call ```cache->IsReady()``` to check whether the lookup is complete, and pass a vector of handles to ```WaitAll``` to wait for completion. If any of the lookups fail, ```MultiGet``` will read the block from the SST file. Another change in this PR is to rename ```SecondaryCacheHandle``` to ```SecondaryCacheResultHandle``` as it more accurately describes the return result of the secondary cache lookup, which is more like a future. Tests: 1. Add unit tests in lru_cache_test 2. Benchmark results with no secondary cache configured Master - ``` readrandom : 41.175 micros/op 388562 ops/sec; 106.7 MB/s (7277999 of 7277999 found) readrandom : 41.217 micros/op 388160 ops/sec; 106.6 MB/s (7274999 of 7274999 found) multireadrandom : 10.309 micros/op 1552082 ops/sec; (28908992 of 28908992 found) multireadrandom : 10.321 micros/op 1550218 ops/sec; (29081984 of 29081984 found) ``` This PR - ``` readrandom : 41.158 micros/op 388723 ops/sec; 106.8 MB/s (7290999 of 7290999 found) readrandom : 41.185 micros/op 388463 ops/sec; 106.7 MB/s (7287999 of 7287999 found) multireadrandom : 10.277 micros/op 1556801 ops/sec; (29346944 of 29346944 found) multireadrandom : 10.253 micros/op 1560539 ops/sec; (29274944 of 29274944 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8405 Reviewed By: zhichao-cao Differential Revision: D29190509 Pulled By: anand1976 fbshipit-source-id: 6f8eff6246712af8a297cfe22ea0d1c3b2a01bb0
3 years ago
delete secondary_handle;
if (e->value) {
Avoid recompressing cold block in CompressedSecondaryCache (#10527) Summary: **Summary:** When a block is firstly `Lookup` from the secondary cache, we just insert a dummy block in the primary cache (charging the actual size of the block) and don’t erase the block from the secondary cache. A standalone handle is returned from `Lookup`. Only if the block is hit again, we erase it from the secondary cache and add it into the primary cache. When a block is firstly evicted from the primary cache to the secondary cache, we just insert a dummy block (size 0) in the secondary cache. When the block is evicted again, it is treated as a hot block and is inserted into the secondary cache. **Implementation Details** Add a new state of LRUHandle: The handle is never inserted into the LRUCache (both hash table and LRU list) and it doesn't experience the above three states. The entry can be freed when refs becomes 0. (refs >= 1 && in_cache == false && IS_STANDALONE == true) The behaviors of `LRUCacheShard::Lookup()` are updated if the secondary_cache is CompressedSecondaryCache: 1. If a handle is found in primary cache: 1.1. If the handle's value is not nullptr, it is returned immediately. 1.2. If the handle's value is nullptr, this means the handle is a dummy one. For a dummy handle, if it was retrieved from secondary cache, it may still exist in secondary cache. - 1.2.1. If no valid handle can be `Lookup` from secondary cache, return nullptr. - 1.2.2. If the handle from secondary cache is valid, erase it from the secondary cache and add it into the primary cache. 2. If a handle is not found in primary cache: 2.1. If no valid handle can be `Lookup` from secondary cache, return nullptr. 2.2. If the handle from secondary cache is valid, insert a dummy block in the primary cache (charging the actual size of the block) and return a standalone handle. The behaviors of `LRUCacheShard::Promote()` are updated as follows: 1. If `e->sec_handle` has value, one of the following steps can happen: 1.1. Insert a dummy handle and return a standalone handle to caller when `secondary_cache_` is `CompressedSecondaryCache` and e is a standalone handle. 1.2. Insert the item into the primary cache and return the handle to caller. 1.3. Exception handling. 3. If `e->sec_handle` has no value, mark the item as not in cache and charge the cache as its only metadata that'll shortly be released. The behavior of `CompressedSecondaryCache::Insert()` is updated: 1. If a block is evicted from the primary cache for the first time, a dummy item is inserted. 4. If a dummy item is found for a block, the block is inserted into the secondary cache. The behavior of `CompressedSecondaryCache:::Lookup()` is updated: 1. If a handle is not found or it is a dummy item, a nullptr is returned. 2. If `erase_handle` is true, the handle is erased. The behaviors of `LRUCacheShard::Release()` are adjusted for the standalone handles. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10527 Test Plan: 1. stress tests. 5. unit tests. 6. CPU profiling for db_bench. Reviewed By: siying Differential Revision: D38747613 Pulled By: gitbw95 fbshipit-source-id: 74a1eba7e1957c9affb2bd2ae3e0194584fa6eca
2 years ago
Status s;
if (secondary_cache_ && secondary_cache_->SupportForceErase() &&
e->IsStandalone()) {
// Insert a dummy handle and return a standalone handle to caller.
// Charge the standalone handle.
autovector<LRUHandle*> last_reference_list;
bool free_standalone_handle{false};
{
DMutexLock l(mutex_);
// Free the space following strict LRU policy until enough space
// is freed or the lru list is empty.
EvictFromLRU(e->total_charge, &last_reference_list);
if ((usage_ + e->total_charge) > capacity_ && strict_capacity_limit_) {
free_standalone_handle = true;
} else {
usage_ += e->total_charge;
}
}
TryInsertIntoSecondaryCache(last_reference_list);
if (free_standalone_handle) {
e->Unref();
e->Free();
e = nullptr;
} else {
PERF_COUNTER_ADD(block_cache_standalone_handle_count, 1);
Avoid recompressing cold block in CompressedSecondaryCache (#10527) Summary: **Summary:** When a block is firstly `Lookup` from the secondary cache, we just insert a dummy block in the primary cache (charging the actual size of the block) and don’t erase the block from the secondary cache. A standalone handle is returned from `Lookup`. Only if the block is hit again, we erase it from the secondary cache and add it into the primary cache. When a block is firstly evicted from the primary cache to the secondary cache, we just insert a dummy block (size 0) in the secondary cache. When the block is evicted again, it is treated as a hot block and is inserted into the secondary cache. **Implementation Details** Add a new state of LRUHandle: The handle is never inserted into the LRUCache (both hash table and LRU list) and it doesn't experience the above three states. The entry can be freed when refs becomes 0. (refs >= 1 && in_cache == false && IS_STANDALONE == true) The behaviors of `LRUCacheShard::Lookup()` are updated if the secondary_cache is CompressedSecondaryCache: 1. If a handle is found in primary cache: 1.1. If the handle's value is not nullptr, it is returned immediately. 1.2. If the handle's value is nullptr, this means the handle is a dummy one. For a dummy handle, if it was retrieved from secondary cache, it may still exist in secondary cache. - 1.2.1. If no valid handle can be `Lookup` from secondary cache, return nullptr. - 1.2.2. If the handle from secondary cache is valid, erase it from the secondary cache and add it into the primary cache. 2. If a handle is not found in primary cache: 2.1. If no valid handle can be `Lookup` from secondary cache, return nullptr. 2.2. If the handle from secondary cache is valid, insert a dummy block in the primary cache (charging the actual size of the block) and return a standalone handle. The behaviors of `LRUCacheShard::Promote()` are updated as follows: 1. If `e->sec_handle` has value, one of the following steps can happen: 1.1. Insert a dummy handle and return a standalone handle to caller when `secondary_cache_` is `CompressedSecondaryCache` and e is a standalone handle. 1.2. Insert the item into the primary cache and return the handle to caller. 1.3. Exception handling. 3. If `e->sec_handle` has no value, mark the item as not in cache and charge the cache as its only metadata that'll shortly be released. The behavior of `CompressedSecondaryCache::Insert()` is updated: 1. If a block is evicted from the primary cache for the first time, a dummy item is inserted. 4. If a dummy item is found for a block, the block is inserted into the secondary cache. The behavior of `CompressedSecondaryCache:::Lookup()` is updated: 1. If a handle is not found or it is a dummy item, a nullptr is returned. 2. If `erase_handle` is true, the handle is erased. The behaviors of `LRUCacheShard::Release()` are adjusted for the standalone handles. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10527 Test Plan: 1. stress tests. 5. unit tests. 6. CPU profiling for db_bench. Reviewed By: siying Differential Revision: D38747613 Pulled By: gitbw95 fbshipit-source-id: 74a1eba7e1957c9affb2bd2ae3e0194584fa6eca
2 years ago
}
// Insert a dummy handle into the primary cache. This dummy handle is
// not IsSecondaryCacheCompatible().
Cache::Priority priority =
e->IsHighPri() ? Cache::Priority::HIGH : Cache::Priority::LOW;
s = Insert(e->key(), e->hash, /*value=*/nullptr, 0,
/*deleter=*/nullptr, /*helper=*/nullptr, /*handle=*/nullptr,
priority);
} else {
e->SetInCache(true);
e->SetIsStandalone(false);
Cache::Handle* handle = reinterpret_cast<Cache::Handle*>(e);
// This InsertItem() could fail if the cache is over capacity and
// strict_capacity_limit_ is true. In such a case, we don't want
// InsertItem() to free the handle, since the item is already in memory
// and the caller will most likely just read it from disk if we erase it
// here.
s = InsertItem(e, &handle, /*free_handle_on_fail=*/false);
if (s.ok()) {
PERF_COUNTER_ADD(block_cache_real_handle_count, 1);
}
Avoid recompressing cold block in CompressedSecondaryCache (#10527) Summary: **Summary:** When a block is firstly `Lookup` from the secondary cache, we just insert a dummy block in the primary cache (charging the actual size of the block) and don’t erase the block from the secondary cache. A standalone handle is returned from `Lookup`. Only if the block is hit again, we erase it from the secondary cache and add it into the primary cache. When a block is firstly evicted from the primary cache to the secondary cache, we just insert a dummy block (size 0) in the secondary cache. When the block is evicted again, it is treated as a hot block and is inserted into the secondary cache. **Implementation Details** Add a new state of LRUHandle: The handle is never inserted into the LRUCache (both hash table and LRU list) and it doesn't experience the above three states. The entry can be freed when refs becomes 0. (refs >= 1 && in_cache == false && IS_STANDALONE == true) The behaviors of `LRUCacheShard::Lookup()` are updated if the secondary_cache is CompressedSecondaryCache: 1. If a handle is found in primary cache: 1.1. If the handle's value is not nullptr, it is returned immediately. 1.2. If the handle's value is nullptr, this means the handle is a dummy one. For a dummy handle, if it was retrieved from secondary cache, it may still exist in secondary cache. - 1.2.1. If no valid handle can be `Lookup` from secondary cache, return nullptr. - 1.2.2. If the handle from secondary cache is valid, erase it from the secondary cache and add it into the primary cache. 2. If a handle is not found in primary cache: 2.1. If no valid handle can be `Lookup` from secondary cache, return nullptr. 2.2. If the handle from secondary cache is valid, insert a dummy block in the primary cache (charging the actual size of the block) and return a standalone handle. The behaviors of `LRUCacheShard::Promote()` are updated as follows: 1. If `e->sec_handle` has value, one of the following steps can happen: 1.1. Insert a dummy handle and return a standalone handle to caller when `secondary_cache_` is `CompressedSecondaryCache` and e is a standalone handle. 1.2. Insert the item into the primary cache and return the handle to caller. 1.3. Exception handling. 3. If `e->sec_handle` has no value, mark the item as not in cache and charge the cache as its only metadata that'll shortly be released. The behavior of `CompressedSecondaryCache::Insert()` is updated: 1. If a block is evicted from the primary cache for the first time, a dummy item is inserted. 4. If a dummy item is found for a block, the block is inserted into the secondary cache. The behavior of `CompressedSecondaryCache:::Lookup()` is updated: 1. If a handle is not found or it is a dummy item, a nullptr is returned. 2. If `erase_handle` is true, the handle is erased. The behaviors of `LRUCacheShard::Release()` are adjusted for the standalone handles. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10527 Test Plan: 1. stress tests. 5. unit tests. 6. CPU profiling for db_bench. Reviewed By: siying Differential Revision: D38747613 Pulled By: gitbw95 fbshipit-source-id: 74a1eba7e1957c9affb2bd2ae3e0194584fa6eca
2 years ago
}
if (!s.ok()) {
Parallelize secondary cache lookup in MultiGet (#8405) Summary: Implement the ```WaitAll()``` interface in ```LRUCache``` to allow callers to issue multiple lookups in parallel and wait for all of them to complete. Modify ```MultiGet``` to use this to parallelize the secondary cache lookups in order to reduce the overall latency. A call to ```cache->Lookup()``` returns a handle that has an incomplete value (nullptr), and the caller can call ```cache->IsReady()``` to check whether the lookup is complete, and pass a vector of handles to ```WaitAll``` to wait for completion. If any of the lookups fail, ```MultiGet``` will read the block from the SST file. Another change in this PR is to rename ```SecondaryCacheHandle``` to ```SecondaryCacheResultHandle``` as it more accurately describes the return result of the secondary cache lookup, which is more like a future. Tests: 1. Add unit tests in lru_cache_test 2. Benchmark results with no secondary cache configured Master - ``` readrandom : 41.175 micros/op 388562 ops/sec; 106.7 MB/s (7277999 of 7277999 found) readrandom : 41.217 micros/op 388160 ops/sec; 106.6 MB/s (7274999 of 7274999 found) multireadrandom : 10.309 micros/op 1552082 ops/sec; (28908992 of 28908992 found) multireadrandom : 10.321 micros/op 1550218 ops/sec; (29081984 of 29081984 found) ``` This PR - ``` readrandom : 41.158 micros/op 388723 ops/sec; 106.8 MB/s (7290999 of 7290999 found) readrandom : 41.185 micros/op 388463 ops/sec; 106.7 MB/s (7287999 of 7287999 found) multireadrandom : 10.277 micros/op 1556801 ops/sec; (29346944 of 29346944 found) multireadrandom : 10.253 micros/op 1560539 ops/sec; (29274944 of 29274944 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8405 Reviewed By: zhichao-cao Differential Revision: D29190509 Pulled By: anand1976 fbshipit-source-id: 6f8eff6246712af8a297cfe22ea0d1c3b2a01bb0
3 years ago
// Item is in memory, but not accounted against the cache capacity.
// When the handle is released, the item should get deleted.
Parallelize secondary cache lookup in MultiGet (#8405) Summary: Implement the ```WaitAll()``` interface in ```LRUCache``` to allow callers to issue multiple lookups in parallel and wait for all of them to complete. Modify ```MultiGet``` to use this to parallelize the secondary cache lookups in order to reduce the overall latency. A call to ```cache->Lookup()``` returns a handle that has an incomplete value (nullptr), and the caller can call ```cache->IsReady()``` to check whether the lookup is complete, and pass a vector of handles to ```WaitAll``` to wait for completion. If any of the lookups fail, ```MultiGet``` will read the block from the SST file. Another change in this PR is to rename ```SecondaryCacheHandle``` to ```SecondaryCacheResultHandle``` as it more accurately describes the return result of the secondary cache lookup, which is more like a future. Tests: 1. Add unit tests in lru_cache_test 2. Benchmark results with no secondary cache configured Master - ``` readrandom : 41.175 micros/op 388562 ops/sec; 106.7 MB/s (7277999 of 7277999 found) readrandom : 41.217 micros/op 388160 ops/sec; 106.6 MB/s (7274999 of 7274999 found) multireadrandom : 10.309 micros/op 1552082 ops/sec; (28908992 of 28908992 found) multireadrandom : 10.321 micros/op 1550218 ops/sec; (29081984 of 29081984 found) ``` This PR - ``` readrandom : 41.158 micros/op 388723 ops/sec; 106.8 MB/s (7290999 of 7290999 found) readrandom : 41.185 micros/op 388463 ops/sec; 106.7 MB/s (7287999 of 7287999 found) multireadrandom : 10.277 micros/op 1556801 ops/sec; (29346944 of 29346944 found) multireadrandom : 10.253 micros/op 1560539 ops/sec; (29274944 of 29274944 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8405 Reviewed By: zhichao-cao Differential Revision: D29190509 Pulled By: anand1976 fbshipit-source-id: 6f8eff6246712af8a297cfe22ea0d1c3b2a01bb0
3 years ago
assert(!e->InCache());
}
Avoid recompressing cold block in CompressedSecondaryCache (#10527) Summary: **Summary:** When a block is firstly `Lookup` from the secondary cache, we just insert a dummy block in the primary cache (charging the actual size of the block) and don’t erase the block from the secondary cache. A standalone handle is returned from `Lookup`. Only if the block is hit again, we erase it from the secondary cache and add it into the primary cache. When a block is firstly evicted from the primary cache to the secondary cache, we just insert a dummy block (size 0) in the secondary cache. When the block is evicted again, it is treated as a hot block and is inserted into the secondary cache. **Implementation Details** Add a new state of LRUHandle: The handle is never inserted into the LRUCache (both hash table and LRU list) and it doesn't experience the above three states. The entry can be freed when refs becomes 0. (refs >= 1 && in_cache == false && IS_STANDALONE == true) The behaviors of `LRUCacheShard::Lookup()` are updated if the secondary_cache is CompressedSecondaryCache: 1. If a handle is found in primary cache: 1.1. If the handle's value is not nullptr, it is returned immediately. 1.2. If the handle's value is nullptr, this means the handle is a dummy one. For a dummy handle, if it was retrieved from secondary cache, it may still exist in secondary cache. - 1.2.1. If no valid handle can be `Lookup` from secondary cache, return nullptr. - 1.2.2. If the handle from secondary cache is valid, erase it from the secondary cache and add it into the primary cache. 2. If a handle is not found in primary cache: 2.1. If no valid handle can be `Lookup` from secondary cache, return nullptr. 2.2. If the handle from secondary cache is valid, insert a dummy block in the primary cache (charging the actual size of the block) and return a standalone handle. The behaviors of `LRUCacheShard::Promote()` are updated as follows: 1. If `e->sec_handle` has value, one of the following steps can happen: 1.1. Insert a dummy handle and return a standalone handle to caller when `secondary_cache_` is `CompressedSecondaryCache` and e is a standalone handle. 1.2. Insert the item into the primary cache and return the handle to caller. 1.3. Exception handling. 3. If `e->sec_handle` has no value, mark the item as not in cache and charge the cache as its only metadata that'll shortly be released. The behavior of `CompressedSecondaryCache::Insert()` is updated: 1. If a block is evicted from the primary cache for the first time, a dummy item is inserted. 4. If a dummy item is found for a block, the block is inserted into the secondary cache. The behavior of `CompressedSecondaryCache:::Lookup()` is updated: 1. If a handle is not found or it is a dummy item, a nullptr is returned. 2. If `erase_handle` is true, the handle is erased. The behaviors of `LRUCacheShard::Release()` are adjusted for the standalone handles. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10527 Test Plan: 1. stress tests. 5. unit tests. 6. CPU profiling for db_bench. Reviewed By: siying Differential Revision: D38747613 Pulled By: gitbw95 fbshipit-source-id: 74a1eba7e1957c9affb2bd2ae3e0194584fa6eca
2 years ago
Parallelize secondary cache lookup in MultiGet (#8405) Summary: Implement the ```WaitAll()``` interface in ```LRUCache``` to allow callers to issue multiple lookups in parallel and wait for all of them to complete. Modify ```MultiGet``` to use this to parallelize the secondary cache lookups in order to reduce the overall latency. A call to ```cache->Lookup()``` returns a handle that has an incomplete value (nullptr), and the caller can call ```cache->IsReady()``` to check whether the lookup is complete, and pass a vector of handles to ```WaitAll``` to wait for completion. If any of the lookups fail, ```MultiGet``` will read the block from the SST file. Another change in this PR is to rename ```SecondaryCacheHandle``` to ```SecondaryCacheResultHandle``` as it more accurately describes the return result of the secondary cache lookup, which is more like a future. Tests: 1. Add unit tests in lru_cache_test 2. Benchmark results with no secondary cache configured Master - ``` readrandom : 41.175 micros/op 388562 ops/sec; 106.7 MB/s (7277999 of 7277999 found) readrandom : 41.217 micros/op 388160 ops/sec; 106.6 MB/s (7274999 of 7274999 found) multireadrandom : 10.309 micros/op 1552082 ops/sec; (28908992 of 28908992 found) multireadrandom : 10.321 micros/op 1550218 ops/sec; (29081984 of 29081984 found) ``` This PR - ``` readrandom : 41.158 micros/op 388723 ops/sec; 106.8 MB/s (7290999 of 7290999 found) readrandom : 41.185 micros/op 388463 ops/sec; 106.7 MB/s (7287999 of 7287999 found) multireadrandom : 10.277 micros/op 1556801 ops/sec; (29346944 of 29346944 found) multireadrandom : 10.253 micros/op 1560539 ops/sec; (29274944 of 29274944 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8405 Reviewed By: zhichao-cao Differential Revision: D29190509 Pulled By: anand1976 fbshipit-source-id: 6f8eff6246712af8a297cfe22ea0d1c3b2a01bb0
3 years ago
} else {
// Since the secondary cache lookup failed, mark the item as not in cache
// Don't charge the cache as its only metadata that'll shortly be released
Use optimized folly DistributedMutex in LRUCache when available (#10179) Summary: folly DistributedMutex is faster than standard mutexes though imposes some static obligations on usage. See https://github.com/facebook/folly/blob/main/folly/synchronization/DistributedMutex.h for details. Here we use this alternative for our Cache implementations (especially LRUCache) for better locking performance, when RocksDB is compiled with folly. Also added information about which distributed mutex implementation is being used to cache_bench output and to DB LOG. Intended follow-up: * Use DMutex in more places, perhaps improving API to support non-scoped locking * Fix linking with fbcode compiler (needs ROCKSDB_NO_FBCODE=1 currently) Credit: Thanks Siying for reminding me about this line of work that was previously left unfinished. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10179 Test Plan: for correctness, existing tests. CircleCI config updated. Also Meta-internal buck build updated. For performance, ran simultaneous before & after cache_bench. Out of three comparison runs, the middle improvement to ops/sec was +21%: Baseline: USE_CLANG=1 DEBUG_LEVEL=0 make -j24 cache_bench (fbcode compiler) ``` Complete in 20.201 s; Rough parallel ops/sec = 1584062 Thread ops/sec = 107176 Operation latency (ns): Count: 32000000 Average: 9257.9421 StdDev: 122412.04 Min: 134 Median: 3623.0493 Max: 56918500 Percentiles: P50: 3623.05 P75: 10288.02 P99: 30219.35 P99.9: 683522.04 P99.99: 7302791.63 ``` New: (add USE_FOLLY=1) ``` Complete in 16.674 s; Rough parallel ops/sec = 1919135 (+21%) Thread ops/sec = 135487 Operation latency (ns): Count: 32000000 Average: 7304.9294 StdDev: 108530.28 Min: 132 Median: 3777.6012 Max: 91030902 Percentiles: P50: 3777.60 P75: 10169.89 P99: 24504.51 P99.9: 59721.59 P99.99: 1861151.83 ``` Reviewed By: anand1976 Differential Revision: D37182983 Pulled By: pdillinger fbshipit-source-id: a17eb05f25b832b6a2c1356f5c657e831a5af8d1
2 years ago
DMutexLock l(mutex_);
// TODO
e->CalcTotalCharge(0, metadata_charge_policy_);
Parallelize secondary cache lookup in MultiGet (#8405) Summary: Implement the ```WaitAll()``` interface in ```LRUCache``` to allow callers to issue multiple lookups in parallel and wait for all of them to complete. Modify ```MultiGet``` to use this to parallelize the secondary cache lookups in order to reduce the overall latency. A call to ```cache->Lookup()``` returns a handle that has an incomplete value (nullptr), and the caller can call ```cache->IsReady()``` to check whether the lookup is complete, and pass a vector of handles to ```WaitAll``` to wait for completion. If any of the lookups fail, ```MultiGet``` will read the block from the SST file. Another change in this PR is to rename ```SecondaryCacheHandle``` to ```SecondaryCacheResultHandle``` as it more accurately describes the return result of the secondary cache lookup, which is more like a future. Tests: 1. Add unit tests in lru_cache_test 2. Benchmark results with no secondary cache configured Master - ``` readrandom : 41.175 micros/op 388562 ops/sec; 106.7 MB/s (7277999 of 7277999 found) readrandom : 41.217 micros/op 388160 ops/sec; 106.6 MB/s (7274999 of 7274999 found) multireadrandom : 10.309 micros/op 1552082 ops/sec; (28908992 of 28908992 found) multireadrandom : 10.321 micros/op 1550218 ops/sec; (29081984 of 29081984 found) ``` This PR - ``` readrandom : 41.158 micros/op 388723 ops/sec; 106.8 MB/s (7290999 of 7290999 found) readrandom : 41.185 micros/op 388463 ops/sec; 106.7 MB/s (7287999 of 7287999 found) multireadrandom : 10.277 micros/op 1556801 ops/sec; (29346944 of 29346944 found) multireadrandom : 10.253 micros/op 1560539 ops/sec; (29274944 of 29274944 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8405 Reviewed By: zhichao-cao Differential Revision: D29190509 Pulled By: anand1976 fbshipit-source-id: 6f8eff6246712af8a297cfe22ea0d1c3b2a01bb0
3 years ago
e->SetInCache(false);
Avoid recompressing cold block in CompressedSecondaryCache (#10527) Summary: **Summary:** When a block is firstly `Lookup` from the secondary cache, we just insert a dummy block in the primary cache (charging the actual size of the block) and don’t erase the block from the secondary cache. A standalone handle is returned from `Lookup`. Only if the block is hit again, we erase it from the secondary cache and add it into the primary cache. When a block is firstly evicted from the primary cache to the secondary cache, we just insert a dummy block (size 0) in the secondary cache. When the block is evicted again, it is treated as a hot block and is inserted into the secondary cache. **Implementation Details** Add a new state of LRUHandle: The handle is never inserted into the LRUCache (both hash table and LRU list) and it doesn't experience the above three states. The entry can be freed when refs becomes 0. (refs >= 1 && in_cache == false && IS_STANDALONE == true) The behaviors of `LRUCacheShard::Lookup()` are updated if the secondary_cache is CompressedSecondaryCache: 1. If a handle is found in primary cache: 1.1. If the handle's value is not nullptr, it is returned immediately. 1.2. If the handle's value is nullptr, this means the handle is a dummy one. For a dummy handle, if it was retrieved from secondary cache, it may still exist in secondary cache. - 1.2.1. If no valid handle can be `Lookup` from secondary cache, return nullptr. - 1.2.2. If the handle from secondary cache is valid, erase it from the secondary cache and add it into the primary cache. 2. If a handle is not found in primary cache: 2.1. If no valid handle can be `Lookup` from secondary cache, return nullptr. 2.2. If the handle from secondary cache is valid, insert a dummy block in the primary cache (charging the actual size of the block) and return a standalone handle. The behaviors of `LRUCacheShard::Promote()` are updated as follows: 1. If `e->sec_handle` has value, one of the following steps can happen: 1.1. Insert a dummy handle and return a standalone handle to caller when `secondary_cache_` is `CompressedSecondaryCache` and e is a standalone handle. 1.2. Insert the item into the primary cache and return the handle to caller. 1.3. Exception handling. 3. If `e->sec_handle` has no value, mark the item as not in cache and charge the cache as its only metadata that'll shortly be released. The behavior of `CompressedSecondaryCache::Insert()` is updated: 1. If a block is evicted from the primary cache for the first time, a dummy item is inserted. 4. If a dummy item is found for a block, the block is inserted into the secondary cache. The behavior of `CompressedSecondaryCache:::Lookup()` is updated: 1. If a handle is not found or it is a dummy item, a nullptr is returned. 2. If `erase_handle` is true, the handle is erased. The behaviors of `LRUCacheShard::Release()` are adjusted for the standalone handles. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10527 Test Plan: 1. stress tests. 5. unit tests. 6. CPU profiling for db_bench. Reviewed By: siying Differential Revision: D38747613 Pulled By: gitbw95 fbshipit-source-id: 74a1eba7e1957c9affb2bd2ae3e0194584fa6eca
2 years ago
e->SetIsStandalone(false);
Parallelize secondary cache lookup in MultiGet (#8405) Summary: Implement the ```WaitAll()``` interface in ```LRUCache``` to allow callers to issue multiple lookups in parallel and wait for all of them to complete. Modify ```MultiGet``` to use this to parallelize the secondary cache lookups in order to reduce the overall latency. A call to ```cache->Lookup()``` returns a handle that has an incomplete value (nullptr), and the caller can call ```cache->IsReady()``` to check whether the lookup is complete, and pass a vector of handles to ```WaitAll``` to wait for completion. If any of the lookups fail, ```MultiGet``` will read the block from the SST file. Another change in this PR is to rename ```SecondaryCacheHandle``` to ```SecondaryCacheResultHandle``` as it more accurately describes the return result of the secondary cache lookup, which is more like a future. Tests: 1. Add unit tests in lru_cache_test 2. Benchmark results with no secondary cache configured Master - ``` readrandom : 41.175 micros/op 388562 ops/sec; 106.7 MB/s (7277999 of 7277999 found) readrandom : 41.217 micros/op 388160 ops/sec; 106.6 MB/s (7274999 of 7274999 found) multireadrandom : 10.309 micros/op 1552082 ops/sec; (28908992 of 28908992 found) multireadrandom : 10.321 micros/op 1550218 ops/sec; (29081984 of 29081984 found) ``` This PR - ``` readrandom : 41.158 micros/op 388723 ops/sec; 106.8 MB/s (7290999 of 7290999 found) readrandom : 41.185 micros/op 388463 ops/sec; 106.7 MB/s (7287999 of 7287999 found) multireadrandom : 10.277 micros/op 1556801 ops/sec; (29346944 of 29346944 found) multireadrandom : 10.253 micros/op 1560539 ops/sec; (29274944 of 29274944 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8405 Reviewed By: zhichao-cao Differential Revision: D29190509 Pulled By: anand1976 fbshipit-source-id: 6f8eff6246712af8a297cfe22ea0d1c3b2a01bb0
3 years ago
}
}
Initial support for secondary cache in LRUCache (#8271) Summary: Defined the abstract interface for a secondary cache in include/rocksdb/secondary_cache.h, and updated LRUCacheOptions to take a std::shared_ptr<SecondaryCache>. An item is initially inserted into the LRU (primary) cache. When it ages out and evicted from memory, its inserted into the secondary cache. On a LRU cache miss and successful lookup in the secondary cache, the item is promoted to the LRU cache. Only support synchronous lookup currently. The secondary cache would be used to implement a persistent (flash cache) or compressed cache. Tests: Results from cache_bench and db_bench don't show any regression due to these changes. cache_bench results before and after this change - Command ```./cache_bench -ops_per_thread=10000000 -threads=1``` Before ```Complete in 40.688 s; QPS = 245774``` ```Complete in 40.486 s; QPS = 246996``` ```Complete in 42.019 s; QPS = 237989``` After ```Complete in 40.672 s; QPS = 245869``` ```Complete in 44.622 s; QPS = 224107``` ```Complete in 42.445 s; QPS = 235599``` db_bench results before this change, and with this change + https://github.com/facebook/rocksdb/issues/8213 and https://github.com/facebook/rocksdb/issues/8191 - Commands ```./db_bench --benchmarks="fillseq,compact" -num=30000000 -key_size=32 -value_size=256 -use_direct_io_for_flush_and_compaction=true -db=/home/anand76/nvm_cache/db -partition_index_and_filters=true``` ```./db_bench -db=/home/anand76/nvm_cache/db -use_existing_db=true -benchmarks=readrandom -num=30000000 -key_size=32 -value_size=256 -use_direct_reads=true -cache_size=1073741824 -cache_numshardbits=6 -cache_index_and_filter_blocks=true -read_random_exp_range=17 -statistics -partition_index_and_filters=true -threads=16 -duration=300``` Before ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 80.702 micros/op 198104 ops/sec; 54.4 MB/s (3708999 of 3708999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 87.124 micros/op 183625 ops/sec; 50.4 MB/s (3439999 of 3439999 found) ``` After ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 77.653 micros/op 206025 ops/sec; 56.6 MB/s (3866999 of 3866999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 84.962 micros/op 188299 ops/sec; 51.7 MB/s (3535999 of 3535999 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8271 Reviewed By: zhichao-cao Differential Revision: D28357511 Pulled By: anand1976 fbshipit-source-id: d1cfa236f00e649a18c53328be10a8062a4b6da2
4 years ago
Cache::Handle* LRUCacheShard::Lookup(
const Slice& key, uint32_t hash,
const ShardedCache::CacheItemHelper* helper,
const ShardedCache::CreateCallback& create_cb, Cache::Priority priority,
bool wait, Statistics* stats) {
Initial support for secondary cache in LRUCache (#8271) Summary: Defined the abstract interface for a secondary cache in include/rocksdb/secondary_cache.h, and updated LRUCacheOptions to take a std::shared_ptr<SecondaryCache>. An item is initially inserted into the LRU (primary) cache. When it ages out and evicted from memory, its inserted into the secondary cache. On a LRU cache miss and successful lookup in the secondary cache, the item is promoted to the LRU cache. Only support synchronous lookup currently. The secondary cache would be used to implement a persistent (flash cache) or compressed cache. Tests: Results from cache_bench and db_bench don't show any regression due to these changes. cache_bench results before and after this change - Command ```./cache_bench -ops_per_thread=10000000 -threads=1``` Before ```Complete in 40.688 s; QPS = 245774``` ```Complete in 40.486 s; QPS = 246996``` ```Complete in 42.019 s; QPS = 237989``` After ```Complete in 40.672 s; QPS = 245869``` ```Complete in 44.622 s; QPS = 224107``` ```Complete in 42.445 s; QPS = 235599``` db_bench results before this change, and with this change + https://github.com/facebook/rocksdb/issues/8213 and https://github.com/facebook/rocksdb/issues/8191 - Commands ```./db_bench --benchmarks="fillseq,compact" -num=30000000 -key_size=32 -value_size=256 -use_direct_io_for_flush_and_compaction=true -db=/home/anand76/nvm_cache/db -partition_index_and_filters=true``` ```./db_bench -db=/home/anand76/nvm_cache/db -use_existing_db=true -benchmarks=readrandom -num=30000000 -key_size=32 -value_size=256 -use_direct_reads=true -cache_size=1073741824 -cache_numshardbits=6 -cache_index_and_filter_blocks=true -read_random_exp_range=17 -statistics -partition_index_and_filters=true -threads=16 -duration=300``` Before ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 80.702 micros/op 198104 ops/sec; 54.4 MB/s (3708999 of 3708999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 87.124 micros/op 183625 ops/sec; 50.4 MB/s (3439999 of 3439999 found) ``` After ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 77.653 micros/op 206025 ops/sec; 56.6 MB/s (3866999 of 3866999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 84.962 micros/op 188299 ops/sec; 51.7 MB/s (3535999 of 3535999 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8271 Reviewed By: zhichao-cao Differential Revision: D28357511 Pulled By: anand1976 fbshipit-source-id: d1cfa236f00e649a18c53328be10a8062a4b6da2
4 years ago
LRUHandle* e = nullptr;
Avoid recompressing cold block in CompressedSecondaryCache (#10527) Summary: **Summary:** When a block is firstly `Lookup` from the secondary cache, we just insert a dummy block in the primary cache (charging the actual size of the block) and don’t erase the block from the secondary cache. A standalone handle is returned from `Lookup`. Only if the block is hit again, we erase it from the secondary cache and add it into the primary cache. When a block is firstly evicted from the primary cache to the secondary cache, we just insert a dummy block (size 0) in the secondary cache. When the block is evicted again, it is treated as a hot block and is inserted into the secondary cache. **Implementation Details** Add a new state of LRUHandle: The handle is never inserted into the LRUCache (both hash table and LRU list) and it doesn't experience the above three states. The entry can be freed when refs becomes 0. (refs >= 1 && in_cache == false && IS_STANDALONE == true) The behaviors of `LRUCacheShard::Lookup()` are updated if the secondary_cache is CompressedSecondaryCache: 1. If a handle is found in primary cache: 1.1. If the handle's value is not nullptr, it is returned immediately. 1.2. If the handle's value is nullptr, this means the handle is a dummy one. For a dummy handle, if it was retrieved from secondary cache, it may still exist in secondary cache. - 1.2.1. If no valid handle can be `Lookup` from secondary cache, return nullptr. - 1.2.2. If the handle from secondary cache is valid, erase it from the secondary cache and add it into the primary cache. 2. If a handle is not found in primary cache: 2.1. If no valid handle can be `Lookup` from secondary cache, return nullptr. 2.2. If the handle from secondary cache is valid, insert a dummy block in the primary cache (charging the actual size of the block) and return a standalone handle. The behaviors of `LRUCacheShard::Promote()` are updated as follows: 1. If `e->sec_handle` has value, one of the following steps can happen: 1.1. Insert a dummy handle and return a standalone handle to caller when `secondary_cache_` is `CompressedSecondaryCache` and e is a standalone handle. 1.2. Insert the item into the primary cache and return the handle to caller. 1.3. Exception handling. 3. If `e->sec_handle` has no value, mark the item as not in cache and charge the cache as its only metadata that'll shortly be released. The behavior of `CompressedSecondaryCache::Insert()` is updated: 1. If a block is evicted from the primary cache for the first time, a dummy item is inserted. 4. If a dummy item is found for a block, the block is inserted into the secondary cache. The behavior of `CompressedSecondaryCache:::Lookup()` is updated: 1. If a handle is not found or it is a dummy item, a nullptr is returned. 2. If `erase_handle` is true, the handle is erased. The behaviors of `LRUCacheShard::Release()` are adjusted for the standalone handles. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10527 Test Plan: 1. stress tests. 5. unit tests. 6. CPU profiling for db_bench. Reviewed By: siying Differential Revision: D38747613 Pulled By: gitbw95 fbshipit-source-id: 74a1eba7e1957c9affb2bd2ae3e0194584fa6eca
2 years ago
bool found_dummy_entry{false};
Initial support for secondary cache in LRUCache (#8271) Summary: Defined the abstract interface for a secondary cache in include/rocksdb/secondary_cache.h, and updated LRUCacheOptions to take a std::shared_ptr<SecondaryCache>. An item is initially inserted into the LRU (primary) cache. When it ages out and evicted from memory, its inserted into the secondary cache. On a LRU cache miss and successful lookup in the secondary cache, the item is promoted to the LRU cache. Only support synchronous lookup currently. The secondary cache would be used to implement a persistent (flash cache) or compressed cache. Tests: Results from cache_bench and db_bench don't show any regression due to these changes. cache_bench results before and after this change - Command ```./cache_bench -ops_per_thread=10000000 -threads=1``` Before ```Complete in 40.688 s; QPS = 245774``` ```Complete in 40.486 s; QPS = 246996``` ```Complete in 42.019 s; QPS = 237989``` After ```Complete in 40.672 s; QPS = 245869``` ```Complete in 44.622 s; QPS = 224107``` ```Complete in 42.445 s; QPS = 235599``` db_bench results before this change, and with this change + https://github.com/facebook/rocksdb/issues/8213 and https://github.com/facebook/rocksdb/issues/8191 - Commands ```./db_bench --benchmarks="fillseq,compact" -num=30000000 -key_size=32 -value_size=256 -use_direct_io_for_flush_and_compaction=true -db=/home/anand76/nvm_cache/db -partition_index_and_filters=true``` ```./db_bench -db=/home/anand76/nvm_cache/db -use_existing_db=true -benchmarks=readrandom -num=30000000 -key_size=32 -value_size=256 -use_direct_reads=true -cache_size=1073741824 -cache_numshardbits=6 -cache_index_and_filter_blocks=true -read_random_exp_range=17 -statistics -partition_index_and_filters=true -threads=16 -duration=300``` Before ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 80.702 micros/op 198104 ops/sec; 54.4 MB/s (3708999 of 3708999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 87.124 micros/op 183625 ops/sec; 50.4 MB/s (3439999 of 3439999 found) ``` After ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 77.653 micros/op 206025 ops/sec; 56.6 MB/s (3866999 of 3866999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 84.962 micros/op 188299 ops/sec; 51.7 MB/s (3535999 of 3535999 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8271 Reviewed By: zhichao-cao Differential Revision: D28357511 Pulled By: anand1976 fbshipit-source-id: d1cfa236f00e649a18c53328be10a8062a4b6da2
4 years ago
{
Use optimized folly DistributedMutex in LRUCache when available (#10179) Summary: folly DistributedMutex is faster than standard mutexes though imposes some static obligations on usage. See https://github.com/facebook/folly/blob/main/folly/synchronization/DistributedMutex.h for details. Here we use this alternative for our Cache implementations (especially LRUCache) for better locking performance, when RocksDB is compiled with folly. Also added information about which distributed mutex implementation is being used to cache_bench output and to DB LOG. Intended follow-up: * Use DMutex in more places, perhaps improving API to support non-scoped locking * Fix linking with fbcode compiler (needs ROCKSDB_NO_FBCODE=1 currently) Credit: Thanks Siying for reminding me about this line of work that was previously left unfinished. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10179 Test Plan: for correctness, existing tests. CircleCI config updated. Also Meta-internal buck build updated. For performance, ran simultaneous before & after cache_bench. Out of three comparison runs, the middle improvement to ops/sec was +21%: Baseline: USE_CLANG=1 DEBUG_LEVEL=0 make -j24 cache_bench (fbcode compiler) ``` Complete in 20.201 s; Rough parallel ops/sec = 1584062 Thread ops/sec = 107176 Operation latency (ns): Count: 32000000 Average: 9257.9421 StdDev: 122412.04 Min: 134 Median: 3623.0493 Max: 56918500 Percentiles: P50: 3623.05 P75: 10288.02 P99: 30219.35 P99.9: 683522.04 P99.99: 7302791.63 ``` New: (add USE_FOLLY=1) ``` Complete in 16.674 s; Rough parallel ops/sec = 1919135 (+21%) Thread ops/sec = 135487 Operation latency (ns): Count: 32000000 Average: 7304.9294 StdDev: 108530.28 Min: 132 Median: 3777.6012 Max: 91030902 Percentiles: P50: 3777.60 P75: 10169.89 P99: 24504.51 P99.9: 59721.59 P99.99: 1861151.83 ``` Reviewed By: anand1976 Differential Revision: D37182983 Pulled By: pdillinger fbshipit-source-id: a17eb05f25b832b6a2c1356f5c657e831a5af8d1
2 years ago
DMutexLock l(mutex_);
Initial support for secondary cache in LRUCache (#8271) Summary: Defined the abstract interface for a secondary cache in include/rocksdb/secondary_cache.h, and updated LRUCacheOptions to take a std::shared_ptr<SecondaryCache>. An item is initially inserted into the LRU (primary) cache. When it ages out and evicted from memory, its inserted into the secondary cache. On a LRU cache miss and successful lookup in the secondary cache, the item is promoted to the LRU cache. Only support synchronous lookup currently. The secondary cache would be used to implement a persistent (flash cache) or compressed cache. Tests: Results from cache_bench and db_bench don't show any regression due to these changes. cache_bench results before and after this change - Command ```./cache_bench -ops_per_thread=10000000 -threads=1``` Before ```Complete in 40.688 s; QPS = 245774``` ```Complete in 40.486 s; QPS = 246996``` ```Complete in 42.019 s; QPS = 237989``` After ```Complete in 40.672 s; QPS = 245869``` ```Complete in 44.622 s; QPS = 224107``` ```Complete in 42.445 s; QPS = 235599``` db_bench results before this change, and with this change + https://github.com/facebook/rocksdb/issues/8213 and https://github.com/facebook/rocksdb/issues/8191 - Commands ```./db_bench --benchmarks="fillseq,compact" -num=30000000 -key_size=32 -value_size=256 -use_direct_io_for_flush_and_compaction=true -db=/home/anand76/nvm_cache/db -partition_index_and_filters=true``` ```./db_bench -db=/home/anand76/nvm_cache/db -use_existing_db=true -benchmarks=readrandom -num=30000000 -key_size=32 -value_size=256 -use_direct_reads=true -cache_size=1073741824 -cache_numshardbits=6 -cache_index_and_filter_blocks=true -read_random_exp_range=17 -statistics -partition_index_and_filters=true -threads=16 -duration=300``` Before ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 80.702 micros/op 198104 ops/sec; 54.4 MB/s (3708999 of 3708999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 87.124 micros/op 183625 ops/sec; 50.4 MB/s (3439999 of 3439999 found) ``` After ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 77.653 micros/op 206025 ops/sec; 56.6 MB/s (3866999 of 3866999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 84.962 micros/op 188299 ops/sec; 51.7 MB/s (3535999 of 3535999 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8271 Reviewed By: zhichao-cao Differential Revision: D28357511 Pulled By: anand1976 fbshipit-source-id: d1cfa236f00e649a18c53328be10a8062a4b6da2
4 years ago
e = table_.Lookup(key, hash);
if (e != nullptr) {
assert(e->InCache());
if (!e->HasRefs()) {
Avoid recompressing cold block in CompressedSecondaryCache (#10527) Summary: **Summary:** When a block is firstly `Lookup` from the secondary cache, we just insert a dummy block in the primary cache (charging the actual size of the block) and don’t erase the block from the secondary cache. A standalone handle is returned from `Lookup`. Only if the block is hit again, we erase it from the secondary cache and add it into the primary cache. When a block is firstly evicted from the primary cache to the secondary cache, we just insert a dummy block (size 0) in the secondary cache. When the block is evicted again, it is treated as a hot block and is inserted into the secondary cache. **Implementation Details** Add a new state of LRUHandle: The handle is never inserted into the LRUCache (both hash table and LRU list) and it doesn't experience the above three states. The entry can be freed when refs becomes 0. (refs >= 1 && in_cache == false && IS_STANDALONE == true) The behaviors of `LRUCacheShard::Lookup()` are updated if the secondary_cache is CompressedSecondaryCache: 1. If a handle is found in primary cache: 1.1. If the handle's value is not nullptr, it is returned immediately. 1.2. If the handle's value is nullptr, this means the handle is a dummy one. For a dummy handle, if it was retrieved from secondary cache, it may still exist in secondary cache. - 1.2.1. If no valid handle can be `Lookup` from secondary cache, return nullptr. - 1.2.2. If the handle from secondary cache is valid, erase it from the secondary cache and add it into the primary cache. 2. If a handle is not found in primary cache: 2.1. If no valid handle can be `Lookup` from secondary cache, return nullptr. 2.2. If the handle from secondary cache is valid, insert a dummy block in the primary cache (charging the actual size of the block) and return a standalone handle. The behaviors of `LRUCacheShard::Promote()` are updated as follows: 1. If `e->sec_handle` has value, one of the following steps can happen: 1.1. Insert a dummy handle and return a standalone handle to caller when `secondary_cache_` is `CompressedSecondaryCache` and e is a standalone handle. 1.2. Insert the item into the primary cache and return the handle to caller. 1.3. Exception handling. 3. If `e->sec_handle` has no value, mark the item as not in cache and charge the cache as its only metadata that'll shortly be released. The behavior of `CompressedSecondaryCache::Insert()` is updated: 1. If a block is evicted from the primary cache for the first time, a dummy item is inserted. 4. If a dummy item is found for a block, the block is inserted into the secondary cache. The behavior of `CompressedSecondaryCache:::Lookup()` is updated: 1. If a handle is not found or it is a dummy item, a nullptr is returned. 2. If `erase_handle` is true, the handle is erased. The behaviors of `LRUCacheShard::Release()` are adjusted for the standalone handles. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10527 Test Plan: 1. stress tests. 5. unit tests. 6. CPU profiling for db_bench. Reviewed By: siying Differential Revision: D38747613 Pulled By: gitbw95 fbshipit-source-id: 74a1eba7e1957c9affb2bd2ae3e0194584fa6eca
2 years ago
// The entry is in LRU since it's in hash and has no external
// references.
Initial support for secondary cache in LRUCache (#8271) Summary: Defined the abstract interface for a secondary cache in include/rocksdb/secondary_cache.h, and updated LRUCacheOptions to take a std::shared_ptr<SecondaryCache>. An item is initially inserted into the LRU (primary) cache. When it ages out and evicted from memory, its inserted into the secondary cache. On a LRU cache miss and successful lookup in the secondary cache, the item is promoted to the LRU cache. Only support synchronous lookup currently. The secondary cache would be used to implement a persistent (flash cache) or compressed cache. Tests: Results from cache_bench and db_bench don't show any regression due to these changes. cache_bench results before and after this change - Command ```./cache_bench -ops_per_thread=10000000 -threads=1``` Before ```Complete in 40.688 s; QPS = 245774``` ```Complete in 40.486 s; QPS = 246996``` ```Complete in 42.019 s; QPS = 237989``` After ```Complete in 40.672 s; QPS = 245869``` ```Complete in 44.622 s; QPS = 224107``` ```Complete in 42.445 s; QPS = 235599``` db_bench results before this change, and with this change + https://github.com/facebook/rocksdb/issues/8213 and https://github.com/facebook/rocksdb/issues/8191 - Commands ```./db_bench --benchmarks="fillseq,compact" -num=30000000 -key_size=32 -value_size=256 -use_direct_io_for_flush_and_compaction=true -db=/home/anand76/nvm_cache/db -partition_index_and_filters=true``` ```./db_bench -db=/home/anand76/nvm_cache/db -use_existing_db=true -benchmarks=readrandom -num=30000000 -key_size=32 -value_size=256 -use_direct_reads=true -cache_size=1073741824 -cache_numshardbits=6 -cache_index_and_filter_blocks=true -read_random_exp_range=17 -statistics -partition_index_and_filters=true -threads=16 -duration=300``` Before ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 80.702 micros/op 198104 ops/sec; 54.4 MB/s (3708999 of 3708999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 87.124 micros/op 183625 ops/sec; 50.4 MB/s (3439999 of 3439999 found) ``` After ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 77.653 micros/op 206025 ops/sec; 56.6 MB/s (3866999 of 3866999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 84.962 micros/op 188299 ops/sec; 51.7 MB/s (3535999 of 3535999 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8271 Reviewed By: zhichao-cao Differential Revision: D28357511 Pulled By: anand1976 fbshipit-source-id: d1cfa236f00e649a18c53328be10a8062a4b6da2
4 years ago
LRU_Remove(e);
}
e->Ref();
e->SetHit();
Avoid recompressing cold block in CompressedSecondaryCache (#10527) Summary: **Summary:** When a block is firstly `Lookup` from the secondary cache, we just insert a dummy block in the primary cache (charging the actual size of the block) and don’t erase the block from the secondary cache. A standalone handle is returned from `Lookup`. Only if the block is hit again, we erase it from the secondary cache and add it into the primary cache. When a block is firstly evicted from the primary cache to the secondary cache, we just insert a dummy block (size 0) in the secondary cache. When the block is evicted again, it is treated as a hot block and is inserted into the secondary cache. **Implementation Details** Add a new state of LRUHandle: The handle is never inserted into the LRUCache (both hash table and LRU list) and it doesn't experience the above three states. The entry can be freed when refs becomes 0. (refs >= 1 && in_cache == false && IS_STANDALONE == true) The behaviors of `LRUCacheShard::Lookup()` are updated if the secondary_cache is CompressedSecondaryCache: 1. If a handle is found in primary cache: 1.1. If the handle's value is not nullptr, it is returned immediately. 1.2. If the handle's value is nullptr, this means the handle is a dummy one. For a dummy handle, if it was retrieved from secondary cache, it may still exist in secondary cache. - 1.2.1. If no valid handle can be `Lookup` from secondary cache, return nullptr. - 1.2.2. If the handle from secondary cache is valid, erase it from the secondary cache and add it into the primary cache. 2. If a handle is not found in primary cache: 2.1. If no valid handle can be `Lookup` from secondary cache, return nullptr. 2.2. If the handle from secondary cache is valid, insert a dummy block in the primary cache (charging the actual size of the block) and return a standalone handle. The behaviors of `LRUCacheShard::Promote()` are updated as follows: 1. If `e->sec_handle` has value, one of the following steps can happen: 1.1. Insert a dummy handle and return a standalone handle to caller when `secondary_cache_` is `CompressedSecondaryCache` and e is a standalone handle. 1.2. Insert the item into the primary cache and return the handle to caller. 1.3. Exception handling. 3. If `e->sec_handle` has no value, mark the item as not in cache and charge the cache as its only metadata that'll shortly be released. The behavior of `CompressedSecondaryCache::Insert()` is updated: 1. If a block is evicted from the primary cache for the first time, a dummy item is inserted. 4. If a dummy item is found for a block, the block is inserted into the secondary cache. The behavior of `CompressedSecondaryCache:::Lookup()` is updated: 1. If a handle is not found or it is a dummy item, a nullptr is returned. 2. If `erase_handle` is true, the handle is erased. The behaviors of `LRUCacheShard::Release()` are adjusted for the standalone handles. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10527 Test Plan: 1. stress tests. 5. unit tests. 6. CPU profiling for db_bench. Reviewed By: siying Differential Revision: D38747613 Pulled By: gitbw95 fbshipit-source-id: 74a1eba7e1957c9affb2bd2ae3e0194584fa6eca
2 years ago
// For a dummy handle, if it was retrieved from secondary cache,
// it may still exist in secondary cache.
// If the handle exists in secondary cache, the value should be
// erased from sec cache and be inserted into primary cache.
if (!e->value && secondary_cache_ &&
secondary_cache_->SupportForceErase()) {
found_dummy_entry = true;
}
Initial support for secondary cache in LRUCache (#8271) Summary: Defined the abstract interface for a secondary cache in include/rocksdb/secondary_cache.h, and updated LRUCacheOptions to take a std::shared_ptr<SecondaryCache>. An item is initially inserted into the LRU (primary) cache. When it ages out and evicted from memory, its inserted into the secondary cache. On a LRU cache miss and successful lookup in the secondary cache, the item is promoted to the LRU cache. Only support synchronous lookup currently. The secondary cache would be used to implement a persistent (flash cache) or compressed cache. Tests: Results from cache_bench and db_bench don't show any regression due to these changes. cache_bench results before and after this change - Command ```./cache_bench -ops_per_thread=10000000 -threads=1``` Before ```Complete in 40.688 s; QPS = 245774``` ```Complete in 40.486 s; QPS = 246996``` ```Complete in 42.019 s; QPS = 237989``` After ```Complete in 40.672 s; QPS = 245869``` ```Complete in 44.622 s; QPS = 224107``` ```Complete in 42.445 s; QPS = 235599``` db_bench results before this change, and with this change + https://github.com/facebook/rocksdb/issues/8213 and https://github.com/facebook/rocksdb/issues/8191 - Commands ```./db_bench --benchmarks="fillseq,compact" -num=30000000 -key_size=32 -value_size=256 -use_direct_io_for_flush_and_compaction=true -db=/home/anand76/nvm_cache/db -partition_index_and_filters=true``` ```./db_bench -db=/home/anand76/nvm_cache/db -use_existing_db=true -benchmarks=readrandom -num=30000000 -key_size=32 -value_size=256 -use_direct_reads=true -cache_size=1073741824 -cache_numshardbits=6 -cache_index_and_filter_blocks=true -read_random_exp_range=17 -statistics -partition_index_and_filters=true -threads=16 -duration=300``` Before ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 80.702 micros/op 198104 ops/sec; 54.4 MB/s (3708999 of 3708999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 87.124 micros/op 183625 ops/sec; 50.4 MB/s (3439999 of 3439999 found) ``` After ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 77.653 micros/op 206025 ops/sec; 56.6 MB/s (3866999 of 3866999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 84.962 micros/op 188299 ops/sec; 51.7 MB/s (3535999 of 3535999 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8271 Reviewed By: zhichao-cao Differential Revision: D28357511 Pulled By: anand1976 fbshipit-source-id: d1cfa236f00e649a18c53328be10a8062a4b6da2
4 years ago
}
}
Avoid recompressing cold block in CompressedSecondaryCache (#10527) Summary: **Summary:** When a block is firstly `Lookup` from the secondary cache, we just insert a dummy block in the primary cache (charging the actual size of the block) and don’t erase the block from the secondary cache. A standalone handle is returned from `Lookup`. Only if the block is hit again, we erase it from the secondary cache and add it into the primary cache. When a block is firstly evicted from the primary cache to the secondary cache, we just insert a dummy block (size 0) in the secondary cache. When the block is evicted again, it is treated as a hot block and is inserted into the secondary cache. **Implementation Details** Add a new state of LRUHandle: The handle is never inserted into the LRUCache (both hash table and LRU list) and it doesn't experience the above three states. The entry can be freed when refs becomes 0. (refs >= 1 && in_cache == false && IS_STANDALONE == true) The behaviors of `LRUCacheShard::Lookup()` are updated if the secondary_cache is CompressedSecondaryCache: 1. If a handle is found in primary cache: 1.1. If the handle's value is not nullptr, it is returned immediately. 1.2. If the handle's value is nullptr, this means the handle is a dummy one. For a dummy handle, if it was retrieved from secondary cache, it may still exist in secondary cache. - 1.2.1. If no valid handle can be `Lookup` from secondary cache, return nullptr. - 1.2.2. If the handle from secondary cache is valid, erase it from the secondary cache and add it into the primary cache. 2. If a handle is not found in primary cache: 2.1. If no valid handle can be `Lookup` from secondary cache, return nullptr. 2.2. If the handle from secondary cache is valid, insert a dummy block in the primary cache (charging the actual size of the block) and return a standalone handle. The behaviors of `LRUCacheShard::Promote()` are updated as follows: 1. If `e->sec_handle` has value, one of the following steps can happen: 1.1. Insert a dummy handle and return a standalone handle to caller when `secondary_cache_` is `CompressedSecondaryCache` and e is a standalone handle. 1.2. Insert the item into the primary cache and return the handle to caller. 1.3. Exception handling. 3. If `e->sec_handle` has no value, mark the item as not in cache and charge the cache as its only metadata that'll shortly be released. The behavior of `CompressedSecondaryCache::Insert()` is updated: 1. If a block is evicted from the primary cache for the first time, a dummy item is inserted. 4. If a dummy item is found for a block, the block is inserted into the secondary cache. The behavior of `CompressedSecondaryCache:::Lookup()` is updated: 1. If a handle is not found or it is a dummy item, a nullptr is returned. 2. If `erase_handle` is true, the handle is erased. The behaviors of `LRUCacheShard::Release()` are adjusted for the standalone handles. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10527 Test Plan: 1. stress tests. 5. unit tests. 6. CPU profiling for db_bench. Reviewed By: siying Differential Revision: D38747613 Pulled By: gitbw95 fbshipit-source-id: 74a1eba7e1957c9affb2bd2ae3e0194584fa6eca
2 years ago
// If handle table lookup failed or the handle is a dummy one, allocate
// a handle outside the mutex if we re going to lookup in the secondary cache.
//
// When a block is firstly Lookup from CompressedSecondaryCache, we just
// insert a dummy block into the primary cache (charging the actual size of
// the block) and don't erase the block from CompressedSecondaryCache. A
// standalone handle is returned to the caller. Only if the block is hit
// again, we erase it from CompressedSecondaryCache and add it into the
// primary cache.
//
// Only support synchronous for now.
Initial support for secondary cache in LRUCache (#8271) Summary: Defined the abstract interface for a secondary cache in include/rocksdb/secondary_cache.h, and updated LRUCacheOptions to take a std::shared_ptr<SecondaryCache>. An item is initially inserted into the LRU (primary) cache. When it ages out and evicted from memory, its inserted into the secondary cache. On a LRU cache miss and successful lookup in the secondary cache, the item is promoted to the LRU cache. Only support synchronous lookup currently. The secondary cache would be used to implement a persistent (flash cache) or compressed cache. Tests: Results from cache_bench and db_bench don't show any regression due to these changes. cache_bench results before and after this change - Command ```./cache_bench -ops_per_thread=10000000 -threads=1``` Before ```Complete in 40.688 s; QPS = 245774``` ```Complete in 40.486 s; QPS = 246996``` ```Complete in 42.019 s; QPS = 237989``` After ```Complete in 40.672 s; QPS = 245869``` ```Complete in 44.622 s; QPS = 224107``` ```Complete in 42.445 s; QPS = 235599``` db_bench results before this change, and with this change + https://github.com/facebook/rocksdb/issues/8213 and https://github.com/facebook/rocksdb/issues/8191 - Commands ```./db_bench --benchmarks="fillseq,compact" -num=30000000 -key_size=32 -value_size=256 -use_direct_io_for_flush_and_compaction=true -db=/home/anand76/nvm_cache/db -partition_index_and_filters=true``` ```./db_bench -db=/home/anand76/nvm_cache/db -use_existing_db=true -benchmarks=readrandom -num=30000000 -key_size=32 -value_size=256 -use_direct_reads=true -cache_size=1073741824 -cache_numshardbits=6 -cache_index_and_filter_blocks=true -read_random_exp_range=17 -statistics -partition_index_and_filters=true -threads=16 -duration=300``` Before ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 80.702 micros/op 198104 ops/sec; 54.4 MB/s (3708999 of 3708999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 87.124 micros/op 183625 ops/sec; 50.4 MB/s (3439999 of 3439999 found) ``` After ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 77.653 micros/op 206025 ops/sec; 56.6 MB/s (3866999 of 3866999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 84.962 micros/op 188299 ops/sec; 51.7 MB/s (3535999 of 3535999 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8271 Reviewed By: zhichao-cao Differential Revision: D28357511 Pulled By: anand1976 fbshipit-source-id: d1cfa236f00e649a18c53328be10a8062a4b6da2
4 years ago
// TODO: Support asynchronous lookup in secondary cache
Avoid recompressing cold block in CompressedSecondaryCache (#10527) Summary: **Summary:** When a block is firstly `Lookup` from the secondary cache, we just insert a dummy block in the primary cache (charging the actual size of the block) and don’t erase the block from the secondary cache. A standalone handle is returned from `Lookup`. Only if the block is hit again, we erase it from the secondary cache and add it into the primary cache. When a block is firstly evicted from the primary cache to the secondary cache, we just insert a dummy block (size 0) in the secondary cache. When the block is evicted again, it is treated as a hot block and is inserted into the secondary cache. **Implementation Details** Add a new state of LRUHandle: The handle is never inserted into the LRUCache (both hash table and LRU list) and it doesn't experience the above three states. The entry can be freed when refs becomes 0. (refs >= 1 && in_cache == false && IS_STANDALONE == true) The behaviors of `LRUCacheShard::Lookup()` are updated if the secondary_cache is CompressedSecondaryCache: 1. If a handle is found in primary cache: 1.1. If the handle's value is not nullptr, it is returned immediately. 1.2. If the handle's value is nullptr, this means the handle is a dummy one. For a dummy handle, if it was retrieved from secondary cache, it may still exist in secondary cache. - 1.2.1. If no valid handle can be `Lookup` from secondary cache, return nullptr. - 1.2.2. If the handle from secondary cache is valid, erase it from the secondary cache and add it into the primary cache. 2. If a handle is not found in primary cache: 2.1. If no valid handle can be `Lookup` from secondary cache, return nullptr. 2.2. If the handle from secondary cache is valid, insert a dummy block in the primary cache (charging the actual size of the block) and return a standalone handle. The behaviors of `LRUCacheShard::Promote()` are updated as follows: 1. If `e->sec_handle` has value, one of the following steps can happen: 1.1. Insert a dummy handle and return a standalone handle to caller when `secondary_cache_` is `CompressedSecondaryCache` and e is a standalone handle. 1.2. Insert the item into the primary cache and return the handle to caller. 1.3. Exception handling. 3. If `e->sec_handle` has no value, mark the item as not in cache and charge the cache as its only metadata that'll shortly be released. The behavior of `CompressedSecondaryCache::Insert()` is updated: 1. If a block is evicted from the primary cache for the first time, a dummy item is inserted. 4. If a dummy item is found for a block, the block is inserted into the secondary cache. The behavior of `CompressedSecondaryCache:::Lookup()` is updated: 1. If a handle is not found or it is a dummy item, a nullptr is returned. 2. If `erase_handle` is true, the handle is erased. The behaviors of `LRUCacheShard::Release()` are adjusted for the standalone handles. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10527 Test Plan: 1. stress tests. 5. unit tests. 6. CPU profiling for db_bench. Reviewed By: siying Differential Revision: D38747613 Pulled By: gitbw95 fbshipit-source-id: 74a1eba7e1957c9affb2bd2ae3e0194584fa6eca
2 years ago
if ((!e || found_dummy_entry) && secondary_cache_ && helper &&
helper->saveto_cb) {
Initial support for secondary cache in LRUCache (#8271) Summary: Defined the abstract interface for a secondary cache in include/rocksdb/secondary_cache.h, and updated LRUCacheOptions to take a std::shared_ptr<SecondaryCache>. An item is initially inserted into the LRU (primary) cache. When it ages out and evicted from memory, its inserted into the secondary cache. On a LRU cache miss and successful lookup in the secondary cache, the item is promoted to the LRU cache. Only support synchronous lookup currently. The secondary cache would be used to implement a persistent (flash cache) or compressed cache. Tests: Results from cache_bench and db_bench don't show any regression due to these changes. cache_bench results before and after this change - Command ```./cache_bench -ops_per_thread=10000000 -threads=1``` Before ```Complete in 40.688 s; QPS = 245774``` ```Complete in 40.486 s; QPS = 246996``` ```Complete in 42.019 s; QPS = 237989``` After ```Complete in 40.672 s; QPS = 245869``` ```Complete in 44.622 s; QPS = 224107``` ```Complete in 42.445 s; QPS = 235599``` db_bench results before this change, and with this change + https://github.com/facebook/rocksdb/issues/8213 and https://github.com/facebook/rocksdb/issues/8191 - Commands ```./db_bench --benchmarks="fillseq,compact" -num=30000000 -key_size=32 -value_size=256 -use_direct_io_for_flush_and_compaction=true -db=/home/anand76/nvm_cache/db -partition_index_and_filters=true``` ```./db_bench -db=/home/anand76/nvm_cache/db -use_existing_db=true -benchmarks=readrandom -num=30000000 -key_size=32 -value_size=256 -use_direct_reads=true -cache_size=1073741824 -cache_numshardbits=6 -cache_index_and_filter_blocks=true -read_random_exp_range=17 -statistics -partition_index_and_filters=true -threads=16 -duration=300``` Before ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 80.702 micros/op 198104 ops/sec; 54.4 MB/s (3708999 of 3708999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 87.124 micros/op 183625 ops/sec; 50.4 MB/s (3439999 of 3439999 found) ``` After ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 77.653 micros/op 206025 ops/sec; 56.6 MB/s (3866999 of 3866999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 84.962 micros/op 188299 ops/sec; 51.7 MB/s (3535999 of 3535999 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8271 Reviewed By: zhichao-cao Differential Revision: D28357511 Pulled By: anand1976 fbshipit-source-id: d1cfa236f00e649a18c53328be10a8062a4b6da2
4 years ago
// For objects from the secondary cache, we expect the caller to provide
// a way to create/delete the primary cache object. The only case where
// a deleter would not be required is for dummy entries inserted for
// accounting purposes, which we won't demote to the secondary cache
// anyway.
assert(create_cb && helper->del_cb);
Avoid recompressing cold block in CompressedSecondaryCache (#10527) Summary: **Summary:** When a block is firstly `Lookup` from the secondary cache, we just insert a dummy block in the primary cache (charging the actual size of the block) and don’t erase the block from the secondary cache. A standalone handle is returned from `Lookup`. Only if the block is hit again, we erase it from the secondary cache and add it into the primary cache. When a block is firstly evicted from the primary cache to the secondary cache, we just insert a dummy block (size 0) in the secondary cache. When the block is evicted again, it is treated as a hot block and is inserted into the secondary cache. **Implementation Details** Add a new state of LRUHandle: The handle is never inserted into the LRUCache (both hash table and LRU list) and it doesn't experience the above three states. The entry can be freed when refs becomes 0. (refs >= 1 && in_cache == false && IS_STANDALONE == true) The behaviors of `LRUCacheShard::Lookup()` are updated if the secondary_cache is CompressedSecondaryCache: 1. If a handle is found in primary cache: 1.1. If the handle's value is not nullptr, it is returned immediately. 1.2. If the handle's value is nullptr, this means the handle is a dummy one. For a dummy handle, if it was retrieved from secondary cache, it may still exist in secondary cache. - 1.2.1. If no valid handle can be `Lookup` from secondary cache, return nullptr. - 1.2.2. If the handle from secondary cache is valid, erase it from the secondary cache and add it into the primary cache. 2. If a handle is not found in primary cache: 2.1. If no valid handle can be `Lookup` from secondary cache, return nullptr. 2.2. If the handle from secondary cache is valid, insert a dummy block in the primary cache (charging the actual size of the block) and return a standalone handle. The behaviors of `LRUCacheShard::Promote()` are updated as follows: 1. If `e->sec_handle` has value, one of the following steps can happen: 1.1. Insert a dummy handle and return a standalone handle to caller when `secondary_cache_` is `CompressedSecondaryCache` and e is a standalone handle. 1.2. Insert the item into the primary cache and return the handle to caller. 1.3. Exception handling. 3. If `e->sec_handle` has no value, mark the item as not in cache and charge the cache as its only metadata that'll shortly be released. The behavior of `CompressedSecondaryCache::Insert()` is updated: 1. If a block is evicted from the primary cache for the first time, a dummy item is inserted. 4. If a dummy item is found for a block, the block is inserted into the secondary cache. The behavior of `CompressedSecondaryCache:::Lookup()` is updated: 1. If a handle is not found or it is a dummy item, a nullptr is returned. 2. If `erase_handle` is true, the handle is erased. The behaviors of `LRUCacheShard::Release()` are adjusted for the standalone handles. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10527 Test Plan: 1. stress tests. 5. unit tests. 6. CPU profiling for db_bench. Reviewed By: siying Differential Revision: D38747613 Pulled By: gitbw95 fbshipit-source-id: 74a1eba7e1957c9affb2bd2ae3e0194584fa6eca
2 years ago
// Release the dummy handle.
if (e) {
Release(reinterpret_cast<Cache::Handle*>(e), true /*erase_if_last_ref*/);
}
Prevent double caching in the compressed secondary cache (#9747) Summary: ### **Summary:** When both LRU Cache and CompressedSecondaryCache are configured together, there possibly are some data blocks double cached. **Changes include:** 1. Update IS_PROMOTED to IS_IN_SECONDARY_CACHE to prevent confusions. 2. This PR updates SecondaryCacheResultHandle and use IsErasedFromSecondaryCache to determine whether the handle is erased in the secondary cache. Then, the caller can determine whether to SetIsInSecondaryCache(). 3. Rename LRUSecondaryCache to CompressedSecondaryCache. Pull Request resolved: https://github.com/facebook/rocksdb/pull/9747 Test Plan: **Test Scripts:** 1. Populate a DB. The on disk footprint is 482 MB. The data is set to be 50% compressible, so the total decompressed size is expected to be 964 MB. ./db_bench --benchmarks=fillrandom --num=10000000 -db=/db_bench_1 2. overwrite it to a stable state: ./db_bench --benchmarks=overwrite,stats --num=10000000 -use_existing_db -duration=10 --benchmark_write_rate_limit=2000000 -db=/db_bench_1 4. Run read tests with diffeernt cache setting: T1: ./db_bench --benchmarks=seekrandom,stats --threads=16 --num=10000000 -use_existing_db -duration=120 --benchmark_write_rate_limit=52000000 -use_direct_reads --cache_size=520000000 --statistics -db=/db_bench_1 T2: ./db_bench --benchmarks=seekrandom,stats --threads=16 --num=10000000 -use_existing_db -duration=120 --benchmark_write_rate_limit=52000000 -use_direct_reads --cache_size=320000000 -compressed_secondary_cache_size=400000000 --statistics -use_compressed_secondary_cache -db=/db_bench_1 T3: ./db_bench --benchmarks=seekrandom,stats --threads=16 --num=10000000 -use_existing_db -duration=120 --benchmark_write_rate_limit=52000000 -use_direct_reads --cache_size=520000000 -compressed_secondary_cache_size=400000000 --statistics -use_compressed_secondary_cache -db=/db_bench_1 T4: ./db_bench --benchmarks=seekrandom,stats --threads=16 --num=10000000 -use_existing_db -duration=120 --benchmark_write_rate_limit=52000000 -use_direct_reads --cache_size=20000000 -compressed_secondary_cache_size=500000000 --statistics -use_compressed_secondary_cache -db=/db_bench_1 **Before this PR** | Cache Size | Compressed Secondary Cache Size | Cache Hit Rate | |------------|-------------------------------------|----------------| |520 MB | 0 MB | 85.5% | |320 MB | 400 MB | 96.2% | |520 MB | 400 MB | 98.3% | |20 MB | 500 MB | 98.8% | **Before this PR** | Cache Size | Compressed Secondary Cache Size | Cache Hit Rate | |------------|-------------------------------------|----------------| |520 MB | 0 MB | 85.5% | |320 MB | 400 MB | 99.9% | |520 MB | 400 MB | 99.9% | |20 MB | 500 MB | 99.2% | Reviewed By: anand1976 Differential Revision: D35117499 Pulled By: gitbw95 fbshipit-source-id: ea2657749fc13efebe91a8a1b56bc61d6a224a12
3 years ago
bool is_in_sec_cache{false};
Parallelize secondary cache lookup in MultiGet (#8405) Summary: Implement the ```WaitAll()``` interface in ```LRUCache``` to allow callers to issue multiple lookups in parallel and wait for all of them to complete. Modify ```MultiGet``` to use this to parallelize the secondary cache lookups in order to reduce the overall latency. A call to ```cache->Lookup()``` returns a handle that has an incomplete value (nullptr), and the caller can call ```cache->IsReady()``` to check whether the lookup is complete, and pass a vector of handles to ```WaitAll``` to wait for completion. If any of the lookups fail, ```MultiGet``` will read the block from the SST file. Another change in this PR is to rename ```SecondaryCacheHandle``` to ```SecondaryCacheResultHandle``` as it more accurately describes the return result of the secondary cache lookup, which is more like a future. Tests: 1. Add unit tests in lru_cache_test 2. Benchmark results with no secondary cache configured Master - ``` readrandom : 41.175 micros/op 388562 ops/sec; 106.7 MB/s (7277999 of 7277999 found) readrandom : 41.217 micros/op 388160 ops/sec; 106.6 MB/s (7274999 of 7274999 found) multireadrandom : 10.309 micros/op 1552082 ops/sec; (28908992 of 28908992 found) multireadrandom : 10.321 micros/op 1550218 ops/sec; (29081984 of 29081984 found) ``` This PR - ``` readrandom : 41.158 micros/op 388723 ops/sec; 106.8 MB/s (7290999 of 7290999 found) readrandom : 41.185 micros/op 388463 ops/sec; 106.7 MB/s (7287999 of 7287999 found) multireadrandom : 10.277 micros/op 1556801 ops/sec; (29346944 of 29346944 found) multireadrandom : 10.253 micros/op 1560539 ops/sec; (29274944 of 29274944 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8405 Reviewed By: zhichao-cao Differential Revision: D29190509 Pulled By: anand1976 fbshipit-source-id: 6f8eff6246712af8a297cfe22ea0d1c3b2a01bb0
3 years ago
std::unique_ptr<SecondaryCacheResultHandle> secondary_handle =
Avoid recompressing cold block in CompressedSecondaryCache (#10527) Summary: **Summary:** When a block is firstly `Lookup` from the secondary cache, we just insert a dummy block in the primary cache (charging the actual size of the block) and don’t erase the block from the secondary cache. A standalone handle is returned from `Lookup`. Only if the block is hit again, we erase it from the secondary cache and add it into the primary cache. When a block is firstly evicted from the primary cache to the secondary cache, we just insert a dummy block (size 0) in the secondary cache. When the block is evicted again, it is treated as a hot block and is inserted into the secondary cache. **Implementation Details** Add a new state of LRUHandle: The handle is never inserted into the LRUCache (both hash table and LRU list) and it doesn't experience the above three states. The entry can be freed when refs becomes 0. (refs >= 1 && in_cache == false && IS_STANDALONE == true) The behaviors of `LRUCacheShard::Lookup()` are updated if the secondary_cache is CompressedSecondaryCache: 1. If a handle is found in primary cache: 1.1. If the handle's value is not nullptr, it is returned immediately. 1.2. If the handle's value is nullptr, this means the handle is a dummy one. For a dummy handle, if it was retrieved from secondary cache, it may still exist in secondary cache. - 1.2.1. If no valid handle can be `Lookup` from secondary cache, return nullptr. - 1.2.2. If the handle from secondary cache is valid, erase it from the secondary cache and add it into the primary cache. 2. If a handle is not found in primary cache: 2.1. If no valid handle can be `Lookup` from secondary cache, return nullptr. 2.2. If the handle from secondary cache is valid, insert a dummy block in the primary cache (charging the actual size of the block) and return a standalone handle. The behaviors of `LRUCacheShard::Promote()` are updated as follows: 1. If `e->sec_handle` has value, one of the following steps can happen: 1.1. Insert a dummy handle and return a standalone handle to caller when `secondary_cache_` is `CompressedSecondaryCache` and e is a standalone handle. 1.2. Insert the item into the primary cache and return the handle to caller. 1.3. Exception handling. 3. If `e->sec_handle` has no value, mark the item as not in cache and charge the cache as its only metadata that'll shortly be released. The behavior of `CompressedSecondaryCache::Insert()` is updated: 1. If a block is evicted from the primary cache for the first time, a dummy item is inserted. 4. If a dummy item is found for a block, the block is inserted into the secondary cache. The behavior of `CompressedSecondaryCache:::Lookup()` is updated: 1. If a handle is not found or it is a dummy item, a nullptr is returned. 2. If `erase_handle` is true, the handle is erased. The behaviors of `LRUCacheShard::Release()` are adjusted for the standalone handles. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10527 Test Plan: 1. stress tests. 5. unit tests. 6. CPU profiling for db_bench. Reviewed By: siying Differential Revision: D38747613 Pulled By: gitbw95 fbshipit-source-id: 74a1eba7e1957c9affb2bd2ae3e0194584fa6eca
2 years ago
secondary_cache_->Lookup(key, create_cb, wait, found_dummy_entry,
is_in_sec_cache);
Initial support for secondary cache in LRUCache (#8271) Summary: Defined the abstract interface for a secondary cache in include/rocksdb/secondary_cache.h, and updated LRUCacheOptions to take a std::shared_ptr<SecondaryCache>. An item is initially inserted into the LRU (primary) cache. When it ages out and evicted from memory, its inserted into the secondary cache. On a LRU cache miss and successful lookup in the secondary cache, the item is promoted to the LRU cache. Only support synchronous lookup currently. The secondary cache would be used to implement a persistent (flash cache) or compressed cache. Tests: Results from cache_bench and db_bench don't show any regression due to these changes. cache_bench results before and after this change - Command ```./cache_bench -ops_per_thread=10000000 -threads=1``` Before ```Complete in 40.688 s; QPS = 245774``` ```Complete in 40.486 s; QPS = 246996``` ```Complete in 42.019 s; QPS = 237989``` After ```Complete in 40.672 s; QPS = 245869``` ```Complete in 44.622 s; QPS = 224107``` ```Complete in 42.445 s; QPS = 235599``` db_bench results before this change, and with this change + https://github.com/facebook/rocksdb/issues/8213 and https://github.com/facebook/rocksdb/issues/8191 - Commands ```./db_bench --benchmarks="fillseq,compact" -num=30000000 -key_size=32 -value_size=256 -use_direct_io_for_flush_and_compaction=true -db=/home/anand76/nvm_cache/db -partition_index_and_filters=true``` ```./db_bench -db=/home/anand76/nvm_cache/db -use_existing_db=true -benchmarks=readrandom -num=30000000 -key_size=32 -value_size=256 -use_direct_reads=true -cache_size=1073741824 -cache_numshardbits=6 -cache_index_and_filter_blocks=true -read_random_exp_range=17 -statistics -partition_index_and_filters=true -threads=16 -duration=300``` Before ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 80.702 micros/op 198104 ops/sec; 54.4 MB/s (3708999 of 3708999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 87.124 micros/op 183625 ops/sec; 50.4 MB/s (3439999 of 3439999 found) ``` After ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 77.653 micros/op 206025 ops/sec; 56.6 MB/s (3866999 of 3866999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 84.962 micros/op 188299 ops/sec; 51.7 MB/s (3535999 of 3535999 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8271 Reviewed By: zhichao-cao Differential Revision: D28357511 Pulled By: anand1976 fbshipit-source-id: d1cfa236f00e649a18c53328be10a8062a4b6da2
4 years ago
if (secondary_handle != nullptr) {
e = reinterpret_cast<LRUHandle*>(
new char[sizeof(LRUHandle) - 1 + key.size()]);
e->flags = 0;
e->SetSecondaryCacheCompatible(true);
e->info_.helper = helper;
e->key_length = key.size();
e->hash = hash;
e->refs = 0;
e->next = e->prev = nullptr;
e->SetPriority(priority);
memcpy(e->key_data, key.data(), key.size());
Parallelize secondary cache lookup in MultiGet (#8405) Summary: Implement the ```WaitAll()``` interface in ```LRUCache``` to allow callers to issue multiple lookups in parallel and wait for all of them to complete. Modify ```MultiGet``` to use this to parallelize the secondary cache lookups in order to reduce the overall latency. A call to ```cache->Lookup()``` returns a handle that has an incomplete value (nullptr), and the caller can call ```cache->IsReady()``` to check whether the lookup is complete, and pass a vector of handles to ```WaitAll``` to wait for completion. If any of the lookups fail, ```MultiGet``` will read the block from the SST file. Another change in this PR is to rename ```SecondaryCacheHandle``` to ```SecondaryCacheResultHandle``` as it more accurately describes the return result of the secondary cache lookup, which is more like a future. Tests: 1. Add unit tests in lru_cache_test 2. Benchmark results with no secondary cache configured Master - ``` readrandom : 41.175 micros/op 388562 ops/sec; 106.7 MB/s (7277999 of 7277999 found) readrandom : 41.217 micros/op 388160 ops/sec; 106.6 MB/s (7274999 of 7274999 found) multireadrandom : 10.309 micros/op 1552082 ops/sec; (28908992 of 28908992 found) multireadrandom : 10.321 micros/op 1550218 ops/sec; (29081984 of 29081984 found) ``` This PR - ``` readrandom : 41.158 micros/op 388723 ops/sec; 106.8 MB/s (7290999 of 7290999 found) readrandom : 41.185 micros/op 388463 ops/sec; 106.7 MB/s (7287999 of 7287999 found) multireadrandom : 10.277 micros/op 1556801 ops/sec; (29346944 of 29346944 found) multireadrandom : 10.253 micros/op 1560539 ops/sec; (29274944 of 29274944 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8405 Reviewed By: zhichao-cao Differential Revision: D29190509 Pulled By: anand1976 fbshipit-source-id: 6f8eff6246712af8a297cfe22ea0d1c3b2a01bb0
3 years ago
e->value = nullptr;
e->sec_handle = secondary_handle.release();
e->total_charge = 0;
Parallelize secondary cache lookup in MultiGet (#8405) Summary: Implement the ```WaitAll()``` interface in ```LRUCache``` to allow callers to issue multiple lookups in parallel and wait for all of them to complete. Modify ```MultiGet``` to use this to parallelize the secondary cache lookups in order to reduce the overall latency. A call to ```cache->Lookup()``` returns a handle that has an incomplete value (nullptr), and the caller can call ```cache->IsReady()``` to check whether the lookup is complete, and pass a vector of handles to ```WaitAll``` to wait for completion. If any of the lookups fail, ```MultiGet``` will read the block from the SST file. Another change in this PR is to rename ```SecondaryCacheHandle``` to ```SecondaryCacheResultHandle``` as it more accurately describes the return result of the secondary cache lookup, which is more like a future. Tests: 1. Add unit tests in lru_cache_test 2. Benchmark results with no secondary cache configured Master - ``` readrandom : 41.175 micros/op 388562 ops/sec; 106.7 MB/s (7277999 of 7277999 found) readrandom : 41.217 micros/op 388160 ops/sec; 106.6 MB/s (7274999 of 7274999 found) multireadrandom : 10.309 micros/op 1552082 ops/sec; (28908992 of 28908992 found) multireadrandom : 10.321 micros/op 1550218 ops/sec; (29081984 of 29081984 found) ``` This PR - ``` readrandom : 41.158 micros/op 388723 ops/sec; 106.8 MB/s (7290999 of 7290999 found) readrandom : 41.185 micros/op 388463 ops/sec; 106.7 MB/s (7287999 of 7287999 found) multireadrandom : 10.277 micros/op 1556801 ops/sec; (29346944 of 29346944 found) multireadrandom : 10.253 micros/op 1560539 ops/sec; (29274944 of 29274944 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8405 Reviewed By: zhichao-cao Differential Revision: D29190509 Pulled By: anand1976 fbshipit-source-id: 6f8eff6246712af8a297cfe22ea0d1c3b2a01bb0
3 years ago
e->Ref();
e->SetIsInSecondaryCache(is_in_sec_cache);
Initial support for secondary cache in LRUCache (#8271) Summary: Defined the abstract interface for a secondary cache in include/rocksdb/secondary_cache.h, and updated LRUCacheOptions to take a std::shared_ptr<SecondaryCache>. An item is initially inserted into the LRU (primary) cache. When it ages out and evicted from memory, its inserted into the secondary cache. On a LRU cache miss and successful lookup in the secondary cache, the item is promoted to the LRU cache. Only support synchronous lookup currently. The secondary cache would be used to implement a persistent (flash cache) or compressed cache. Tests: Results from cache_bench and db_bench don't show any regression due to these changes. cache_bench results before and after this change - Command ```./cache_bench -ops_per_thread=10000000 -threads=1``` Before ```Complete in 40.688 s; QPS = 245774``` ```Complete in 40.486 s; QPS = 246996``` ```Complete in 42.019 s; QPS = 237989``` After ```Complete in 40.672 s; QPS = 245869``` ```Complete in 44.622 s; QPS = 224107``` ```Complete in 42.445 s; QPS = 235599``` db_bench results before this change, and with this change + https://github.com/facebook/rocksdb/issues/8213 and https://github.com/facebook/rocksdb/issues/8191 - Commands ```./db_bench --benchmarks="fillseq,compact" -num=30000000 -key_size=32 -value_size=256 -use_direct_io_for_flush_and_compaction=true -db=/home/anand76/nvm_cache/db -partition_index_and_filters=true``` ```./db_bench -db=/home/anand76/nvm_cache/db -use_existing_db=true -benchmarks=readrandom -num=30000000 -key_size=32 -value_size=256 -use_direct_reads=true -cache_size=1073741824 -cache_numshardbits=6 -cache_index_and_filter_blocks=true -read_random_exp_range=17 -statistics -partition_index_and_filters=true -threads=16 -duration=300``` Before ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 80.702 micros/op 198104 ops/sec; 54.4 MB/s (3708999 of 3708999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 87.124 micros/op 183625 ops/sec; 50.4 MB/s (3439999 of 3439999 found) ``` After ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 77.653 micros/op 206025 ops/sec; 56.6 MB/s (3866999 of 3866999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 84.962 micros/op 188299 ops/sec; 51.7 MB/s (3535999 of 3535999 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8271 Reviewed By: zhichao-cao Differential Revision: D28357511 Pulled By: anand1976 fbshipit-source-id: d1cfa236f00e649a18c53328be10a8062a4b6da2
4 years ago
Avoid recompressing cold block in CompressedSecondaryCache (#10527) Summary: **Summary:** When a block is firstly `Lookup` from the secondary cache, we just insert a dummy block in the primary cache (charging the actual size of the block) and don’t erase the block from the secondary cache. A standalone handle is returned from `Lookup`. Only if the block is hit again, we erase it from the secondary cache and add it into the primary cache. When a block is firstly evicted from the primary cache to the secondary cache, we just insert a dummy block (size 0) in the secondary cache. When the block is evicted again, it is treated as a hot block and is inserted into the secondary cache. **Implementation Details** Add a new state of LRUHandle: The handle is never inserted into the LRUCache (both hash table and LRU list) and it doesn't experience the above three states. The entry can be freed when refs becomes 0. (refs >= 1 && in_cache == false && IS_STANDALONE == true) The behaviors of `LRUCacheShard::Lookup()` are updated if the secondary_cache is CompressedSecondaryCache: 1. If a handle is found in primary cache: 1.1. If the handle's value is not nullptr, it is returned immediately. 1.2. If the handle's value is nullptr, this means the handle is a dummy one. For a dummy handle, if it was retrieved from secondary cache, it may still exist in secondary cache. - 1.2.1. If no valid handle can be `Lookup` from secondary cache, return nullptr. - 1.2.2. If the handle from secondary cache is valid, erase it from the secondary cache and add it into the primary cache. 2. If a handle is not found in primary cache: 2.1. If no valid handle can be `Lookup` from secondary cache, return nullptr. 2.2. If the handle from secondary cache is valid, insert a dummy block in the primary cache (charging the actual size of the block) and return a standalone handle. The behaviors of `LRUCacheShard::Promote()` are updated as follows: 1. If `e->sec_handle` has value, one of the following steps can happen: 1.1. Insert a dummy handle and return a standalone handle to caller when `secondary_cache_` is `CompressedSecondaryCache` and e is a standalone handle. 1.2. Insert the item into the primary cache and return the handle to caller. 1.3. Exception handling. 3. If `e->sec_handle` has no value, mark the item as not in cache and charge the cache as its only metadata that'll shortly be released. The behavior of `CompressedSecondaryCache::Insert()` is updated: 1. If a block is evicted from the primary cache for the first time, a dummy item is inserted. 4. If a dummy item is found for a block, the block is inserted into the secondary cache. The behavior of `CompressedSecondaryCache:::Lookup()` is updated: 1. If a handle is not found or it is a dummy item, a nullptr is returned. 2. If `erase_handle` is true, the handle is erased. The behaviors of `LRUCacheShard::Release()` are adjusted for the standalone handles. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10527 Test Plan: 1. stress tests. 5. unit tests. 6. CPU profiling for db_bench. Reviewed By: siying Differential Revision: D38747613 Pulled By: gitbw95 fbshipit-source-id: 74a1eba7e1957c9affb2bd2ae3e0194584fa6eca
2 years ago
if (secondary_cache_->SupportForceErase() && !found_dummy_entry) {
e->SetIsStandalone(true);
}
Parallelize secondary cache lookup in MultiGet (#8405) Summary: Implement the ```WaitAll()``` interface in ```LRUCache``` to allow callers to issue multiple lookups in parallel and wait for all of them to complete. Modify ```MultiGet``` to use this to parallelize the secondary cache lookups in order to reduce the overall latency. A call to ```cache->Lookup()``` returns a handle that has an incomplete value (nullptr), and the caller can call ```cache->IsReady()``` to check whether the lookup is complete, and pass a vector of handles to ```WaitAll``` to wait for completion. If any of the lookups fail, ```MultiGet``` will read the block from the SST file. Another change in this PR is to rename ```SecondaryCacheHandle``` to ```SecondaryCacheResultHandle``` as it more accurately describes the return result of the secondary cache lookup, which is more like a future. Tests: 1. Add unit tests in lru_cache_test 2. Benchmark results with no secondary cache configured Master - ``` readrandom : 41.175 micros/op 388562 ops/sec; 106.7 MB/s (7277999 of 7277999 found) readrandom : 41.217 micros/op 388160 ops/sec; 106.6 MB/s (7274999 of 7274999 found) multireadrandom : 10.309 micros/op 1552082 ops/sec; (28908992 of 28908992 found) multireadrandom : 10.321 micros/op 1550218 ops/sec; (29081984 of 29081984 found) ``` This PR - ``` readrandom : 41.158 micros/op 388723 ops/sec; 106.8 MB/s (7290999 of 7290999 found) readrandom : 41.185 micros/op 388463 ops/sec; 106.7 MB/s (7287999 of 7287999 found) multireadrandom : 10.277 micros/op 1556801 ops/sec; (29346944 of 29346944 found) multireadrandom : 10.253 micros/op 1560539 ops/sec; (29274944 of 29274944 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8405 Reviewed By: zhichao-cao Differential Revision: D29190509 Pulled By: anand1976 fbshipit-source-id: 6f8eff6246712af8a297cfe22ea0d1c3b2a01bb0
3 years ago
if (wait) {
Promote(e);
Avoid recompressing cold block in CompressedSecondaryCache (#10527) Summary: **Summary:** When a block is firstly `Lookup` from the secondary cache, we just insert a dummy block in the primary cache (charging the actual size of the block) and don’t erase the block from the secondary cache. A standalone handle is returned from `Lookup`. Only if the block is hit again, we erase it from the secondary cache and add it into the primary cache. When a block is firstly evicted from the primary cache to the secondary cache, we just insert a dummy block (size 0) in the secondary cache. When the block is evicted again, it is treated as a hot block and is inserted into the secondary cache. **Implementation Details** Add a new state of LRUHandle: The handle is never inserted into the LRUCache (both hash table and LRU list) and it doesn't experience the above three states. The entry can be freed when refs becomes 0. (refs >= 1 && in_cache == false && IS_STANDALONE == true) The behaviors of `LRUCacheShard::Lookup()` are updated if the secondary_cache is CompressedSecondaryCache: 1. If a handle is found in primary cache: 1.1. If the handle's value is not nullptr, it is returned immediately. 1.2. If the handle's value is nullptr, this means the handle is a dummy one. For a dummy handle, if it was retrieved from secondary cache, it may still exist in secondary cache. - 1.2.1. If no valid handle can be `Lookup` from secondary cache, return nullptr. - 1.2.2. If the handle from secondary cache is valid, erase it from the secondary cache and add it into the primary cache. 2. If a handle is not found in primary cache: 2.1. If no valid handle can be `Lookup` from secondary cache, return nullptr. 2.2. If the handle from secondary cache is valid, insert a dummy block in the primary cache (charging the actual size of the block) and return a standalone handle. The behaviors of `LRUCacheShard::Promote()` are updated as follows: 1. If `e->sec_handle` has value, one of the following steps can happen: 1.1. Insert a dummy handle and return a standalone handle to caller when `secondary_cache_` is `CompressedSecondaryCache` and e is a standalone handle. 1.2. Insert the item into the primary cache and return the handle to caller. 1.3. Exception handling. 3. If `e->sec_handle` has no value, mark the item as not in cache and charge the cache as its only metadata that'll shortly be released. The behavior of `CompressedSecondaryCache::Insert()` is updated: 1. If a block is evicted from the primary cache for the first time, a dummy item is inserted. 4. If a dummy item is found for a block, the block is inserted into the secondary cache. The behavior of `CompressedSecondaryCache:::Lookup()` is updated: 1. If a handle is not found or it is a dummy item, a nullptr is returned. 2. If `erase_handle` is true, the handle is erased. The behaviors of `LRUCacheShard::Release()` are adjusted for the standalone handles. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10527 Test Plan: 1. stress tests. 5. unit tests. 6. CPU profiling for db_bench. Reviewed By: siying Differential Revision: D38747613 Pulled By: gitbw95 fbshipit-source-id: 74a1eba7e1957c9affb2bd2ae3e0194584fa6eca
2 years ago
if (e) {
if (!e->value) {
// The secondary cache returned a handle, but the lookup failed.
e->Unref();
e->Free();
e = nullptr;
} else {
PERF_COUNTER_ADD(secondary_cache_hit_count, 1);
RecordTick(stats, SECONDARY_CACHE_HITS);
}
Parallelize secondary cache lookup in MultiGet (#8405) Summary: Implement the ```WaitAll()``` interface in ```LRUCache``` to allow callers to issue multiple lookups in parallel and wait for all of them to complete. Modify ```MultiGet``` to use this to parallelize the secondary cache lookups in order to reduce the overall latency. A call to ```cache->Lookup()``` returns a handle that has an incomplete value (nullptr), and the caller can call ```cache->IsReady()``` to check whether the lookup is complete, and pass a vector of handles to ```WaitAll``` to wait for completion. If any of the lookups fail, ```MultiGet``` will read the block from the SST file. Another change in this PR is to rename ```SecondaryCacheHandle``` to ```SecondaryCacheResultHandle``` as it more accurately describes the return result of the secondary cache lookup, which is more like a future. Tests: 1. Add unit tests in lru_cache_test 2. Benchmark results with no secondary cache configured Master - ``` readrandom : 41.175 micros/op 388562 ops/sec; 106.7 MB/s (7277999 of 7277999 found) readrandom : 41.217 micros/op 388160 ops/sec; 106.6 MB/s (7274999 of 7274999 found) multireadrandom : 10.309 micros/op 1552082 ops/sec; (28908992 of 28908992 found) multireadrandom : 10.321 micros/op 1550218 ops/sec; (29081984 of 29081984 found) ``` This PR - ``` readrandom : 41.158 micros/op 388723 ops/sec; 106.8 MB/s (7290999 of 7290999 found) readrandom : 41.185 micros/op 388463 ops/sec; 106.7 MB/s (7287999 of 7287999 found) multireadrandom : 10.277 micros/op 1556801 ops/sec; (29346944 of 29346944 found) multireadrandom : 10.253 micros/op 1560539 ops/sec; (29274944 of 29274944 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8405 Reviewed By: zhichao-cao Differential Revision: D29190509 Pulled By: anand1976 fbshipit-source-id: 6f8eff6246712af8a297cfe22ea0d1c3b2a01bb0
3 years ago
}
} else {
// If wait is false, we always return a handle and let the caller
// release the handle after checking for success or failure.
Parallelize secondary cache lookup in MultiGet (#8405) Summary: Implement the ```WaitAll()``` interface in ```LRUCache``` to allow callers to issue multiple lookups in parallel and wait for all of them to complete. Modify ```MultiGet``` to use this to parallelize the secondary cache lookups in order to reduce the overall latency. A call to ```cache->Lookup()``` returns a handle that has an incomplete value (nullptr), and the caller can call ```cache->IsReady()``` to check whether the lookup is complete, and pass a vector of handles to ```WaitAll``` to wait for completion. If any of the lookups fail, ```MultiGet``` will read the block from the SST file. Another change in this PR is to rename ```SecondaryCacheHandle``` to ```SecondaryCacheResultHandle``` as it more accurately describes the return result of the secondary cache lookup, which is more like a future. Tests: 1. Add unit tests in lru_cache_test 2. Benchmark results with no secondary cache configured Master - ``` readrandom : 41.175 micros/op 388562 ops/sec; 106.7 MB/s (7277999 of 7277999 found) readrandom : 41.217 micros/op 388160 ops/sec; 106.6 MB/s (7274999 of 7274999 found) multireadrandom : 10.309 micros/op 1552082 ops/sec; (28908992 of 28908992 found) multireadrandom : 10.321 micros/op 1550218 ops/sec; (29081984 of 29081984 found) ``` This PR - ``` readrandom : 41.158 micros/op 388723 ops/sec; 106.8 MB/s (7290999 of 7290999 found) readrandom : 41.185 micros/op 388463 ops/sec; 106.7 MB/s (7287999 of 7287999 found) multireadrandom : 10.277 micros/op 1556801 ops/sec; (29346944 of 29346944 found) multireadrandom : 10.253 micros/op 1560539 ops/sec; (29274944 of 29274944 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8405 Reviewed By: zhichao-cao Differential Revision: D29190509 Pulled By: anand1976 fbshipit-source-id: 6f8eff6246712af8a297cfe22ea0d1c3b2a01bb0
3 years ago
e->SetIncomplete(true);
// This may be slightly inaccurate, if the lookup eventually fails.
// But the probability is very low.
PERF_COUNTER_ADD(secondary_cache_hit_count, 1);
RecordTick(stats, SECONDARY_CACHE_HITS);
Initial support for secondary cache in LRUCache (#8271) Summary: Defined the abstract interface for a secondary cache in include/rocksdb/secondary_cache.h, and updated LRUCacheOptions to take a std::shared_ptr<SecondaryCache>. An item is initially inserted into the LRU (primary) cache. When it ages out and evicted from memory, its inserted into the secondary cache. On a LRU cache miss and successful lookup in the secondary cache, the item is promoted to the LRU cache. Only support synchronous lookup currently. The secondary cache would be used to implement a persistent (flash cache) or compressed cache. Tests: Results from cache_bench and db_bench don't show any regression due to these changes. cache_bench results before and after this change - Command ```./cache_bench -ops_per_thread=10000000 -threads=1``` Before ```Complete in 40.688 s; QPS = 245774``` ```Complete in 40.486 s; QPS = 246996``` ```Complete in 42.019 s; QPS = 237989``` After ```Complete in 40.672 s; QPS = 245869``` ```Complete in 44.622 s; QPS = 224107``` ```Complete in 42.445 s; QPS = 235599``` db_bench results before this change, and with this change + https://github.com/facebook/rocksdb/issues/8213 and https://github.com/facebook/rocksdb/issues/8191 - Commands ```./db_bench --benchmarks="fillseq,compact" -num=30000000 -key_size=32 -value_size=256 -use_direct_io_for_flush_and_compaction=true -db=/home/anand76/nvm_cache/db -partition_index_and_filters=true``` ```./db_bench -db=/home/anand76/nvm_cache/db -use_existing_db=true -benchmarks=readrandom -num=30000000 -key_size=32 -value_size=256 -use_direct_reads=true -cache_size=1073741824 -cache_numshardbits=6 -cache_index_and_filter_blocks=true -read_random_exp_range=17 -statistics -partition_index_and_filters=true -threads=16 -duration=300``` Before ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 80.702 micros/op 198104 ops/sec; 54.4 MB/s (3708999 of 3708999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 87.124 micros/op 183625 ops/sec; 50.4 MB/s (3439999 of 3439999 found) ``` After ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 77.653 micros/op 206025 ops/sec; 56.6 MB/s (3866999 of 3866999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 84.962 micros/op 188299 ops/sec; 51.7 MB/s (3535999 of 3535999 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8271 Reviewed By: zhichao-cao Differential Revision: D28357511 Pulled By: anand1976 fbshipit-source-id: d1cfa236f00e649a18c53328be10a8062a4b6da2
4 years ago
}
Avoid recompressing cold block in CompressedSecondaryCache (#10527) Summary: **Summary:** When a block is firstly `Lookup` from the secondary cache, we just insert a dummy block in the primary cache (charging the actual size of the block) and don’t erase the block from the secondary cache. A standalone handle is returned from `Lookup`. Only if the block is hit again, we erase it from the secondary cache and add it into the primary cache. When a block is firstly evicted from the primary cache to the secondary cache, we just insert a dummy block (size 0) in the secondary cache. When the block is evicted again, it is treated as a hot block and is inserted into the secondary cache. **Implementation Details** Add a new state of LRUHandle: The handle is never inserted into the LRUCache (both hash table and LRU list) and it doesn't experience the above three states. The entry can be freed when refs becomes 0. (refs >= 1 && in_cache == false && IS_STANDALONE == true) The behaviors of `LRUCacheShard::Lookup()` are updated if the secondary_cache is CompressedSecondaryCache: 1. If a handle is found in primary cache: 1.1. If the handle's value is not nullptr, it is returned immediately. 1.2. If the handle's value is nullptr, this means the handle is a dummy one. For a dummy handle, if it was retrieved from secondary cache, it may still exist in secondary cache. - 1.2.1. If no valid handle can be `Lookup` from secondary cache, return nullptr. - 1.2.2. If the handle from secondary cache is valid, erase it from the secondary cache and add it into the primary cache. 2. If a handle is not found in primary cache: 2.1. If no valid handle can be `Lookup` from secondary cache, return nullptr. 2.2. If the handle from secondary cache is valid, insert a dummy block in the primary cache (charging the actual size of the block) and return a standalone handle. The behaviors of `LRUCacheShard::Promote()` are updated as follows: 1. If `e->sec_handle` has value, one of the following steps can happen: 1.1. Insert a dummy handle and return a standalone handle to caller when `secondary_cache_` is `CompressedSecondaryCache` and e is a standalone handle. 1.2. Insert the item into the primary cache and return the handle to caller. 1.3. Exception handling. 3. If `e->sec_handle` has no value, mark the item as not in cache and charge the cache as its only metadata that'll shortly be released. The behavior of `CompressedSecondaryCache::Insert()` is updated: 1. If a block is evicted from the primary cache for the first time, a dummy item is inserted. 4. If a dummy item is found for a block, the block is inserted into the secondary cache. The behavior of `CompressedSecondaryCache:::Lookup()` is updated: 1. If a handle is not found or it is a dummy item, a nullptr is returned. 2. If `erase_handle` is true, the handle is erased. The behaviors of `LRUCacheShard::Release()` are adjusted for the standalone handles. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10527 Test Plan: 1. stress tests. 5. unit tests. 6. CPU profiling for db_bench. Reviewed By: siying Differential Revision: D38747613 Pulled By: gitbw95 fbshipit-source-id: 74a1eba7e1957c9affb2bd2ae3e0194584fa6eca
2 years ago
} else {
e = nullptr;
Modifed the LRU cache eviction code so that it doesn't evict blocks which have exteranl references Summary: Currently, blocks which have more than one reference (ie referenced by something other than cache itself) are evicted from cache. This doesn't make much sense: - blocks are still in RAM, so the RAM usage reported by the cache is incorrect - if the same block is needed by another iterator, it will be loaded and decompressed again This diff changes the reference counting scheme a bit. Previously, if the cache contained the block, this was accounted for in its refcount. After this change, the refcount is only used to track external references. There is a boolean flag which indicates whether or not the block is contained in the cache. This diff also changes how LRU list is used. Previously, both hashtable and the LRU list contained all blocks. After this change, the LRU list contains blocks with the refcount==0, ie those which can be evicted from the cache. Note that this change still allows for cache to grow beyond its capacity. This happens when all blocks are pinned (ie refcount>0). This is consistent with the current behavior. The cache's insert function never fails. I spent lots of time trying to make table_reader and other places work with the insert which might failed. It turned out to be pretty hard. It might really destabilize some customers, so finally, I decided against doing this. table_cache_remove_scan_count_limit option will be unneeded after this change, but I will remove it in the following diff, if this one gets approved Test Plan: Ran tests, made sure they pass Reviewers: sdong, ljin Differential Revision: https://reviews.facebook.net/D25503
10 years ago
}
}
return reinterpret_cast<Cache::Handle*>(e);
}
bool LRUCacheShard::Ref(Cache::Handle* h) {
LRUHandle* e = reinterpret_cast<LRUHandle*>(h);
Use optimized folly DistributedMutex in LRUCache when available (#10179) Summary: folly DistributedMutex is faster than standard mutexes though imposes some static obligations on usage. See https://github.com/facebook/folly/blob/main/folly/synchronization/DistributedMutex.h for details. Here we use this alternative for our Cache implementations (especially LRUCache) for better locking performance, when RocksDB is compiled with folly. Also added information about which distributed mutex implementation is being used to cache_bench output and to DB LOG. Intended follow-up: * Use DMutex in more places, perhaps improving API to support non-scoped locking * Fix linking with fbcode compiler (needs ROCKSDB_NO_FBCODE=1 currently) Credit: Thanks Siying for reminding me about this line of work that was previously left unfinished. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10179 Test Plan: for correctness, existing tests. CircleCI config updated. Also Meta-internal buck build updated. For performance, ran simultaneous before & after cache_bench. Out of three comparison runs, the middle improvement to ops/sec was +21%: Baseline: USE_CLANG=1 DEBUG_LEVEL=0 make -j24 cache_bench (fbcode compiler) ``` Complete in 20.201 s; Rough parallel ops/sec = 1584062 Thread ops/sec = 107176 Operation latency (ns): Count: 32000000 Average: 9257.9421 StdDev: 122412.04 Min: 134 Median: 3623.0493 Max: 56918500 Percentiles: P50: 3623.05 P75: 10288.02 P99: 30219.35 P99.9: 683522.04 P99.99: 7302791.63 ``` New: (add USE_FOLLY=1) ``` Complete in 16.674 s; Rough parallel ops/sec = 1919135 (+21%) Thread ops/sec = 135487 Operation latency (ns): Count: 32000000 Average: 7304.9294 StdDev: 108530.28 Min: 132 Median: 3777.6012 Max: 91030902 Percentiles: P50: 3777.60 P75: 10169.89 P99: 24504.51 P99.9: 59721.59 P99.99: 1861151.83 ``` Reviewed By: anand1976 Differential Revision: D37182983 Pulled By: pdillinger fbshipit-source-id: a17eb05f25b832b6a2c1356f5c657e831a5af8d1
2 years ago
DMutexLock l(mutex_);
// To create another reference - entry must be already externally referenced.
assert(e->HasRefs());
e->Ref();
return true;
}
void LRUCacheShard::SetHighPriorityPoolRatio(double high_pri_pool_ratio) {
Use optimized folly DistributedMutex in LRUCache when available (#10179) Summary: folly DistributedMutex is faster than standard mutexes though imposes some static obligations on usage. See https://github.com/facebook/folly/blob/main/folly/synchronization/DistributedMutex.h for details. Here we use this alternative for our Cache implementations (especially LRUCache) for better locking performance, when RocksDB is compiled with folly. Also added information about which distributed mutex implementation is being used to cache_bench output and to DB LOG. Intended follow-up: * Use DMutex in more places, perhaps improving API to support non-scoped locking * Fix linking with fbcode compiler (needs ROCKSDB_NO_FBCODE=1 currently) Credit: Thanks Siying for reminding me about this line of work that was previously left unfinished. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10179 Test Plan: for correctness, existing tests. CircleCI config updated. Also Meta-internal buck build updated. For performance, ran simultaneous before & after cache_bench. Out of three comparison runs, the middle improvement to ops/sec was +21%: Baseline: USE_CLANG=1 DEBUG_LEVEL=0 make -j24 cache_bench (fbcode compiler) ``` Complete in 20.201 s; Rough parallel ops/sec = 1584062 Thread ops/sec = 107176 Operation latency (ns): Count: 32000000 Average: 9257.9421 StdDev: 122412.04 Min: 134 Median: 3623.0493 Max: 56918500 Percentiles: P50: 3623.05 P75: 10288.02 P99: 30219.35 P99.9: 683522.04 P99.99: 7302791.63 ``` New: (add USE_FOLLY=1) ``` Complete in 16.674 s; Rough parallel ops/sec = 1919135 (+21%) Thread ops/sec = 135487 Operation latency (ns): Count: 32000000 Average: 7304.9294 StdDev: 108530.28 Min: 132 Median: 3777.6012 Max: 91030902 Percentiles: P50: 3777.60 P75: 10169.89 P99: 24504.51 P99.9: 59721.59 P99.99: 1861151.83 ``` Reviewed By: anand1976 Differential Revision: D37182983 Pulled By: pdillinger fbshipit-source-id: a17eb05f25b832b6a2c1356f5c657e831a5af8d1
2 years ago
DMutexLock l(mutex_);
high_pri_pool_ratio_ = high_pri_pool_ratio;
high_pri_pool_capacity_ = capacity_ * high_pri_pool_ratio_;
MaintainPoolSize();
}
void LRUCacheShard::SetLowPriorityPoolRatio(double low_pri_pool_ratio) {
DMutexLock l(mutex_);
low_pri_pool_ratio_ = low_pri_pool_ratio;
low_pri_pool_capacity_ = capacity_ * low_pri_pool_ratio_;
MaintainPoolSize();
}
bool LRUCacheShard::Release(Cache::Handle* handle, bool erase_if_last_ref) {
if (handle == nullptr) {
return false;
}
LRUHandle* e = reinterpret_cast<LRUHandle*>(handle);
bool last_reference = false;
{
Use optimized folly DistributedMutex in LRUCache when available (#10179) Summary: folly DistributedMutex is faster than standard mutexes though imposes some static obligations on usage. See https://github.com/facebook/folly/blob/main/folly/synchronization/DistributedMutex.h for details. Here we use this alternative for our Cache implementations (especially LRUCache) for better locking performance, when RocksDB is compiled with folly. Also added information about which distributed mutex implementation is being used to cache_bench output and to DB LOG. Intended follow-up: * Use DMutex in more places, perhaps improving API to support non-scoped locking * Fix linking with fbcode compiler (needs ROCKSDB_NO_FBCODE=1 currently) Credit: Thanks Siying for reminding me about this line of work that was previously left unfinished. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10179 Test Plan: for correctness, existing tests. CircleCI config updated. Also Meta-internal buck build updated. For performance, ran simultaneous before & after cache_bench. Out of three comparison runs, the middle improvement to ops/sec was +21%: Baseline: USE_CLANG=1 DEBUG_LEVEL=0 make -j24 cache_bench (fbcode compiler) ``` Complete in 20.201 s; Rough parallel ops/sec = 1584062 Thread ops/sec = 107176 Operation latency (ns): Count: 32000000 Average: 9257.9421 StdDev: 122412.04 Min: 134 Median: 3623.0493 Max: 56918500 Percentiles: P50: 3623.05 P75: 10288.02 P99: 30219.35 P99.9: 683522.04 P99.99: 7302791.63 ``` New: (add USE_FOLLY=1) ``` Complete in 16.674 s; Rough parallel ops/sec = 1919135 (+21%) Thread ops/sec = 135487 Operation latency (ns): Count: 32000000 Average: 7304.9294 StdDev: 108530.28 Min: 132 Median: 3777.6012 Max: 91030902 Percentiles: P50: 3777.60 P75: 10169.89 P99: 24504.51 P99.9: 59721.59 P99.99: 1861151.83 ``` Reviewed By: anand1976 Differential Revision: D37182983 Pulled By: pdillinger fbshipit-source-id: a17eb05f25b832b6a2c1356f5c657e831a5af8d1
2 years ago
DMutexLock l(mutex_);
last_reference = e->Unref();
if (last_reference && e->InCache()) {
// The item is still in cache, and nobody else holds a reference to it.
if (usage_ > capacity_ || erase_if_last_ref) {
// The LRU list must be empty since the cache is full.
assert(lru_.next == &lru_ || erase_if_last_ref);
// Take this opportunity and remove the item.
Modifed the LRU cache eviction code so that it doesn't evict blocks which have exteranl references Summary: Currently, blocks which have more than one reference (ie referenced by something other than cache itself) are evicted from cache. This doesn't make much sense: - blocks are still in RAM, so the RAM usage reported by the cache is incorrect - if the same block is needed by another iterator, it will be loaded and decompressed again This diff changes the reference counting scheme a bit. Previously, if the cache contained the block, this was accounted for in its refcount. After this change, the refcount is only used to track external references. There is a boolean flag which indicates whether or not the block is contained in the cache. This diff also changes how LRU list is used. Previously, both hashtable and the LRU list contained all blocks. After this change, the LRU list contains blocks with the refcount==0, ie those which can be evicted from the cache. Note that this change still allows for cache to grow beyond its capacity. This happens when all blocks are pinned (ie refcount>0). This is consistent with the current behavior. The cache's insert function never fails. I spent lots of time trying to make table_reader and other places work with the insert which might failed. It turned out to be pretty hard. It might really destabilize some customers, so finally, I decided against doing this. table_cache_remove_scan_count_limit option will be unneeded after this change, but I will remove it in the following diff, if this one gets approved Test Plan: Ran tests, made sure they pass Reviewers: sdong, ljin Differential Revision: https://reviews.facebook.net/D25503
10 years ago
table_.Remove(e->key(), e->hash);
e->SetInCache(false);
Modifed the LRU cache eviction code so that it doesn't evict blocks which have exteranl references Summary: Currently, blocks which have more than one reference (ie referenced by something other than cache itself) are evicted from cache. This doesn't make much sense: - blocks are still in RAM, so the RAM usage reported by the cache is incorrect - if the same block is needed by another iterator, it will be loaded and decompressed again This diff changes the reference counting scheme a bit. Previously, if the cache contained the block, this was accounted for in its refcount. After this change, the refcount is only used to track external references. There is a boolean flag which indicates whether or not the block is contained in the cache. This diff also changes how LRU list is used. Previously, both hashtable and the LRU list contained all blocks. After this change, the LRU list contains blocks with the refcount==0, ie those which can be evicted from the cache. Note that this change still allows for cache to grow beyond its capacity. This happens when all blocks are pinned (ie refcount>0). This is consistent with the current behavior. The cache's insert function never fails. I spent lots of time trying to make table_reader and other places work with the insert which might failed. It turned out to be pretty hard. It might really destabilize some customers, so finally, I decided against doing this. table_cache_remove_scan_count_limit option will be unneeded after this change, but I will remove it in the following diff, if this one gets approved Test Plan: Ran tests, made sure they pass Reviewers: sdong, ljin Differential Revision: https://reviews.facebook.net/D25503
10 years ago
} else {
// Put the item back on the LRU list, and don't free it.
LRU_Insert(e);
last_reference = false;
Modifed the LRU cache eviction code so that it doesn't evict blocks which have exteranl references Summary: Currently, blocks which have more than one reference (ie referenced by something other than cache itself) are evicted from cache. This doesn't make much sense: - blocks are still in RAM, so the RAM usage reported by the cache is incorrect - if the same block is needed by another iterator, it will be loaded and decompressed again This diff changes the reference counting scheme a bit. Previously, if the cache contained the block, this was accounted for in its refcount. After this change, the refcount is only used to track external references. There is a boolean flag which indicates whether or not the block is contained in the cache. This diff also changes how LRU list is used. Previously, both hashtable and the LRU list contained all blocks. After this change, the LRU list contains blocks with the refcount==0, ie those which can be evicted from the cache. Note that this change still allows for cache to grow beyond its capacity. This happens when all blocks are pinned (ie refcount>0). This is consistent with the current behavior. The cache's insert function never fails. I spent lots of time trying to make table_reader and other places work with the insert which might failed. It turned out to be pretty hard. It might really destabilize some customers, so finally, I decided against doing this. table_cache_remove_scan_count_limit option will be unneeded after this change, but I will remove it in the following diff, if this one gets approved Test Plan: Ran tests, made sure they pass Reviewers: sdong, ljin Differential Revision: https://reviews.facebook.net/D25503
10 years ago
}
}
// If it was the last reference, and the entry is either not secondary
// cache compatible (i.e a dummy entry for accounting), or is secondary
// cache compatible and has a non-null value, then decrement the cache
// usage. If value is null in the latter case, that means the lookup
// failed and we didn't charge the cache.
if (last_reference && (!e->IsSecondaryCacheCompatible() || e->value)) {
assert(usage_ >= e->total_charge);
usage_ -= e->total_charge;
}
}
Modifed the LRU cache eviction code so that it doesn't evict blocks which have exteranl references Summary: Currently, blocks which have more than one reference (ie referenced by something other than cache itself) are evicted from cache. This doesn't make much sense: - blocks are still in RAM, so the RAM usage reported by the cache is incorrect - if the same block is needed by another iterator, it will be loaded and decompressed again This diff changes the reference counting scheme a bit. Previously, if the cache contained the block, this was accounted for in its refcount. After this change, the refcount is only used to track external references. There is a boolean flag which indicates whether or not the block is contained in the cache. This diff also changes how LRU list is used. Previously, both hashtable and the LRU list contained all blocks. After this change, the LRU list contains blocks with the refcount==0, ie those which can be evicted from the cache. Note that this change still allows for cache to grow beyond its capacity. This happens when all blocks are pinned (ie refcount>0). This is consistent with the current behavior. The cache's insert function never fails. I spent lots of time trying to make table_reader and other places work with the insert which might failed. It turned out to be pretty hard. It might really destabilize some customers, so finally, I decided against doing this. table_cache_remove_scan_count_limit option will be unneeded after this change, but I will remove it in the following diff, if this one gets approved Test Plan: Ran tests, made sure they pass Reviewers: sdong, ljin Differential Revision: https://reviews.facebook.net/D25503
10 years ago
// Free the entry here outside of mutex for performance reasons.
if (last_reference) {
Modifed the LRU cache eviction code so that it doesn't evict blocks which have exteranl references Summary: Currently, blocks which have more than one reference (ie referenced by something other than cache itself) are evicted from cache. This doesn't make much sense: - blocks are still in RAM, so the RAM usage reported by the cache is incorrect - if the same block is needed by another iterator, it will be loaded and decompressed again This diff changes the reference counting scheme a bit. Previously, if the cache contained the block, this was accounted for in its refcount. After this change, the refcount is only used to track external references. There is a boolean flag which indicates whether or not the block is contained in the cache. This diff also changes how LRU list is used. Previously, both hashtable and the LRU list contained all blocks. After this change, the LRU list contains blocks with the refcount==0, ie those which can be evicted from the cache. Note that this change still allows for cache to grow beyond its capacity. This happens when all blocks are pinned (ie refcount>0). This is consistent with the current behavior. The cache's insert function never fails. I spent lots of time trying to make table_reader and other places work with the insert which might failed. It turned out to be pretty hard. It might really destabilize some customers, so finally, I decided against doing this. table_cache_remove_scan_count_limit option will be unneeded after this change, but I will remove it in the following diff, if this one gets approved Test Plan: Ran tests, made sure they pass Reviewers: sdong, ljin Differential Revision: https://reviews.facebook.net/D25503
10 years ago
e->Free();
}
return last_reference;
}
Status LRUCacheShard::Insert(const Slice& key, uint32_t hash, void* value,
size_t charge,
void (*deleter)(const Slice& key, void* value),
Initial support for secondary cache in LRUCache (#8271) Summary: Defined the abstract interface for a secondary cache in include/rocksdb/secondary_cache.h, and updated LRUCacheOptions to take a std::shared_ptr<SecondaryCache>. An item is initially inserted into the LRU (primary) cache. When it ages out and evicted from memory, its inserted into the secondary cache. On a LRU cache miss and successful lookup in the secondary cache, the item is promoted to the LRU cache. Only support synchronous lookup currently. The secondary cache would be used to implement a persistent (flash cache) or compressed cache. Tests: Results from cache_bench and db_bench don't show any regression due to these changes. cache_bench results before and after this change - Command ```./cache_bench -ops_per_thread=10000000 -threads=1``` Before ```Complete in 40.688 s; QPS = 245774``` ```Complete in 40.486 s; QPS = 246996``` ```Complete in 42.019 s; QPS = 237989``` After ```Complete in 40.672 s; QPS = 245869``` ```Complete in 44.622 s; QPS = 224107``` ```Complete in 42.445 s; QPS = 235599``` db_bench results before this change, and with this change + https://github.com/facebook/rocksdb/issues/8213 and https://github.com/facebook/rocksdb/issues/8191 - Commands ```./db_bench --benchmarks="fillseq,compact" -num=30000000 -key_size=32 -value_size=256 -use_direct_io_for_flush_and_compaction=true -db=/home/anand76/nvm_cache/db -partition_index_and_filters=true``` ```./db_bench -db=/home/anand76/nvm_cache/db -use_existing_db=true -benchmarks=readrandom -num=30000000 -key_size=32 -value_size=256 -use_direct_reads=true -cache_size=1073741824 -cache_numshardbits=6 -cache_index_and_filter_blocks=true -read_random_exp_range=17 -statistics -partition_index_and_filters=true -threads=16 -duration=300``` Before ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 80.702 micros/op 198104 ops/sec; 54.4 MB/s (3708999 of 3708999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 87.124 micros/op 183625 ops/sec; 50.4 MB/s (3439999 of 3439999 found) ``` After ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 77.653 micros/op 206025 ops/sec; 56.6 MB/s (3866999 of 3866999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 84.962 micros/op 188299 ops/sec; 51.7 MB/s (3535999 of 3535999 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8271 Reviewed By: zhichao-cao Differential Revision: D28357511 Pulled By: anand1976 fbshipit-source-id: d1cfa236f00e649a18c53328be10a8062a4b6da2
4 years ago
const Cache::CacheItemHelper* helper,
Cache::Handle** handle, Cache::Priority priority) {
// Allocate the memory here outside of the mutex.
// If the cache is full, we'll have to release it.
Modifed the LRU cache eviction code so that it doesn't evict blocks which have exteranl references Summary: Currently, blocks which have more than one reference (ie referenced by something other than cache itself) are evicted from cache. This doesn't make much sense: - blocks are still in RAM, so the RAM usage reported by the cache is incorrect - if the same block is needed by another iterator, it will be loaded and decompressed again This diff changes the reference counting scheme a bit. Previously, if the cache contained the block, this was accounted for in its refcount. After this change, the refcount is only used to track external references. There is a boolean flag which indicates whether or not the block is contained in the cache. This diff also changes how LRU list is used. Previously, both hashtable and the LRU list contained all blocks. After this change, the LRU list contains blocks with the refcount==0, ie those which can be evicted from the cache. Note that this change still allows for cache to grow beyond its capacity. This happens when all blocks are pinned (ie refcount>0). This is consistent with the current behavior. The cache's insert function never fails. I spent lots of time trying to make table_reader and other places work with the insert which might failed. It turned out to be pretty hard. It might really destabilize some customers, so finally, I decided against doing this. table_cache_remove_scan_count_limit option will be unneeded after this change, but I will remove it in the following diff, if this one gets approved Test Plan: Ran tests, made sure they pass Reviewers: sdong, ljin Differential Revision: https://reviews.facebook.net/D25503
10 years ago
// It shouldn't happen very often though.
LRUHandle* e = reinterpret_cast<LRUHandle*>(
add simulator Cache as class SimCache/SimLRUCache(with test) Summary: add class SimCache(base class with instrumentation api) and SimLRUCache(derived class with detailed implementation) which is used as an instrumented block cache that can predict hit rate for different cache size Test Plan: Add a test case in `db_block_cache_test.cc` called `SimCacheTest` to test basic logic of SimCache. Also add option `-simcache_size` in db_bench. if set with a value other than -1, then the benchmark will use this value as the size of the simulator cache and finally output the simulation result. ``` [gzh@dev9927.prn1 ~/local/rocksdb] ./db_bench -benchmarks "fillseq,readrandom" -cache_size 1000000 -simcache_size 1000000 RocksDB: version 4.8 Date: Tue May 17 16:56:16 2016 CPU: 32 * Intel(R) Xeon(R) CPU E5-2660 0 @ 2.20GHz CPUCache: 20480 KB Keys: 16 bytes each Values: 100 bytes each (50 bytes after compression) Entries: 1000000 Prefix: 0 bytes Keys per prefix: 0 RawSize: 110.6 MB (estimated) FileSize: 62.9 MB (estimated) Write rate: 0 bytes/second Compression: Snappy Memtablerep: skip_list Perf Level: 0 WARNING: Assertions are enabled; benchmarks unnecessarily slow ------------------------------------------------ DB path: [/tmp/rocksdbtest-112628/dbbench] fillseq : 6.809 micros/op 146874 ops/sec; 16.2 MB/s DB path: [/tmp/rocksdbtest-112628/dbbench] readrandom : 6.343 micros/op 157665 ops/sec; 17.4 MB/s (1000000 of 1000000 found) SIMULATOR CACHE STATISTICS: SimCache LOOKUPs: 986559 SimCache HITs: 264760 SimCache HITRATE: 26.84% [gzh@dev9927.prn1 ~/local/rocksdb] ./db_bench -benchmarks "fillseq,readrandom" -cache_size 1000000 -simcache_size 10000000 RocksDB: version 4.8 Date: Tue May 17 16:57:10 2016 CPU: 32 * Intel(R) Xeon(R) CPU E5-2660 0 @ 2.20GHz CPUCache: 20480 KB Keys: 16 bytes each Values: 100 bytes each (50 bytes after compression) Entries: 1000000 Prefix: 0 bytes Keys per prefix: 0 RawSize: 110.6 MB (estimated) FileSize: 62.9 MB (estimated) Write rate: 0 bytes/second Compression: Snappy Memtablerep: skip_list Perf Level: 0 WARNING: Assertions are enabled; benchmarks unnecessarily slow ------------------------------------------------ DB path: [/tmp/rocksdbtest-112628/dbbench] fillseq : 5.066 micros/op 197394 ops/sec; 21.8 MB/s DB path: [/tmp/rocksdbtest-112628/dbbench] readrandom : 6.457 micros/op 154870 ops/sec; 17.1 MB/s (1000000 of 1000000 found) SIMULATOR CACHE STATISTICS: SimCache LOOKUPs: 1059764 SimCache HITs: 374501 SimCache HITRATE: 35.34% [gzh@dev9927.prn1 ~/local/rocksdb] ./db_bench -benchmarks "fillseq,readrandom" -cache_size 1000000 -simcache_size 100000000 RocksDB: version 4.8 Date: Tue May 17 16:57:32 2016 CPU: 32 * Intel(R) Xeon(R) CPU E5-2660 0 @ 2.20GHz CPUCache: 20480 KB Keys: 16 bytes each Values: 100 bytes each (50 bytes after compression) Entries: 1000000 Prefix: 0 bytes Keys per prefix: 0 RawSize: 110.6 MB (estimated) FileSize: 62.9 MB (estimated) Write rate: 0 bytes/second Compression: Snappy Memtablerep: skip_list Perf Level: 0 WARNING: Assertions are enabled; benchmarks unnecessarily slow ------------------------------------------------ DB path: [/tmp/rocksdbtest-112628/dbbench] fillseq : 5.632 micros/op 177572 ops/sec; 19.6 MB/s DB path: [/tmp/rocksdbtest-112628/dbbench] readrandom : 6.892 micros/op 145094 ops/sec; 16.1 MB/s (1000000 of 1000000 found) SIMULATOR CACHE STATISTICS: SimCache LOOKUPs: 1150767 SimCache HITs: 1034535 SimCache HITRATE: 89.90% ``` Reviewers: IslamAbdelRahman, andrewkr, sdong Reviewed By: sdong Subscribers: MarkCallaghan, andrewkr, dhruba, leveldb Differential Revision: https://reviews.facebook.net/D57999
9 years ago
new char[sizeof(LRUHandle) - 1 + key.size()]);
e->value = value;
Initial support for secondary cache in LRUCache (#8271) Summary: Defined the abstract interface for a secondary cache in include/rocksdb/secondary_cache.h, and updated LRUCacheOptions to take a std::shared_ptr<SecondaryCache>. An item is initially inserted into the LRU (primary) cache. When it ages out and evicted from memory, its inserted into the secondary cache. On a LRU cache miss and successful lookup in the secondary cache, the item is promoted to the LRU cache. Only support synchronous lookup currently. The secondary cache would be used to implement a persistent (flash cache) or compressed cache. Tests: Results from cache_bench and db_bench don't show any regression due to these changes. cache_bench results before and after this change - Command ```./cache_bench -ops_per_thread=10000000 -threads=1``` Before ```Complete in 40.688 s; QPS = 245774``` ```Complete in 40.486 s; QPS = 246996``` ```Complete in 42.019 s; QPS = 237989``` After ```Complete in 40.672 s; QPS = 245869``` ```Complete in 44.622 s; QPS = 224107``` ```Complete in 42.445 s; QPS = 235599``` db_bench results before this change, and with this change + https://github.com/facebook/rocksdb/issues/8213 and https://github.com/facebook/rocksdb/issues/8191 - Commands ```./db_bench --benchmarks="fillseq,compact" -num=30000000 -key_size=32 -value_size=256 -use_direct_io_for_flush_and_compaction=true -db=/home/anand76/nvm_cache/db -partition_index_and_filters=true``` ```./db_bench -db=/home/anand76/nvm_cache/db -use_existing_db=true -benchmarks=readrandom -num=30000000 -key_size=32 -value_size=256 -use_direct_reads=true -cache_size=1073741824 -cache_numshardbits=6 -cache_index_and_filter_blocks=true -read_random_exp_range=17 -statistics -partition_index_and_filters=true -threads=16 -duration=300``` Before ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 80.702 micros/op 198104 ops/sec; 54.4 MB/s (3708999 of 3708999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 87.124 micros/op 183625 ops/sec; 50.4 MB/s (3439999 of 3439999 found) ``` After ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 77.653 micros/op 206025 ops/sec; 56.6 MB/s (3866999 of 3866999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 84.962 micros/op 188299 ops/sec; 51.7 MB/s (3535999 of 3535999 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8271 Reviewed By: zhichao-cao Differential Revision: D28357511 Pulled By: anand1976 fbshipit-source-id: d1cfa236f00e649a18c53328be10a8062a4b6da2
4 years ago
e->flags = 0;
if (helper) {
e->SetSecondaryCacheCompatible(true);
e->info_.helper = helper;
} else {
#ifdef __SANITIZE_THREAD__
e->is_secondary_cache_compatible_for_tsan = false;
#endif // __SANITIZE_THREAD__
Initial support for secondary cache in LRUCache (#8271) Summary: Defined the abstract interface for a secondary cache in include/rocksdb/secondary_cache.h, and updated LRUCacheOptions to take a std::shared_ptr<SecondaryCache>. An item is initially inserted into the LRU (primary) cache. When it ages out and evicted from memory, its inserted into the secondary cache. On a LRU cache miss and successful lookup in the secondary cache, the item is promoted to the LRU cache. Only support synchronous lookup currently. The secondary cache would be used to implement a persistent (flash cache) or compressed cache. Tests: Results from cache_bench and db_bench don't show any regression due to these changes. cache_bench results before and after this change - Command ```./cache_bench -ops_per_thread=10000000 -threads=1``` Before ```Complete in 40.688 s; QPS = 245774``` ```Complete in 40.486 s; QPS = 246996``` ```Complete in 42.019 s; QPS = 237989``` After ```Complete in 40.672 s; QPS = 245869``` ```Complete in 44.622 s; QPS = 224107``` ```Complete in 42.445 s; QPS = 235599``` db_bench results before this change, and with this change + https://github.com/facebook/rocksdb/issues/8213 and https://github.com/facebook/rocksdb/issues/8191 - Commands ```./db_bench --benchmarks="fillseq,compact" -num=30000000 -key_size=32 -value_size=256 -use_direct_io_for_flush_and_compaction=true -db=/home/anand76/nvm_cache/db -partition_index_and_filters=true``` ```./db_bench -db=/home/anand76/nvm_cache/db -use_existing_db=true -benchmarks=readrandom -num=30000000 -key_size=32 -value_size=256 -use_direct_reads=true -cache_size=1073741824 -cache_numshardbits=6 -cache_index_and_filter_blocks=true -read_random_exp_range=17 -statistics -partition_index_and_filters=true -threads=16 -duration=300``` Before ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 80.702 micros/op 198104 ops/sec; 54.4 MB/s (3708999 of 3708999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 87.124 micros/op 183625 ops/sec; 50.4 MB/s (3439999 of 3439999 found) ``` After ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 77.653 micros/op 206025 ops/sec; 56.6 MB/s (3866999 of 3866999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 84.962 micros/op 188299 ops/sec; 51.7 MB/s (3535999 of 3535999 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8271 Reviewed By: zhichao-cao Differential Revision: D28357511 Pulled By: anand1976 fbshipit-source-id: d1cfa236f00e649a18c53328be10a8062a4b6da2
4 years ago
e->info_.deleter = deleter;
}
e->key_length = key.size();
e->hash = hash;
e->refs = 0;
Modifed the LRU cache eviction code so that it doesn't evict blocks which have exteranl references Summary: Currently, blocks which have more than one reference (ie referenced by something other than cache itself) are evicted from cache. This doesn't make much sense: - blocks are still in RAM, so the RAM usage reported by the cache is incorrect - if the same block is needed by another iterator, it will be loaded and decompressed again This diff changes the reference counting scheme a bit. Previously, if the cache contained the block, this was accounted for in its refcount. After this change, the refcount is only used to track external references. There is a boolean flag which indicates whether or not the block is contained in the cache. This diff also changes how LRU list is used. Previously, both hashtable and the LRU list contained all blocks. After this change, the LRU list contains blocks with the refcount==0, ie those which can be evicted from the cache. Note that this change still allows for cache to grow beyond its capacity. This happens when all blocks are pinned (ie refcount>0). This is consistent with the current behavior. The cache's insert function never fails. I spent lots of time trying to make table_reader and other places work with the insert which might failed. It turned out to be pretty hard. It might really destabilize some customers, so finally, I decided against doing this. table_cache_remove_scan_count_limit option will be unneeded after this change, but I will remove it in the following diff, if this one gets approved Test Plan: Ran tests, made sure they pass Reviewers: sdong, ljin Differential Revision: https://reviews.facebook.net/D25503
10 years ago
e->next = e->prev = nullptr;
e->SetInCache(true);
e->SetPriority(priority);
memcpy(e->key_data, key.data(), key.size());
e->CalcTotalCharge(charge, metadata_charge_policy_);
Parallelize secondary cache lookup in MultiGet (#8405) Summary: Implement the ```WaitAll()``` interface in ```LRUCache``` to allow callers to issue multiple lookups in parallel and wait for all of them to complete. Modify ```MultiGet``` to use this to parallelize the secondary cache lookups in order to reduce the overall latency. A call to ```cache->Lookup()``` returns a handle that has an incomplete value (nullptr), and the caller can call ```cache->IsReady()``` to check whether the lookup is complete, and pass a vector of handles to ```WaitAll``` to wait for completion. If any of the lookups fail, ```MultiGet``` will read the block from the SST file. Another change in this PR is to rename ```SecondaryCacheHandle``` to ```SecondaryCacheResultHandle``` as it more accurately describes the return result of the secondary cache lookup, which is more like a future. Tests: 1. Add unit tests in lru_cache_test 2. Benchmark results with no secondary cache configured Master - ``` readrandom : 41.175 micros/op 388562 ops/sec; 106.7 MB/s (7277999 of 7277999 found) readrandom : 41.217 micros/op 388160 ops/sec; 106.6 MB/s (7274999 of 7274999 found) multireadrandom : 10.309 micros/op 1552082 ops/sec; (28908992 of 28908992 found) multireadrandom : 10.321 micros/op 1550218 ops/sec; (29081984 of 29081984 found) ``` This PR - ``` readrandom : 41.158 micros/op 388723 ops/sec; 106.8 MB/s (7290999 of 7290999 found) readrandom : 41.185 micros/op 388463 ops/sec; 106.7 MB/s (7287999 of 7287999 found) multireadrandom : 10.277 micros/op 1556801 ops/sec; (29346944 of 29346944 found) multireadrandom : 10.253 micros/op 1560539 ops/sec; (29274944 of 29274944 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8405 Reviewed By: zhichao-cao Differential Revision: D29190509 Pulled By: anand1976 fbshipit-source-id: 6f8eff6246712af8a297cfe22ea0d1c3b2a01bb0
3 years ago
return InsertItem(e, handle, /* free_handle_on_fail */ true);
}
void LRUCacheShard::Erase(const Slice& key, uint32_t hash) {
LRUHandle* e;
bool last_reference = false;
{
Use optimized folly DistributedMutex in LRUCache when available (#10179) Summary: folly DistributedMutex is faster than standard mutexes though imposes some static obligations on usage. See https://github.com/facebook/folly/blob/main/folly/synchronization/DistributedMutex.h for details. Here we use this alternative for our Cache implementations (especially LRUCache) for better locking performance, when RocksDB is compiled with folly. Also added information about which distributed mutex implementation is being used to cache_bench output and to DB LOG. Intended follow-up: * Use DMutex in more places, perhaps improving API to support non-scoped locking * Fix linking with fbcode compiler (needs ROCKSDB_NO_FBCODE=1 currently) Credit: Thanks Siying for reminding me about this line of work that was previously left unfinished. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10179 Test Plan: for correctness, existing tests. CircleCI config updated. Also Meta-internal buck build updated. For performance, ran simultaneous before & after cache_bench. Out of three comparison runs, the middle improvement to ops/sec was +21%: Baseline: USE_CLANG=1 DEBUG_LEVEL=0 make -j24 cache_bench (fbcode compiler) ``` Complete in 20.201 s; Rough parallel ops/sec = 1584062 Thread ops/sec = 107176 Operation latency (ns): Count: 32000000 Average: 9257.9421 StdDev: 122412.04 Min: 134 Median: 3623.0493 Max: 56918500 Percentiles: P50: 3623.05 P75: 10288.02 P99: 30219.35 P99.9: 683522.04 P99.99: 7302791.63 ``` New: (add USE_FOLLY=1) ``` Complete in 16.674 s; Rough parallel ops/sec = 1919135 (+21%) Thread ops/sec = 135487 Operation latency (ns): Count: 32000000 Average: 7304.9294 StdDev: 108530.28 Min: 132 Median: 3777.6012 Max: 91030902 Percentiles: P50: 3777.60 P75: 10169.89 P99: 24504.51 P99.9: 59721.59 P99.99: 1861151.83 ``` Reviewed By: anand1976 Differential Revision: D37182983 Pulled By: pdillinger fbshipit-source-id: a17eb05f25b832b6a2c1356f5c657e831a5af8d1
2 years ago
DMutexLock l(mutex_);
e = table_.Remove(key, hash);
if (e != nullptr) {
assert(e->InCache());
e->SetInCache(false);
if (!e->HasRefs()) {
// The entry is in LRU since it's in hash and has no external references
Modifed the LRU cache eviction code so that it doesn't evict blocks which have exteranl references Summary: Currently, blocks which have more than one reference (ie referenced by something other than cache itself) are evicted from cache. This doesn't make much sense: - blocks are still in RAM, so the RAM usage reported by the cache is incorrect - if the same block is needed by another iterator, it will be loaded and decompressed again This diff changes the reference counting scheme a bit. Previously, if the cache contained the block, this was accounted for in its refcount. After this change, the refcount is only used to track external references. There is a boolean flag which indicates whether or not the block is contained in the cache. This diff also changes how LRU list is used. Previously, both hashtable and the LRU list contained all blocks. After this change, the LRU list contains blocks with the refcount==0, ie those which can be evicted from the cache. Note that this change still allows for cache to grow beyond its capacity. This happens when all blocks are pinned (ie refcount>0). This is consistent with the current behavior. The cache's insert function never fails. I spent lots of time trying to make table_reader and other places work with the insert which might failed. It turned out to be pretty hard. It might really destabilize some customers, so finally, I decided against doing this. table_cache_remove_scan_count_limit option will be unneeded after this change, but I will remove it in the following diff, if this one gets approved Test Plan: Ran tests, made sure they pass Reviewers: sdong, ljin Differential Revision: https://reviews.facebook.net/D25503
10 years ago
LRU_Remove(e);
assert(usage_ >= e->total_charge);
usage_ -= e->total_charge;
last_reference = true;
Modifed the LRU cache eviction code so that it doesn't evict blocks which have exteranl references Summary: Currently, blocks which have more than one reference (ie referenced by something other than cache itself) are evicted from cache. This doesn't make much sense: - blocks are still in RAM, so the RAM usage reported by the cache is incorrect - if the same block is needed by another iterator, it will be loaded and decompressed again This diff changes the reference counting scheme a bit. Previously, if the cache contained the block, this was accounted for in its refcount. After this change, the refcount is only used to track external references. There is a boolean flag which indicates whether or not the block is contained in the cache. This diff also changes how LRU list is used. Previously, both hashtable and the LRU list contained all blocks. After this change, the LRU list contains blocks with the refcount==0, ie those which can be evicted from the cache. Note that this change still allows for cache to grow beyond its capacity. This happens when all blocks are pinned (ie refcount>0). This is consistent with the current behavior. The cache's insert function never fails. I spent lots of time trying to make table_reader and other places work with the insert which might failed. It turned out to be pretty hard. It might really destabilize some customers, so finally, I decided against doing this. table_cache_remove_scan_count_limit option will be unneeded after this change, but I will remove it in the following diff, if this one gets approved Test Plan: Ran tests, made sure they pass Reviewers: sdong, ljin Differential Revision: https://reviews.facebook.net/D25503
10 years ago
}
}
}
Modifed the LRU cache eviction code so that it doesn't evict blocks which have exteranl references Summary: Currently, blocks which have more than one reference (ie referenced by something other than cache itself) are evicted from cache. This doesn't make much sense: - blocks are still in RAM, so the RAM usage reported by the cache is incorrect - if the same block is needed by another iterator, it will be loaded and decompressed again This diff changes the reference counting scheme a bit. Previously, if the cache contained the block, this was accounted for in its refcount. After this change, the refcount is only used to track external references. There is a boolean flag which indicates whether or not the block is contained in the cache. This diff also changes how LRU list is used. Previously, both hashtable and the LRU list contained all blocks. After this change, the LRU list contains blocks with the refcount==0, ie those which can be evicted from the cache. Note that this change still allows for cache to grow beyond its capacity. This happens when all blocks are pinned (ie refcount>0). This is consistent with the current behavior. The cache's insert function never fails. I spent lots of time trying to make table_reader and other places work with the insert which might failed. It turned out to be pretty hard. It might really destabilize some customers, so finally, I decided against doing this. table_cache_remove_scan_count_limit option will be unneeded after this change, but I will remove it in the following diff, if this one gets approved Test Plan: Ran tests, made sure they pass Reviewers: sdong, ljin Differential Revision: https://reviews.facebook.net/D25503
10 years ago
// Free the entry here outside of mutex for performance reasons.
// last_reference will only be true if e != nullptr.
if (last_reference) {
Modifed the LRU cache eviction code so that it doesn't evict blocks which have exteranl references Summary: Currently, blocks which have more than one reference (ie referenced by something other than cache itself) are evicted from cache. This doesn't make much sense: - blocks are still in RAM, so the RAM usage reported by the cache is incorrect - if the same block is needed by another iterator, it will be loaded and decompressed again This diff changes the reference counting scheme a bit. Previously, if the cache contained the block, this was accounted for in its refcount. After this change, the refcount is only used to track external references. There is a boolean flag which indicates whether or not the block is contained in the cache. This diff also changes how LRU list is used. Previously, both hashtable and the LRU list contained all blocks. After this change, the LRU list contains blocks with the refcount==0, ie those which can be evicted from the cache. Note that this change still allows for cache to grow beyond its capacity. This happens when all blocks are pinned (ie refcount>0). This is consistent with the current behavior. The cache's insert function never fails. I spent lots of time trying to make table_reader and other places work with the insert which might failed. It turned out to be pretty hard. It might really destabilize some customers, so finally, I decided against doing this. table_cache_remove_scan_count_limit option will be unneeded after this change, but I will remove it in the following diff, if this one gets approved Test Plan: Ran tests, made sure they pass Reviewers: sdong, ljin Differential Revision: https://reviews.facebook.net/D25503
10 years ago
e->Free();
}
}
Parallelize secondary cache lookup in MultiGet (#8405) Summary: Implement the ```WaitAll()``` interface in ```LRUCache``` to allow callers to issue multiple lookups in parallel and wait for all of them to complete. Modify ```MultiGet``` to use this to parallelize the secondary cache lookups in order to reduce the overall latency. A call to ```cache->Lookup()``` returns a handle that has an incomplete value (nullptr), and the caller can call ```cache->IsReady()``` to check whether the lookup is complete, and pass a vector of handles to ```WaitAll``` to wait for completion. If any of the lookups fail, ```MultiGet``` will read the block from the SST file. Another change in this PR is to rename ```SecondaryCacheHandle``` to ```SecondaryCacheResultHandle``` as it more accurately describes the return result of the secondary cache lookup, which is more like a future. Tests: 1. Add unit tests in lru_cache_test 2. Benchmark results with no secondary cache configured Master - ``` readrandom : 41.175 micros/op 388562 ops/sec; 106.7 MB/s (7277999 of 7277999 found) readrandom : 41.217 micros/op 388160 ops/sec; 106.6 MB/s (7274999 of 7274999 found) multireadrandom : 10.309 micros/op 1552082 ops/sec; (28908992 of 28908992 found) multireadrandom : 10.321 micros/op 1550218 ops/sec; (29081984 of 29081984 found) ``` This PR - ``` readrandom : 41.158 micros/op 388723 ops/sec; 106.8 MB/s (7290999 of 7290999 found) readrandom : 41.185 micros/op 388463 ops/sec; 106.7 MB/s (7287999 of 7287999 found) multireadrandom : 10.277 micros/op 1556801 ops/sec; (29346944 of 29346944 found) multireadrandom : 10.253 micros/op 1560539 ops/sec; (29274944 of 29274944 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8405 Reviewed By: zhichao-cao Differential Revision: D29190509 Pulled By: anand1976 fbshipit-source-id: 6f8eff6246712af8a297cfe22ea0d1c3b2a01bb0
3 years ago
bool LRUCacheShard::IsReady(Cache::Handle* handle) {
LRUHandle* e = reinterpret_cast<LRUHandle*>(handle);
Use optimized folly DistributedMutex in LRUCache when available (#10179) Summary: folly DistributedMutex is faster than standard mutexes though imposes some static obligations on usage. See https://github.com/facebook/folly/blob/main/folly/synchronization/DistributedMutex.h for details. Here we use this alternative for our Cache implementations (especially LRUCache) for better locking performance, when RocksDB is compiled with folly. Also added information about which distributed mutex implementation is being used to cache_bench output and to DB LOG. Intended follow-up: * Use DMutex in more places, perhaps improving API to support non-scoped locking * Fix linking with fbcode compiler (needs ROCKSDB_NO_FBCODE=1 currently) Credit: Thanks Siying for reminding me about this line of work that was previously left unfinished. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10179 Test Plan: for correctness, existing tests. CircleCI config updated. Also Meta-internal buck build updated. For performance, ran simultaneous before & after cache_bench. Out of three comparison runs, the middle improvement to ops/sec was +21%: Baseline: USE_CLANG=1 DEBUG_LEVEL=0 make -j24 cache_bench (fbcode compiler) ``` Complete in 20.201 s; Rough parallel ops/sec = 1584062 Thread ops/sec = 107176 Operation latency (ns): Count: 32000000 Average: 9257.9421 StdDev: 122412.04 Min: 134 Median: 3623.0493 Max: 56918500 Percentiles: P50: 3623.05 P75: 10288.02 P99: 30219.35 P99.9: 683522.04 P99.99: 7302791.63 ``` New: (add USE_FOLLY=1) ``` Complete in 16.674 s; Rough parallel ops/sec = 1919135 (+21%) Thread ops/sec = 135487 Operation latency (ns): Count: 32000000 Average: 7304.9294 StdDev: 108530.28 Min: 132 Median: 3777.6012 Max: 91030902 Percentiles: P50: 3777.60 P75: 10169.89 P99: 24504.51 P99.9: 59721.59 P99.99: 1861151.83 ``` Reviewed By: anand1976 Differential Revision: D37182983 Pulled By: pdillinger fbshipit-source-id: a17eb05f25b832b6a2c1356f5c657e831a5af8d1
2 years ago
DMutexLock l(mutex_);
Parallelize secondary cache lookup in MultiGet (#8405) Summary: Implement the ```WaitAll()``` interface in ```LRUCache``` to allow callers to issue multiple lookups in parallel and wait for all of them to complete. Modify ```MultiGet``` to use this to parallelize the secondary cache lookups in order to reduce the overall latency. A call to ```cache->Lookup()``` returns a handle that has an incomplete value (nullptr), and the caller can call ```cache->IsReady()``` to check whether the lookup is complete, and pass a vector of handles to ```WaitAll``` to wait for completion. If any of the lookups fail, ```MultiGet``` will read the block from the SST file. Another change in this PR is to rename ```SecondaryCacheHandle``` to ```SecondaryCacheResultHandle``` as it more accurately describes the return result of the secondary cache lookup, which is more like a future. Tests: 1. Add unit tests in lru_cache_test 2. Benchmark results with no secondary cache configured Master - ``` readrandom : 41.175 micros/op 388562 ops/sec; 106.7 MB/s (7277999 of 7277999 found) readrandom : 41.217 micros/op 388160 ops/sec; 106.6 MB/s (7274999 of 7274999 found) multireadrandom : 10.309 micros/op 1552082 ops/sec; (28908992 of 28908992 found) multireadrandom : 10.321 micros/op 1550218 ops/sec; (29081984 of 29081984 found) ``` This PR - ``` readrandom : 41.158 micros/op 388723 ops/sec; 106.8 MB/s (7290999 of 7290999 found) readrandom : 41.185 micros/op 388463 ops/sec; 106.7 MB/s (7287999 of 7287999 found) multireadrandom : 10.277 micros/op 1556801 ops/sec; (29346944 of 29346944 found) multireadrandom : 10.253 micros/op 1560539 ops/sec; (29274944 of 29274944 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8405 Reviewed By: zhichao-cao Differential Revision: D29190509 Pulled By: anand1976 fbshipit-source-id: 6f8eff6246712af8a297cfe22ea0d1c3b2a01bb0
3 years ago
bool ready = true;
if (e->IsPending()) {
assert(secondary_cache_);
assert(e->sec_handle);
ready = e->sec_handle->IsReady();
Parallelize secondary cache lookup in MultiGet (#8405) Summary: Implement the ```WaitAll()``` interface in ```LRUCache``` to allow callers to issue multiple lookups in parallel and wait for all of them to complete. Modify ```MultiGet``` to use this to parallelize the secondary cache lookups in order to reduce the overall latency. A call to ```cache->Lookup()``` returns a handle that has an incomplete value (nullptr), and the caller can call ```cache->IsReady()``` to check whether the lookup is complete, and pass a vector of handles to ```WaitAll``` to wait for completion. If any of the lookups fail, ```MultiGet``` will read the block from the SST file. Another change in this PR is to rename ```SecondaryCacheHandle``` to ```SecondaryCacheResultHandle``` as it more accurately describes the return result of the secondary cache lookup, which is more like a future. Tests: 1. Add unit tests in lru_cache_test 2. Benchmark results with no secondary cache configured Master - ``` readrandom : 41.175 micros/op 388562 ops/sec; 106.7 MB/s (7277999 of 7277999 found) readrandom : 41.217 micros/op 388160 ops/sec; 106.6 MB/s (7274999 of 7274999 found) multireadrandom : 10.309 micros/op 1552082 ops/sec; (28908992 of 28908992 found) multireadrandom : 10.321 micros/op 1550218 ops/sec; (29081984 of 29081984 found) ``` This PR - ``` readrandom : 41.158 micros/op 388723 ops/sec; 106.8 MB/s (7290999 of 7290999 found) readrandom : 41.185 micros/op 388463 ops/sec; 106.7 MB/s (7287999 of 7287999 found) multireadrandom : 10.277 micros/op 1556801 ops/sec; (29346944 of 29346944 found) multireadrandom : 10.253 micros/op 1560539 ops/sec; (29274944 of 29274944 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8405 Reviewed By: zhichao-cao Differential Revision: D29190509 Pulled By: anand1976 fbshipit-source-id: 6f8eff6246712af8a297cfe22ea0d1c3b2a01bb0
3 years ago
}
return ready;
}
size_t LRUCacheShard::GetUsage() const {
Use optimized folly DistributedMutex in LRUCache when available (#10179) Summary: folly DistributedMutex is faster than standard mutexes though imposes some static obligations on usage. See https://github.com/facebook/folly/blob/main/folly/synchronization/DistributedMutex.h for details. Here we use this alternative for our Cache implementations (especially LRUCache) for better locking performance, when RocksDB is compiled with folly. Also added information about which distributed mutex implementation is being used to cache_bench output and to DB LOG. Intended follow-up: * Use DMutex in more places, perhaps improving API to support non-scoped locking * Fix linking with fbcode compiler (needs ROCKSDB_NO_FBCODE=1 currently) Credit: Thanks Siying for reminding me about this line of work that was previously left unfinished. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10179 Test Plan: for correctness, existing tests. CircleCI config updated. Also Meta-internal buck build updated. For performance, ran simultaneous before & after cache_bench. Out of three comparison runs, the middle improvement to ops/sec was +21%: Baseline: USE_CLANG=1 DEBUG_LEVEL=0 make -j24 cache_bench (fbcode compiler) ``` Complete in 20.201 s; Rough parallel ops/sec = 1584062 Thread ops/sec = 107176 Operation latency (ns): Count: 32000000 Average: 9257.9421 StdDev: 122412.04 Min: 134 Median: 3623.0493 Max: 56918500 Percentiles: P50: 3623.05 P75: 10288.02 P99: 30219.35 P99.9: 683522.04 P99.99: 7302791.63 ``` New: (add USE_FOLLY=1) ``` Complete in 16.674 s; Rough parallel ops/sec = 1919135 (+21%) Thread ops/sec = 135487 Operation latency (ns): Count: 32000000 Average: 7304.9294 StdDev: 108530.28 Min: 132 Median: 3777.6012 Max: 91030902 Percentiles: P50: 3777.60 P75: 10169.89 P99: 24504.51 P99.9: 59721.59 P99.99: 1861151.83 ``` Reviewed By: anand1976 Differential Revision: D37182983 Pulled By: pdillinger fbshipit-source-id: a17eb05f25b832b6a2c1356f5c657e831a5af8d1
2 years ago
DMutexLock l(mutex_);
return usage_;
}
size_t LRUCacheShard::GetPinnedUsage() const {
Use optimized folly DistributedMutex in LRUCache when available (#10179) Summary: folly DistributedMutex is faster than standard mutexes though imposes some static obligations on usage. See https://github.com/facebook/folly/blob/main/folly/synchronization/DistributedMutex.h for details. Here we use this alternative for our Cache implementations (especially LRUCache) for better locking performance, when RocksDB is compiled with folly. Also added information about which distributed mutex implementation is being used to cache_bench output and to DB LOG. Intended follow-up: * Use DMutex in more places, perhaps improving API to support non-scoped locking * Fix linking with fbcode compiler (needs ROCKSDB_NO_FBCODE=1 currently) Credit: Thanks Siying for reminding me about this line of work that was previously left unfinished. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10179 Test Plan: for correctness, existing tests. CircleCI config updated. Also Meta-internal buck build updated. For performance, ran simultaneous before & after cache_bench. Out of three comparison runs, the middle improvement to ops/sec was +21%: Baseline: USE_CLANG=1 DEBUG_LEVEL=0 make -j24 cache_bench (fbcode compiler) ``` Complete in 20.201 s; Rough parallel ops/sec = 1584062 Thread ops/sec = 107176 Operation latency (ns): Count: 32000000 Average: 9257.9421 StdDev: 122412.04 Min: 134 Median: 3623.0493 Max: 56918500 Percentiles: P50: 3623.05 P75: 10288.02 P99: 30219.35 P99.9: 683522.04 P99.99: 7302791.63 ``` New: (add USE_FOLLY=1) ``` Complete in 16.674 s; Rough parallel ops/sec = 1919135 (+21%) Thread ops/sec = 135487 Operation latency (ns): Count: 32000000 Average: 7304.9294 StdDev: 108530.28 Min: 132 Median: 3777.6012 Max: 91030902 Percentiles: P50: 3777.60 P75: 10169.89 P99: 24504.51 P99.9: 59721.59 P99.99: 1861151.83 ``` Reviewed By: anand1976 Differential Revision: D37182983 Pulled By: pdillinger fbshipit-source-id: a17eb05f25b832b6a2c1356f5c657e831a5af8d1
2 years ago
DMutexLock l(mutex_);
assert(usage_ >= lru_usage_);
return usage_ - lru_usage_;
}
Revamp, optimize new experimental clock cache (#10626) Summary: * Consolidates most metadata into a single word per slot so that more can be accomplished with a single atomic update. In the common case, Lookup was previously about 4 atomic updates, now just 1 atomic update. Common case Release was previously 1 atomic read + 1 atomic update, now just 1 atomic update. * Eliminate spins / waits / yields, which likely threaten some "lock free" benefits. Compare-exchange loops are only used in explicit Erase, and strict_capacity_limit=true Insert. Eviction uses opportunistic compare- exchange. * Relaxes some aggressiveness and guarantees. For example, * Duplicate Inserts will sometimes go undetected and the shadow duplicate will age out with eviction. * In many cases, the older Inserted value for a given cache key will be kept (i.e. Insert does not support overwrite). * Entries explicitly erased (rather than evicted) might not be freed immediately in some rare cases. * With strict_capacity_limit=false, capacity limit is not tracked/enforced as precisely as LRUCache, but is self-correcting and should only deviate by a very small number of extra or fewer entries. * Use smaller "computed default" number of cache shards in many cases, because benefits to larger usage tracking / eviction pools outweigh the small cost of more lock-free atomic contention. The improvement in CPU and I/O is dramatic in some limit-memory cases. * Even without the sharding change, the eviction algorithm is likely more effective than LRU overall because it's more stateful, even though the "hot path" state tracking for it is essentially free with ref counting. It is like a generalized CLOCK with aging (see code comments). I don't have performance numbers showing a specific improvement, but in theory, for a Poisson access pattern to each block, keeping some state allows better estimation of time to next access (Poisson interval) than strict LRU. The bounded randomness in CLOCK can also reduce "cliff" effect for repeated range scans approaching and exceeding cache size. ## Hot path algorithm comparison Rough descriptions, focusing on number and kind of atomic operations: * Old `Lookup()` (2-5 atomic updates per probe): ``` Loop: Increment internal ref count at slot If possible hit: Check flags atomic (and non-atomic fields) If cache hit: Three distinct updates to 'flags' atomic Increment refs for internal-to-external Return Decrement internal ref count while atomic read 'displacements' > 0 ``` * New `Lookup()` (1-2 atomic updates per probe): ``` Loop: Increment acquire counter in meta word (optimistic) If visible entry (already read meta word): If match (read non-atomic fields): Return Else: Decrement acquire counter in meta word Else if invisible entry (rare, already read meta word): Decrement acquire counter in meta word while atomic read 'displacements' > 0 ``` * Old `Release()` (1 atomic update, conditional on atomic read, rarely more): ``` Read atomic ref count If last reference and invisible (rare): Use CAS etc. to remove Return Else: Decrement ref count ``` * New `Release()` (1 unconditional atomic update, rarely more): ``` Increment release counter in meta word If last reference and invisible (rare): Use CAS etc. to remove Return ``` ## Performance test setup Build DB with ``` TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=fillrandom -num=30000000 -disable_wal=1 -bloom_bits=16 ``` Test with ``` TEST_TMPDIR=/dev/shm ./db_bench -benchmarks=readrandom -readonly -num=30000000 -bloom_bits=16 -cache_index_and_filter_blocks=1 -cache_size=${CACHE_MB}000000 -duration 60 -threads=$THREADS -statistics ``` Numbers on a single socket Skylake Xeon system with 48 hardware threads, DEBUG_LEVEL=0 PORTABLE=0. Very similar story on a dual socket system with 80 hardware threads. Using (every 2nd) Fibonacci MB cache sizes to sample the territory between powers of two. Configurations: base: LRUCache before this change, but with db_bench change to default cache_numshardbits=-1 (instead of fixed at 6) folly: LRUCache before this change, with folly enabled (distributed mutex) but on an old compiler (sorry) gt_clock: experimental ClockCache before this change new_clock: experimental ClockCache with this change ## Performance test results First test "hot path" read performance, with block cache large enough for whole DB: 4181MB 1thread base -> kops/s: 47.761 4181MB 1thread folly -> kops/s: 45.877 4181MB 1thread gt_clock -> kops/s: 51.092 4181MB 1thread new_clock -> kops/s: 53.944 4181MB 16thread base -> kops/s: 284.567 4181MB 16thread folly -> kops/s: 249.015 4181MB 16thread gt_clock -> kops/s: 743.762 4181MB 16thread new_clock -> kops/s: 861.821 4181MB 24thread base -> kops/s: 303.415 4181MB 24thread folly -> kops/s: 266.548 4181MB 24thread gt_clock -> kops/s: 975.706 4181MB 24thread new_clock -> kops/s: 1205.64 (~= 24 * 53.944) 4181MB 32thread base -> kops/s: 311.251 4181MB 32thread folly -> kops/s: 274.952 4181MB 32thread gt_clock -> kops/s: 1045.98 4181MB 32thread new_clock -> kops/s: 1370.38 4181MB 48thread base -> kops/s: 310.504 4181MB 48thread folly -> kops/s: 268.322 4181MB 48thread gt_clock -> kops/s: 1195.65 4181MB 48thread new_clock -> kops/s: 1604.85 (~= 24 * 1.25 * 53.944) 4181MB 64thread base -> kops/s: 307.839 4181MB 64thread folly -> kops/s: 272.172 4181MB 64thread gt_clock -> kops/s: 1204.47 4181MB 64thread new_clock -> kops/s: 1615.37 4181MB 128thread base -> kops/s: 310.934 4181MB 128thread folly -> kops/s: 267.468 4181MB 128thread gt_clock -> kops/s: 1188.75 4181MB 128thread new_clock -> kops/s: 1595.46 Whether we have just one thread on a quiet system or an overload of threads, the new version wins every time in thousand-ops per second, sometimes dramatically so. Mutex-based implementation quickly becomes contention-limited. New clock cache shows essentially perfect scaling up to number of physical cores (24), and then each hyperthreaded core adding about 1/4 the throughput of an additional physical core (see 48 thread case). Block cache miss rates (omitted above) are negligible across the board. With partitioned instead of full filters, the maximum speed-up vs. base is more like 2.5x rather than 5x. Now test a large block cache with low miss ratio, but some eviction is required: 1597MB 1thread base -> kops/s: 46.603 io_bytes/op: 1584.63 miss_ratio: 0.0201066 max_rss_mb: 1589.23 1597MB 1thread folly -> kops/s: 45.079 io_bytes/op: 1530.03 miss_ratio: 0.019872 max_rss_mb: 1550.43 1597MB 1thread gt_clock -> kops/s: 48.711 io_bytes/op: 1566.63 miss_ratio: 0.0198923 max_rss_mb: 1691.4 1597MB 1thread new_clock -> kops/s: 51.531 io_bytes/op: 1589.07 miss_ratio: 0.0201969 max_rss_mb: 1583.56 1597MB 32thread base -> kops/s: 301.174 io_bytes/op: 1439.52 miss_ratio: 0.0184218 max_rss_mb: 1656.59 1597MB 32thread folly -> kops/s: 273.09 io_bytes/op: 1375.12 miss_ratio: 0.0180002 max_rss_mb: 1586.8 1597MB 32thread gt_clock -> kops/s: 904.497 io_bytes/op: 1411.29 miss_ratio: 0.0179934 max_rss_mb: 1775.89 1597MB 32thread new_clock -> kops/s: 1182.59 io_bytes/op: 1440.77 miss_ratio: 0.0185449 max_rss_mb: 1636.45 1597MB 128thread base -> kops/s: 309.91 io_bytes/op: 1438.25 miss_ratio: 0.018399 max_rss_mb: 1689.98 1597MB 128thread folly -> kops/s: 267.605 io_bytes/op: 1394.16 miss_ratio: 0.0180286 max_rss_mb: 1631.91 1597MB 128thread gt_clock -> kops/s: 691.518 io_bytes/op: 9056.73 miss_ratio: 0.0186572 max_rss_mb: 1982.26 1597MB 128thread new_clock -> kops/s: 1406.12 io_bytes/op: 1440.82 miss_ratio: 0.0185463 max_rss_mb: 1685.63 610MB 1thread base -> kops/s: 45.511 io_bytes/op: 2279.61 miss_ratio: 0.0290528 max_rss_mb: 615.137 610MB 1thread folly -> kops/s: 43.386 io_bytes/op: 2217.29 miss_ratio: 0.0289282 max_rss_mb: 600.996 610MB 1thread gt_clock -> kops/s: 46.207 io_bytes/op: 2275.51 miss_ratio: 0.0290057 max_rss_mb: 637.934 610MB 1thread new_clock -> kops/s: 48.879 io_bytes/op: 2283.1 miss_ratio: 0.0291253 max_rss_mb: 613.5 610MB 32thread base -> kops/s: 306.59 io_bytes/op: 2250 miss_ratio: 0.0288721 max_rss_mb: 683.402 610MB 32thread folly -> kops/s: 269.176 io_bytes/op: 2187.86 miss_ratio: 0.0286938 max_rss_mb: 628.742 610MB 32thread gt_clock -> kops/s: 855.097 io_bytes/op: 2279.26 miss_ratio: 0.0288009 max_rss_mb: 733.062 610MB 32thread new_clock -> kops/s: 1121.47 io_bytes/op: 2244.29 miss_ratio: 0.0289046 max_rss_mb: 666.453 610MB 128thread base -> kops/s: 305.079 io_bytes/op: 2252.43 miss_ratio: 0.0288884 max_rss_mb: 723.457 610MB 128thread folly -> kops/s: 269.583 io_bytes/op: 2204.58 miss_ratio: 0.0287001 max_rss_mb: 676.426 610MB 128thread gt_clock -> kops/s: 53.298 io_bytes/op: 8128.98 miss_ratio: 0.0292452 max_rss_mb: 956.273 610MB 128thread new_clock -> kops/s: 1301.09 io_bytes/op: 2246.04 miss_ratio: 0.0289171 max_rss_mb: 788.812 The new version is still winning every time, sometimes dramatically so, and we can tell from the maximum resident memory numbers (which contain some noise, by the way) that the new cache is not cheating on memory usage. IMPORTANT: The previous generation experimental clock cache appears to hit a serious bottleneck in the higher thread count configurations, presumably due to some of its waiting functionality. (The same bottleneck is not seen with partitioned index+filters.) Now we consider even smaller cache sizes, with higher miss ratios, eviction work, etc. 233MB 1thread base -> kops/s: 10.557 io_bytes/op: 227040 miss_ratio: 0.0403105 max_rss_mb: 247.371 233MB 1thread folly -> kops/s: 15.348 io_bytes/op: 112007 miss_ratio: 0.0372238 max_rss_mb: 245.293 233MB 1thread gt_clock -> kops/s: 6.365 io_bytes/op: 244854 miss_ratio: 0.0413873 max_rss_mb: 259.844 233MB 1thread new_clock -> kops/s: 47.501 io_bytes/op: 2591.93 miss_ratio: 0.0330989 max_rss_mb: 242.461 233MB 32thread base -> kops/s: 96.498 io_bytes/op: 363379 miss_ratio: 0.0459966 max_rss_mb: 479.227 233MB 32thread folly -> kops/s: 109.95 io_bytes/op: 314799 miss_ratio: 0.0450032 max_rss_mb: 400.738 233MB 32thread gt_clock -> kops/s: 2.353 io_bytes/op: 385397 miss_ratio: 0.048445 max_rss_mb: 500.688 233MB 32thread new_clock -> kops/s: 1088.95 io_bytes/op: 2567.02 miss_ratio: 0.0330593 max_rss_mb: 303.402 233MB 128thread base -> kops/s: 84.302 io_bytes/op: 378020 miss_ratio: 0.0466558 max_rss_mb: 1051.84 233MB 128thread folly -> kops/s: 89.921 io_bytes/op: 338242 miss_ratio: 0.0460309 max_rss_mb: 812.785 233MB 128thread gt_clock -> kops/s: 2.588 io_bytes/op: 462833 miss_ratio: 0.0509158 max_rss_mb: 1109.94 233MB 128thread new_clock -> kops/s: 1299.26 io_bytes/op: 2565.94 miss_ratio: 0.0330531 max_rss_mb: 361.016 89MB 1thread base -> kops/s: 0.574 io_bytes/op: 5.35977e+06 miss_ratio: 0.274427 max_rss_mb: 91.3086 89MB 1thread folly -> kops/s: 0.578 io_bytes/op: 5.16549e+06 miss_ratio: 0.27276 max_rss_mb: 96.8984 89MB 1thread gt_clock -> kops/s: 0.512 io_bytes/op: 4.13111e+06 miss_ratio: 0.242817 max_rss_mb: 119.441 89MB 1thread new_clock -> kops/s: 48.172 io_bytes/op: 2709.76 miss_ratio: 0.0346162 max_rss_mb: 100.754 89MB 32thread base -> kops/s: 5.779 io_bytes/op: 6.14192e+06 miss_ratio: 0.320399 max_rss_mb: 311.812 89MB 32thread folly -> kops/s: 5.601 io_bytes/op: 5.83838e+06 miss_ratio: 0.313123 max_rss_mb: 252.418 89MB 32thread gt_clock -> kops/s: 0.77 io_bytes/op: 3.99236e+06 miss_ratio: 0.236296 max_rss_mb: 396.422 89MB 32thread new_clock -> kops/s: 1064.97 io_bytes/op: 2687.23 miss_ratio: 0.0346134 max_rss_mb: 155.293 89MB 128thread base -> kops/s: 4.959 io_bytes/op: 6.20297e+06 miss_ratio: 0.323945 max_rss_mb: 823.43 89MB 128thread folly -> kops/s: 4.962 io_bytes/op: 5.9601e+06 miss_ratio: 0.319857 max_rss_mb: 626.824 89MB 128thread gt_clock -> kops/s: 1.009 io_bytes/op: 4.1083e+06 miss_ratio: 0.242512 max_rss_mb: 1095.32 89MB 128thread new_clock -> kops/s: 1224.39 io_bytes/op: 2688.2 miss_ratio: 0.0346207 max_rss_mb: 218.223 ^ Now something interesting has happened: the new clock cache has gained a dramatic lead in the single-threaded case, and this is because the cache is so small, and full filters are so big, that dividing the cache into 64 shards leads to significant (random) imbalances in cache shards and excessive churn in imbalanced shards. This new clock cache only uses two shards for this configuration, and that helps to ensure that entries are part of a sufficiently big pool that their eviction order resembles the single-shard order. (This effect is not seen with partitioned index+filters.) Even smaller cache size: 34MB 1thread base -> kops/s: 0.198 io_bytes/op: 1.65342e+07 miss_ratio: 0.939466 max_rss_mb: 48.6914 34MB 1thread folly -> kops/s: 0.201 io_bytes/op: 1.63416e+07 miss_ratio: 0.939081 max_rss_mb: 45.3281 34MB 1thread gt_clock -> kops/s: 0.448 io_bytes/op: 4.43957e+06 miss_ratio: 0.266749 max_rss_mb: 100.523 34MB 1thread new_clock -> kops/s: 1.055 io_bytes/op: 1.85439e+06 miss_ratio: 0.107512 max_rss_mb: 75.3125 34MB 32thread base -> kops/s: 3.346 io_bytes/op: 1.64852e+07 miss_ratio: 0.93596 max_rss_mb: 180.48 34MB 32thread folly -> kops/s: 3.431 io_bytes/op: 1.62857e+07 miss_ratio: 0.935693 max_rss_mb: 137.531 34MB 32thread gt_clock -> kops/s: 1.47 io_bytes/op: 4.89704e+06 miss_ratio: 0.295081 max_rss_mb: 392.465 34MB 32thread new_clock -> kops/s: 8.19 io_bytes/op: 3.70456e+06 miss_ratio: 0.20826 max_rss_mb: 519.793 34MB 128thread base -> kops/s: 2.293 io_bytes/op: 1.64351e+07 miss_ratio: 0.931866 max_rss_mb: 449.484 34MB 128thread folly -> kops/s: 2.34 io_bytes/op: 1.6219e+07 miss_ratio: 0.932023 max_rss_mb: 396.457 34MB 128thread gt_clock -> kops/s: 1.798 io_bytes/op: 5.4241e+06 miss_ratio: 0.324881 max_rss_mb: 1104.41 34MB 128thread new_clock -> kops/s: 10.519 io_bytes/op: 2.39354e+06 miss_ratio: 0.136147 max_rss_mb: 1050.52 As the miss ratio gets higher (say, above 10%), the CPU time spent in eviction starts to erode the advantage of using fewer shards (13% miss rate much lower than 94%). LRU's O(1) eviction time can eventually pay off when there's enough block cache churn: 13MB 1thread base -> kops/s: 0.195 io_bytes/op: 1.65732e+07 miss_ratio: 0.946604 max_rss_mb: 45.6328 13MB 1thread folly -> kops/s: 0.197 io_bytes/op: 1.63793e+07 miss_ratio: 0.94661 max_rss_mb: 33.8633 13MB 1thread gt_clock -> kops/s: 0.519 io_bytes/op: 4.43316e+06 miss_ratio: 0.269379 max_rss_mb: 100.684 13MB 1thread new_clock -> kops/s: 0.176 io_bytes/op: 1.54148e+07 miss_ratio: 0.91545 max_rss_mb: 66.2383 13MB 32thread base -> kops/s: 3.266 io_bytes/op: 1.65544e+07 miss_ratio: 0.943386 max_rss_mb: 132.492 13MB 32thread folly -> kops/s: 3.396 io_bytes/op: 1.63142e+07 miss_ratio: 0.943243 max_rss_mb: 101.863 13MB 32thread gt_clock -> kops/s: 2.758 io_bytes/op: 5.13714e+06 miss_ratio: 0.310652 max_rss_mb: 396.121 13MB 32thread new_clock -> kops/s: 3.11 io_bytes/op: 1.23419e+07 miss_ratio: 0.708425 max_rss_mb: 321.758 13MB 128thread base -> kops/s: 2.31 io_bytes/op: 1.64823e+07 miss_ratio: 0.939543 max_rss_mb: 425.539 13MB 128thread folly -> kops/s: 2.339 io_bytes/op: 1.6242e+07 miss_ratio: 0.939966 max_rss_mb: 346.098 13MB 128thread gt_clock -> kops/s: 3.223 io_bytes/op: 5.76928e+06 miss_ratio: 0.345899 max_rss_mb: 1087.77 13MB 128thread new_clock -> kops/s: 2.984 io_bytes/op: 1.05341e+07 miss_ratio: 0.606198 max_rss_mb: 898.27 gt_clock is clearly blowing way past its memory budget for lower miss rates and best throughput. new_clock also seems to be exceeding budgets, and this warrants more investigation but is not the use case we are targeting with the new cache. With partitioned index+filter, the miss ratio is much better, and although still high enough that the eviction CPU time is definitely offsetting mutex contention: 13MB 1thread base -> kops/s: 16.326 io_bytes/op: 23743.9 miss_ratio: 0.205362 max_rss_mb: 65.2852 13MB 1thread folly -> kops/s: 15.574 io_bytes/op: 19415 miss_ratio: 0.184157 max_rss_mb: 56.3516 13MB 1thread gt_clock -> kops/s: 14.459 io_bytes/op: 22873 miss_ratio: 0.198355 max_rss_mb: 63.9688 13MB 1thread new_clock -> kops/s: 16.34 io_bytes/op: 24386.5 miss_ratio: 0.210512 max_rss_mb: 61.707 13MB 128thread base -> kops/s: 289.786 io_bytes/op: 23710.9 miss_ratio: 0.205056 max_rss_mb: 103.57 13MB 128thread folly -> kops/s: 185.282 io_bytes/op: 19433.1 miss_ratio: 0.184275 max_rss_mb: 116.219 13MB 128thread gt_clock -> kops/s: 354.451 io_bytes/op: 23150.6 miss_ratio: 0.200495 max_rss_mb: 102.871 13MB 128thread new_clock -> kops/s: 295.359 io_bytes/op: 24626.4 miss_ratio: 0.212452 max_rss_mb: 121.109 Pull Request resolved: https://github.com/facebook/rocksdb/pull/10626 Test Plan: updated unit tests, stress/crash test runs including with TSAN, ASAN, UBSAN Reviewed By: anand1976 Differential Revision: D39368406 Pulled By: pdillinger fbshipit-source-id: 5afc44da4c656f8f751b44552bbf27bd3ca6fef9
2 years ago
size_t LRUCacheShard::GetOccupancyCount() const {
DMutexLock l(mutex_);
return table_.GetOccupancyCount();
}
size_t LRUCacheShard::GetTableAddressCount() const {
DMutexLock l(mutex_);
return size_t{1} << table_.GetLengthBits();
}
std::string LRUCacheShard::GetPrintableOptions() const {
const int kBufferSize = 200;
char buffer[kBufferSize];
{
Use optimized folly DistributedMutex in LRUCache when available (#10179) Summary: folly DistributedMutex is faster than standard mutexes though imposes some static obligations on usage. See https://github.com/facebook/folly/blob/main/folly/synchronization/DistributedMutex.h for details. Here we use this alternative for our Cache implementations (especially LRUCache) for better locking performance, when RocksDB is compiled with folly. Also added information about which distributed mutex implementation is being used to cache_bench output and to DB LOG. Intended follow-up: * Use DMutex in more places, perhaps improving API to support non-scoped locking * Fix linking with fbcode compiler (needs ROCKSDB_NO_FBCODE=1 currently) Credit: Thanks Siying for reminding me about this line of work that was previously left unfinished. Pull Request resolved: https://github.com/facebook/rocksdb/pull/10179 Test Plan: for correctness, existing tests. CircleCI config updated. Also Meta-internal buck build updated. For performance, ran simultaneous before & after cache_bench. Out of three comparison runs, the middle improvement to ops/sec was +21%: Baseline: USE_CLANG=1 DEBUG_LEVEL=0 make -j24 cache_bench (fbcode compiler) ``` Complete in 20.201 s; Rough parallel ops/sec = 1584062 Thread ops/sec = 107176 Operation latency (ns): Count: 32000000 Average: 9257.9421 StdDev: 122412.04 Min: 134 Median: 3623.0493 Max: 56918500 Percentiles: P50: 3623.05 P75: 10288.02 P99: 30219.35 P99.9: 683522.04 P99.99: 7302791.63 ``` New: (add USE_FOLLY=1) ``` Complete in 16.674 s; Rough parallel ops/sec = 1919135 (+21%) Thread ops/sec = 135487 Operation latency (ns): Count: 32000000 Average: 7304.9294 StdDev: 108530.28 Min: 132 Median: 3777.6012 Max: 91030902 Percentiles: P50: 3777.60 P75: 10169.89 P99: 24504.51 P99.9: 59721.59 P99.99: 1861151.83 ``` Reviewed By: anand1976 Differential Revision: D37182983 Pulled By: pdillinger fbshipit-source-id: a17eb05f25b832b6a2c1356f5c657e831a5af8d1
2 years ago
DMutexLock l(mutex_);
snprintf(buffer, kBufferSize, " high_pri_pool_ratio: %.3lf\n",
high_pri_pool_ratio_);
snprintf(buffer + strlen(buffer), kBufferSize - strlen(buffer),
" low_pri_pool_ratio: %.3lf\n", low_pri_pool_ratio_);
}
return std::string(buffer);
}
LRUCache::LRUCache(size_t capacity, int num_shard_bits,
bool strict_capacity_limit, double high_pri_pool_ratio,
double low_pri_pool_ratio,
std::shared_ptr<MemoryAllocator> allocator,
bool use_adaptive_mutex,
Initial support for secondary cache in LRUCache (#8271) Summary: Defined the abstract interface for a secondary cache in include/rocksdb/secondary_cache.h, and updated LRUCacheOptions to take a std::shared_ptr<SecondaryCache>. An item is initially inserted into the LRU (primary) cache. When it ages out and evicted from memory, its inserted into the secondary cache. On a LRU cache miss and successful lookup in the secondary cache, the item is promoted to the LRU cache. Only support synchronous lookup currently. The secondary cache would be used to implement a persistent (flash cache) or compressed cache. Tests: Results from cache_bench and db_bench don't show any regression due to these changes. cache_bench results before and after this change - Command ```./cache_bench -ops_per_thread=10000000 -threads=1``` Before ```Complete in 40.688 s; QPS = 245774``` ```Complete in 40.486 s; QPS = 246996``` ```Complete in 42.019 s; QPS = 237989``` After ```Complete in 40.672 s; QPS = 245869``` ```Complete in 44.622 s; QPS = 224107``` ```Complete in 42.445 s; QPS = 235599``` db_bench results before this change, and with this change + https://github.com/facebook/rocksdb/issues/8213 and https://github.com/facebook/rocksdb/issues/8191 - Commands ```./db_bench --benchmarks="fillseq,compact" -num=30000000 -key_size=32 -value_size=256 -use_direct_io_for_flush_and_compaction=true -db=/home/anand76/nvm_cache/db -partition_index_and_filters=true``` ```./db_bench -db=/home/anand76/nvm_cache/db -use_existing_db=true -benchmarks=readrandom -num=30000000 -key_size=32 -value_size=256 -use_direct_reads=true -cache_size=1073741824 -cache_numshardbits=6 -cache_index_and_filter_blocks=true -read_random_exp_range=17 -statistics -partition_index_and_filters=true -threads=16 -duration=300``` Before ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 80.702 micros/op 198104 ops/sec; 54.4 MB/s (3708999 of 3708999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 87.124 micros/op 183625 ops/sec; 50.4 MB/s (3439999 of 3439999 found) ``` After ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 77.653 micros/op 206025 ops/sec; 56.6 MB/s (3866999 of 3866999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 84.962 micros/op 188299 ops/sec; 51.7 MB/s (3535999 of 3535999 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8271 Reviewed By: zhichao-cao Differential Revision: D28357511 Pulled By: anand1976 fbshipit-source-id: d1cfa236f00e649a18c53328be10a8062a4b6da2
4 years ago
CacheMetadataChargePolicy metadata_charge_policy,
const std::shared_ptr<SecondaryCache>& secondary_cache)
: ShardedCache(capacity, num_shard_bits, strict_capacity_limit,
std::move(allocator)) {
num_shards_ = 1 << num_shard_bits;
shards_ = reinterpret_cast<LRUCacheShard*>(
port::cacheline_aligned_alloc(sizeof(LRUCacheShard) * num_shards_));
size_t per_shard = (capacity + (num_shards_ - 1)) / num_shards_;
for (int i = 0; i < num_shards_; i++) {
Initial support for secondary cache in LRUCache (#8271) Summary: Defined the abstract interface for a secondary cache in include/rocksdb/secondary_cache.h, and updated LRUCacheOptions to take a std::shared_ptr<SecondaryCache>. An item is initially inserted into the LRU (primary) cache. When it ages out and evicted from memory, its inserted into the secondary cache. On a LRU cache miss and successful lookup in the secondary cache, the item is promoted to the LRU cache. Only support synchronous lookup currently. The secondary cache would be used to implement a persistent (flash cache) or compressed cache. Tests: Results from cache_bench and db_bench don't show any regression due to these changes. cache_bench results before and after this change - Command ```./cache_bench -ops_per_thread=10000000 -threads=1``` Before ```Complete in 40.688 s; QPS = 245774``` ```Complete in 40.486 s; QPS = 246996``` ```Complete in 42.019 s; QPS = 237989``` After ```Complete in 40.672 s; QPS = 245869``` ```Complete in 44.622 s; QPS = 224107``` ```Complete in 42.445 s; QPS = 235599``` db_bench results before this change, and with this change + https://github.com/facebook/rocksdb/issues/8213 and https://github.com/facebook/rocksdb/issues/8191 - Commands ```./db_bench --benchmarks="fillseq,compact" -num=30000000 -key_size=32 -value_size=256 -use_direct_io_for_flush_and_compaction=true -db=/home/anand76/nvm_cache/db -partition_index_and_filters=true``` ```./db_bench -db=/home/anand76/nvm_cache/db -use_existing_db=true -benchmarks=readrandom -num=30000000 -key_size=32 -value_size=256 -use_direct_reads=true -cache_size=1073741824 -cache_numshardbits=6 -cache_index_and_filter_blocks=true -read_random_exp_range=17 -statistics -partition_index_and_filters=true -threads=16 -duration=300``` Before ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 80.702 micros/op 198104 ops/sec; 54.4 MB/s (3708999 of 3708999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 87.124 micros/op 183625 ops/sec; 50.4 MB/s (3439999 of 3439999 found) ``` After ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 77.653 micros/op 206025 ops/sec; 56.6 MB/s (3866999 of 3866999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 84.962 micros/op 188299 ops/sec; 51.7 MB/s (3535999 of 3535999 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8271 Reviewed By: zhichao-cao Differential Revision: D28357511 Pulled By: anand1976 fbshipit-source-id: d1cfa236f00e649a18c53328be10a8062a4b6da2
4 years ago
new (&shards_[i]) LRUCacheShard(
per_shard, strict_capacity_limit, high_pri_pool_ratio,
low_pri_pool_ratio, use_adaptive_mutex, metadata_charge_policy,
Initial support for secondary cache in LRUCache (#8271) Summary: Defined the abstract interface for a secondary cache in include/rocksdb/secondary_cache.h, and updated LRUCacheOptions to take a std::shared_ptr<SecondaryCache>. An item is initially inserted into the LRU (primary) cache. When it ages out and evicted from memory, its inserted into the secondary cache. On a LRU cache miss and successful lookup in the secondary cache, the item is promoted to the LRU cache. Only support synchronous lookup currently. The secondary cache would be used to implement a persistent (flash cache) or compressed cache. Tests: Results from cache_bench and db_bench don't show any regression due to these changes. cache_bench results before and after this change - Command ```./cache_bench -ops_per_thread=10000000 -threads=1``` Before ```Complete in 40.688 s; QPS = 245774``` ```Complete in 40.486 s; QPS = 246996``` ```Complete in 42.019 s; QPS = 237989``` After ```Complete in 40.672 s; QPS = 245869``` ```Complete in 44.622 s; QPS = 224107``` ```Complete in 42.445 s; QPS = 235599``` db_bench results before this change, and with this change + https://github.com/facebook/rocksdb/issues/8213 and https://github.com/facebook/rocksdb/issues/8191 - Commands ```./db_bench --benchmarks="fillseq,compact" -num=30000000 -key_size=32 -value_size=256 -use_direct_io_for_flush_and_compaction=true -db=/home/anand76/nvm_cache/db -partition_index_and_filters=true``` ```./db_bench -db=/home/anand76/nvm_cache/db -use_existing_db=true -benchmarks=readrandom -num=30000000 -key_size=32 -value_size=256 -use_direct_reads=true -cache_size=1073741824 -cache_numshardbits=6 -cache_index_and_filter_blocks=true -read_random_exp_range=17 -statistics -partition_index_and_filters=true -threads=16 -duration=300``` Before ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 80.702 micros/op 198104 ops/sec; 54.4 MB/s (3708999 of 3708999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 87.124 micros/op 183625 ops/sec; 50.4 MB/s (3439999 of 3439999 found) ``` After ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 77.653 micros/op 206025 ops/sec; 56.6 MB/s (3866999 of 3866999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 84.962 micros/op 188299 ops/sec; 51.7 MB/s (3535999 of 3535999 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8271 Reviewed By: zhichao-cao Differential Revision: D28357511 Pulled By: anand1976 fbshipit-source-id: d1cfa236f00e649a18c53328be10a8062a4b6da2
4 years ago
/* max_upper_hash_bits */ 32 - num_shard_bits, secondary_cache);
}
Parallelize secondary cache lookup in MultiGet (#8405) Summary: Implement the ```WaitAll()``` interface in ```LRUCache``` to allow callers to issue multiple lookups in parallel and wait for all of them to complete. Modify ```MultiGet``` to use this to parallelize the secondary cache lookups in order to reduce the overall latency. A call to ```cache->Lookup()``` returns a handle that has an incomplete value (nullptr), and the caller can call ```cache->IsReady()``` to check whether the lookup is complete, and pass a vector of handles to ```WaitAll``` to wait for completion. If any of the lookups fail, ```MultiGet``` will read the block from the SST file. Another change in this PR is to rename ```SecondaryCacheHandle``` to ```SecondaryCacheResultHandle``` as it more accurately describes the return result of the secondary cache lookup, which is more like a future. Tests: 1. Add unit tests in lru_cache_test 2. Benchmark results with no secondary cache configured Master - ``` readrandom : 41.175 micros/op 388562 ops/sec; 106.7 MB/s (7277999 of 7277999 found) readrandom : 41.217 micros/op 388160 ops/sec; 106.6 MB/s (7274999 of 7274999 found) multireadrandom : 10.309 micros/op 1552082 ops/sec; (28908992 of 28908992 found) multireadrandom : 10.321 micros/op 1550218 ops/sec; (29081984 of 29081984 found) ``` This PR - ``` readrandom : 41.158 micros/op 388723 ops/sec; 106.8 MB/s (7290999 of 7290999 found) readrandom : 41.185 micros/op 388463 ops/sec; 106.7 MB/s (7287999 of 7287999 found) multireadrandom : 10.277 micros/op 1556801 ops/sec; (29346944 of 29346944 found) multireadrandom : 10.253 micros/op 1560539 ops/sec; (29274944 of 29274944 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8405 Reviewed By: zhichao-cao Differential Revision: D29190509 Pulled By: anand1976 fbshipit-source-id: 6f8eff6246712af8a297cfe22ea0d1c3b2a01bb0
3 years ago
secondary_cache_ = secondary_cache;
}
LRUCache::~LRUCache() {
if (shards_ != nullptr) {
assert(num_shards_ > 0);
for (int i = 0; i < num_shards_; i++) {
shards_[i].~LRUCacheShard();
}
port::cacheline_aligned_free(shards_);
}
}
New Cache API for gathering statistics (#8225) Summary: Adds a new Cache::ApplyToAllEntries API that we expect to use (in follow-up PRs) for efficiently gathering block cache statistics. Notable features vs. old ApplyToAllCacheEntries: * Includes key and deleter (in addition to value and charge). We could have passed in a Handle but then more virtual function calls would be needed to get the "fields" of each entry. We expect to use the 'deleter' to identify the origin of entries, perhaps even more. * Heavily tuned to minimize latency impact on operating cache. It does this by iterating over small sections of each cache shard while cycling through the shards. * Supports tuning roughly how many entries to operate on for each lock acquire and release, to control the impact on the latency of other operations without excessive lock acquire & release. The right balance can depend on the cost of the callback. Good default seems to be around 256. * There should be no need to disable thread safety. (I would expect uncontended locks to be sufficiently fast.) I have enhanced cache_bench to validate this approach: * Reports a histogram of ns per operation, so we can look at the ditribution of times, not just throughput (average). * Can add a thread for simulated "gather stats" which calls ApplyToAllEntries at a specified interval. We also generate a histogram of time to run ApplyToAllEntries. To make the iteration over some entries of each shard work as cleanly as possible, even with resize between next set of entries, I have re-arranged which hash bits are used for sharding and which for indexing within a shard. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8225 Test Plan: A couple of unit tests are added, but primary validation is manual, as the primary risk is to performance. The primary validation is using cache_bench to ensure that neither the minor hashing changes nor the simulated stats gathering significantly impact QPS or latency distribution. Note that adding op latency histogram seriously impacts the benchmark QPS, so for a fair baseline, we need the cache_bench changes (except remove simulated stat gathering to make it compile). In short, we don't see any reproducible difference in ops/sec or op latency unless we are gathering stats nearly continuously. Test uses 10GB block cache with 8KB values to be somewhat realistic in the number of items to iterate over. Baseline typical output: ``` Complete in 92.017 s; Rough parallel ops/sec = 869401 Thread ops/sec = 54662 Operation latency (ns): Count: 80000000 Average: 11223.9494 StdDev: 29.61 Min: 0 Median: 7759.3973 Max: 9620500 Percentiles: P50: 7759.40 P75: 14190.73 P99: 46922.75 P99.9: 77509.84 P99.99: 217030.58 ------------------------------------------------------ [ 0, 1 ] 68 0.000% 0.000% ( 2900, 4400 ] 89 0.000% 0.000% ( 4400, 6600 ] 33630240 42.038% 42.038% ######## ( 6600, 9900 ] 18129842 22.662% 64.700% ##### ( 9900, 14000 ] 7877533 9.847% 74.547% ## ( 14000, 22000 ] 15193238 18.992% 93.539% #### ( 22000, 33000 ] 3037061 3.796% 97.335% # ( 33000, 50000 ] 1626316 2.033% 99.368% ( 50000, 75000 ] 421532 0.527% 99.895% ( 75000, 110000 ] 56910 0.071% 99.966% ( 110000, 170000 ] 16134 0.020% 99.986% ( 170000, 250000 ] 5166 0.006% 99.993% ( 250000, 380000 ] 3017 0.004% 99.996% ( 380000, 570000 ] 1337 0.002% 99.998% ( 570000, 860000 ] 805 0.001% 99.999% ( 860000, 1200000 ] 319 0.000% 100.000% ( 1200000, 1900000 ] 231 0.000% 100.000% ( 1900000, 2900000 ] 100 0.000% 100.000% ( 2900000, 4300000 ] 39 0.000% 100.000% ( 4300000, 6500000 ] 16 0.000% 100.000% ( 6500000, 9800000 ] 7 0.000% 100.000% ``` New, gather_stats=false. Median thread ops/sec of 5 runs: ``` Complete in 92.030 s; Rough parallel ops/sec = 869285 Thread ops/sec = 54458 Operation latency (ns): Count: 80000000 Average: 11298.1027 StdDev: 42.18 Min: 0 Median: 7722.0822 Max: 6398720 Percentiles: P50: 7722.08 P75: 14294.68 P99: 47522.95 P99.9: 85292.16 P99.99: 228077.78 ------------------------------------------------------ [ 0, 1 ] 109 0.000% 0.000% ( 2900, 4400 ] 793 0.001% 0.001% ( 4400, 6600 ] 34054563 42.568% 42.569% ######### ( 6600, 9900 ] 17482646 21.853% 64.423% #### ( 9900, 14000 ] 7908180 9.885% 74.308% ## ( 14000, 22000 ] 15032072 18.790% 93.098% #### ( 22000, 33000 ] 3237834 4.047% 97.145% # ( 33000, 50000 ] 1736882 2.171% 99.316% ( 50000, 75000 ] 446851 0.559% 99.875% ( 75000, 110000 ] 68251 0.085% 99.960% ( 110000, 170000 ] 18592 0.023% 99.983% ( 170000, 250000 ] 7200 0.009% 99.992% ( 250000, 380000 ] 3334 0.004% 99.997% ( 380000, 570000 ] 1393 0.002% 99.998% ( 570000, 860000 ] 700 0.001% 99.999% ( 860000, 1200000 ] 293 0.000% 100.000% ( 1200000, 1900000 ] 196 0.000% 100.000% ( 1900000, 2900000 ] 69 0.000% 100.000% ( 2900000, 4300000 ] 32 0.000% 100.000% ( 4300000, 6500000 ] 10 0.000% 100.000% ``` New, gather_stats=true, 1 second delay between scans. Scans take about 1 second here so it's spending about 50% time scanning. Still the effect on ops/sec and latency seems to be in the noise. Median thread ops/sec of 5 runs: ``` Complete in 91.890 s; Rough parallel ops/sec = 870608 Thread ops/sec = 54551 Operation latency (ns): Count: 80000000 Average: 11311.2629 StdDev: 45.28 Min: 0 Median: 7686.5458 Max: 10018340 Percentiles: P50: 7686.55 P75: 14481.95 P99: 47232.60 P99.9: 79230.18 P99.99: 232998.86 ------------------------------------------------------ [ 0, 1 ] 71 0.000% 0.000% ( 2900, 4400 ] 291 0.000% 0.000% ( 4400, 6600 ] 34492060 43.115% 43.116% ######### ( 6600, 9900 ] 16727328 20.909% 64.025% #### ( 9900, 14000 ] 7845828 9.807% 73.832% ## ( 14000, 22000 ] 15510654 19.388% 93.220% #### ( 22000, 33000 ] 3216533 4.021% 97.241% # ( 33000, 50000 ] 1680859 2.101% 99.342% ( 50000, 75000 ] 439059 0.549% 99.891% ( 75000, 110000 ] 60540 0.076% 99.967% ( 110000, 170000 ] 14649 0.018% 99.985% ( 170000, 250000 ] 5242 0.007% 99.991% ( 250000, 380000 ] 3260 0.004% 99.995% ( 380000, 570000 ] 1599 0.002% 99.997% ( 570000, 860000 ] 1043 0.001% 99.999% ( 860000, 1200000 ] 471 0.001% 99.999% ( 1200000, 1900000 ] 275 0.000% 100.000% ( 1900000, 2900000 ] 143 0.000% 100.000% ( 2900000, 4300000 ] 60 0.000% 100.000% ( 4300000, 6500000 ] 27 0.000% 100.000% ( 6500000, 9800000 ] 7 0.000% 100.000% ( 9800000, 14000000 ] 1 0.000% 100.000% Gather stats latency (us): Count: 46 Average: 980387.5870 StdDev: 60911.18 Min: 879155 Median: 1033777.7778 Max: 1261431 Percentiles: P50: 1033777.78 P75: 1120666.67 P99: 1261431.00 P99.9: 1261431.00 P99.99: 1261431.00 ------------------------------------------------------ ( 860000, 1200000 ] 45 97.826% 97.826% #################### ( 1200000, 1900000 ] 1 2.174% 100.000% Most recent cache entry stats: Number of entries: 1295133 Total charge: 9.88 GB Average key size: 23.4982 Average charge: 8.00 KB Unique deleters: 3 ``` Reviewed By: mrambacher Differential Revision: D28295742 Pulled By: pdillinger fbshipit-source-id: bbc4a552f91ba0fe10e5cc025c42cef5a81f2b95
4 years ago
CacheShard* LRUCache::GetShard(uint32_t shard) {
return reinterpret_cast<CacheShard*>(&shards_[shard]);
}
New Cache API for gathering statistics (#8225) Summary: Adds a new Cache::ApplyToAllEntries API that we expect to use (in follow-up PRs) for efficiently gathering block cache statistics. Notable features vs. old ApplyToAllCacheEntries: * Includes key and deleter (in addition to value and charge). We could have passed in a Handle but then more virtual function calls would be needed to get the "fields" of each entry. We expect to use the 'deleter' to identify the origin of entries, perhaps even more. * Heavily tuned to minimize latency impact on operating cache. It does this by iterating over small sections of each cache shard while cycling through the shards. * Supports tuning roughly how many entries to operate on for each lock acquire and release, to control the impact on the latency of other operations without excessive lock acquire & release. The right balance can depend on the cost of the callback. Good default seems to be around 256. * There should be no need to disable thread safety. (I would expect uncontended locks to be sufficiently fast.) I have enhanced cache_bench to validate this approach: * Reports a histogram of ns per operation, so we can look at the ditribution of times, not just throughput (average). * Can add a thread for simulated "gather stats" which calls ApplyToAllEntries at a specified interval. We also generate a histogram of time to run ApplyToAllEntries. To make the iteration over some entries of each shard work as cleanly as possible, even with resize between next set of entries, I have re-arranged which hash bits are used for sharding and which for indexing within a shard. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8225 Test Plan: A couple of unit tests are added, but primary validation is manual, as the primary risk is to performance. The primary validation is using cache_bench to ensure that neither the minor hashing changes nor the simulated stats gathering significantly impact QPS or latency distribution. Note that adding op latency histogram seriously impacts the benchmark QPS, so for a fair baseline, we need the cache_bench changes (except remove simulated stat gathering to make it compile). In short, we don't see any reproducible difference in ops/sec or op latency unless we are gathering stats nearly continuously. Test uses 10GB block cache with 8KB values to be somewhat realistic in the number of items to iterate over. Baseline typical output: ``` Complete in 92.017 s; Rough parallel ops/sec = 869401 Thread ops/sec = 54662 Operation latency (ns): Count: 80000000 Average: 11223.9494 StdDev: 29.61 Min: 0 Median: 7759.3973 Max: 9620500 Percentiles: P50: 7759.40 P75: 14190.73 P99: 46922.75 P99.9: 77509.84 P99.99: 217030.58 ------------------------------------------------------ [ 0, 1 ] 68 0.000% 0.000% ( 2900, 4400 ] 89 0.000% 0.000% ( 4400, 6600 ] 33630240 42.038% 42.038% ######## ( 6600, 9900 ] 18129842 22.662% 64.700% ##### ( 9900, 14000 ] 7877533 9.847% 74.547% ## ( 14000, 22000 ] 15193238 18.992% 93.539% #### ( 22000, 33000 ] 3037061 3.796% 97.335% # ( 33000, 50000 ] 1626316 2.033% 99.368% ( 50000, 75000 ] 421532 0.527% 99.895% ( 75000, 110000 ] 56910 0.071% 99.966% ( 110000, 170000 ] 16134 0.020% 99.986% ( 170000, 250000 ] 5166 0.006% 99.993% ( 250000, 380000 ] 3017 0.004% 99.996% ( 380000, 570000 ] 1337 0.002% 99.998% ( 570000, 860000 ] 805 0.001% 99.999% ( 860000, 1200000 ] 319 0.000% 100.000% ( 1200000, 1900000 ] 231 0.000% 100.000% ( 1900000, 2900000 ] 100 0.000% 100.000% ( 2900000, 4300000 ] 39 0.000% 100.000% ( 4300000, 6500000 ] 16 0.000% 100.000% ( 6500000, 9800000 ] 7 0.000% 100.000% ``` New, gather_stats=false. Median thread ops/sec of 5 runs: ``` Complete in 92.030 s; Rough parallel ops/sec = 869285 Thread ops/sec = 54458 Operation latency (ns): Count: 80000000 Average: 11298.1027 StdDev: 42.18 Min: 0 Median: 7722.0822 Max: 6398720 Percentiles: P50: 7722.08 P75: 14294.68 P99: 47522.95 P99.9: 85292.16 P99.99: 228077.78 ------------------------------------------------------ [ 0, 1 ] 109 0.000% 0.000% ( 2900, 4400 ] 793 0.001% 0.001% ( 4400, 6600 ] 34054563 42.568% 42.569% ######### ( 6600, 9900 ] 17482646 21.853% 64.423% #### ( 9900, 14000 ] 7908180 9.885% 74.308% ## ( 14000, 22000 ] 15032072 18.790% 93.098% #### ( 22000, 33000 ] 3237834 4.047% 97.145% # ( 33000, 50000 ] 1736882 2.171% 99.316% ( 50000, 75000 ] 446851 0.559% 99.875% ( 75000, 110000 ] 68251 0.085% 99.960% ( 110000, 170000 ] 18592 0.023% 99.983% ( 170000, 250000 ] 7200 0.009% 99.992% ( 250000, 380000 ] 3334 0.004% 99.997% ( 380000, 570000 ] 1393 0.002% 99.998% ( 570000, 860000 ] 700 0.001% 99.999% ( 860000, 1200000 ] 293 0.000% 100.000% ( 1200000, 1900000 ] 196 0.000% 100.000% ( 1900000, 2900000 ] 69 0.000% 100.000% ( 2900000, 4300000 ] 32 0.000% 100.000% ( 4300000, 6500000 ] 10 0.000% 100.000% ``` New, gather_stats=true, 1 second delay between scans. Scans take about 1 second here so it's spending about 50% time scanning. Still the effect on ops/sec and latency seems to be in the noise. Median thread ops/sec of 5 runs: ``` Complete in 91.890 s; Rough parallel ops/sec = 870608 Thread ops/sec = 54551 Operation latency (ns): Count: 80000000 Average: 11311.2629 StdDev: 45.28 Min: 0 Median: 7686.5458 Max: 10018340 Percentiles: P50: 7686.55 P75: 14481.95 P99: 47232.60 P99.9: 79230.18 P99.99: 232998.86 ------------------------------------------------------ [ 0, 1 ] 71 0.000% 0.000% ( 2900, 4400 ] 291 0.000% 0.000% ( 4400, 6600 ] 34492060 43.115% 43.116% ######### ( 6600, 9900 ] 16727328 20.909% 64.025% #### ( 9900, 14000 ] 7845828 9.807% 73.832% ## ( 14000, 22000 ] 15510654 19.388% 93.220% #### ( 22000, 33000 ] 3216533 4.021% 97.241% # ( 33000, 50000 ] 1680859 2.101% 99.342% ( 50000, 75000 ] 439059 0.549% 99.891% ( 75000, 110000 ] 60540 0.076% 99.967% ( 110000, 170000 ] 14649 0.018% 99.985% ( 170000, 250000 ] 5242 0.007% 99.991% ( 250000, 380000 ] 3260 0.004% 99.995% ( 380000, 570000 ] 1599 0.002% 99.997% ( 570000, 860000 ] 1043 0.001% 99.999% ( 860000, 1200000 ] 471 0.001% 99.999% ( 1200000, 1900000 ] 275 0.000% 100.000% ( 1900000, 2900000 ] 143 0.000% 100.000% ( 2900000, 4300000 ] 60 0.000% 100.000% ( 4300000, 6500000 ] 27 0.000% 100.000% ( 6500000, 9800000 ] 7 0.000% 100.000% ( 9800000, 14000000 ] 1 0.000% 100.000% Gather stats latency (us): Count: 46 Average: 980387.5870 StdDev: 60911.18 Min: 879155 Median: 1033777.7778 Max: 1261431 Percentiles: P50: 1033777.78 P75: 1120666.67 P99: 1261431.00 P99.9: 1261431.00 P99.99: 1261431.00 ------------------------------------------------------ ( 860000, 1200000 ] 45 97.826% 97.826% #################### ( 1200000, 1900000 ] 1 2.174% 100.000% Most recent cache entry stats: Number of entries: 1295133 Total charge: 9.88 GB Average key size: 23.4982 Average charge: 8.00 KB Unique deleters: 3 ``` Reviewed By: mrambacher Differential Revision: D28295742 Pulled By: pdillinger fbshipit-source-id: bbc4a552f91ba0fe10e5cc025c42cef5a81f2b95
4 years ago
const CacheShard* LRUCache::GetShard(uint32_t shard) const {
return reinterpret_cast<CacheShard*>(&shards_[shard]);
}
void* LRUCache::Value(Handle* handle) {
return reinterpret_cast<const LRUHandle*>(handle)->value;
}
size_t LRUCache::GetCharge(Handle* handle) const {
CacheMetadataChargePolicy metadata_charge_policy = kDontChargeCacheMetadata;
if (num_shards_ > 0) {
metadata_charge_policy = shards_[0].metadata_charge_policy_;
}
return reinterpret_cast<const LRUHandle*>(handle)->GetCharge(
metadata_charge_policy);
}
Use deleters to label cache entries and collect stats (#8297) Summary: This change gathers and publishes statistics about the kinds of items in block cache. This is especially important for profiling relative usage of cache by index vs. filter vs. data blocks. It works by iterating over the cache during periodic stats dump (InternalStats, stats_dump_period_sec) or on demand when DB::Get(Map)Property(kBlockCacheEntryStats), except that for efficiency and sharing among column families, saved data from the last scan is used when the data is not considered too old. The new information can be seen in info LOG, for example: Block cache LRUCache@0x7fca62229330 capacity: 95.37 MB collections: 8 last_copies: 0 last_secs: 0.00178 secs_since: 0 Block cache entry stats(count,size,portion): DataBlock(7092,28.24 MB,29.6136%) FilterBlock(215,867.90 KB,0.888728%) FilterMetaBlock(2,5.31 KB,0.00544%) IndexBlock(217,180.11 KB,0.184432%) WriteBuffer(1,256.00 KB,0.262144%) Misc(1,0.00 KB,0%) And also through DB::GetProperty and GetMapProperty (here using ldb just for demonstration): $ ./ldb --db=/dev/shm/dbbench/ get_property rocksdb.block-cache-entry-stats rocksdb.block-cache-entry-stats.bytes.data-block: 0 rocksdb.block-cache-entry-stats.bytes.deprecated-filter-block: 0 rocksdb.block-cache-entry-stats.bytes.filter-block: 0 rocksdb.block-cache-entry-stats.bytes.filter-meta-block: 0 rocksdb.block-cache-entry-stats.bytes.index-block: 178992 rocksdb.block-cache-entry-stats.bytes.misc: 0 rocksdb.block-cache-entry-stats.bytes.other-block: 0 rocksdb.block-cache-entry-stats.bytes.write-buffer: 0 rocksdb.block-cache-entry-stats.capacity: 8388608 rocksdb.block-cache-entry-stats.count.data-block: 0 rocksdb.block-cache-entry-stats.count.deprecated-filter-block: 0 rocksdb.block-cache-entry-stats.count.filter-block: 0 rocksdb.block-cache-entry-stats.count.filter-meta-block: 0 rocksdb.block-cache-entry-stats.count.index-block: 215 rocksdb.block-cache-entry-stats.count.misc: 1 rocksdb.block-cache-entry-stats.count.other-block: 0 rocksdb.block-cache-entry-stats.count.write-buffer: 0 rocksdb.block-cache-entry-stats.id: LRUCache@0x7f3636661290 rocksdb.block-cache-entry-stats.percent.data-block: 0.000000 rocksdb.block-cache-entry-stats.percent.deprecated-filter-block: 0.000000 rocksdb.block-cache-entry-stats.percent.filter-block: 0.000000 rocksdb.block-cache-entry-stats.percent.filter-meta-block: 0.000000 rocksdb.block-cache-entry-stats.percent.index-block: 2.133751 rocksdb.block-cache-entry-stats.percent.misc: 0.000000 rocksdb.block-cache-entry-stats.percent.other-block: 0.000000 rocksdb.block-cache-entry-stats.percent.write-buffer: 0.000000 rocksdb.block-cache-entry-stats.secs_for_last_collection: 0.000052 rocksdb.block-cache-entry-stats.secs_since_last_collection: 0 Solution detail - We need some way to flag what kind of blocks each entry belongs to, preferably without changing the Cache API. One of the complications is that Cache is a general interface that could have other users that don't adhere to whichever convention we decide on for keys and values. Or we would pay for an extra field in the Handle that would only be used for this purpose. This change uses a back-door approach, the deleter, to indicate the "role" of a Cache entry (in addition to the value type, implicitly). This has the added benefit of ensuring proper code origin whenever we recognize a particular role for a cache entry; if the entry came from some other part of the code, it will use an unrecognized deleter, which we simply attribute to the "Misc" role. An internal API makes for simple instantiation and automatic registration of Cache deleters for a given value type and "role". Another internal API, CacheEntryStatsCollector, solves the problem of caching the results of a scan and sharing them, to ensure scans are neither excessive nor redundant so as not to harm Cache performance. Because code is added to BlocklikeTraits, it is pulled out of block_based_table_reader.cc into its own file. This is a reformulation of https://github.com/facebook/rocksdb/issues/8276, without the type checking option (could still be added), and with actual stat gathering. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8297 Test Plan: manual testing with db_bench, and a couple of basic unit tests Reviewed By: ltamasi Differential Revision: D28488721 Pulled By: pdillinger fbshipit-source-id: 472f524a9691b5afb107934be2d41d84f2b129fb
4 years ago
Cache::DeleterFn LRUCache::GetDeleter(Handle* handle) const {
auto h = reinterpret_cast<const LRUHandle*>(handle);
if (h->IsSecondaryCacheCompatible()) {
return h->info_.helper->del_cb;
} else {
return h->info_.deleter;
}
}
uint32_t LRUCache::GetHash(Handle* handle) const {
return reinterpret_cast<const LRUHandle*>(handle)->hash;
}
void LRUCache::DisownData() {
// Leak data only if that won't generate an ASAN/valgrind warning.
if (!kMustFreeHeapAllocations) {
shards_ = nullptr;
num_shards_ = 0;
}
}
size_t LRUCache::TEST_GetLRUSize() {
size_t lru_size_of_all_shards = 0;
for (int i = 0; i < num_shards_; i++) {
lru_size_of_all_shards += shards_[i].TEST_GetLRUSize();
}
return lru_size_of_all_shards;
}
double LRUCache::GetHighPriPoolRatio() {
double result = 0.0;
if (num_shards_ > 0) {
result = shards_[0].GetHighPriPoolRatio();
}
return result;
}
Parallelize secondary cache lookup in MultiGet (#8405) Summary: Implement the ```WaitAll()``` interface in ```LRUCache``` to allow callers to issue multiple lookups in parallel and wait for all of them to complete. Modify ```MultiGet``` to use this to parallelize the secondary cache lookups in order to reduce the overall latency. A call to ```cache->Lookup()``` returns a handle that has an incomplete value (nullptr), and the caller can call ```cache->IsReady()``` to check whether the lookup is complete, and pass a vector of handles to ```WaitAll``` to wait for completion. If any of the lookups fail, ```MultiGet``` will read the block from the SST file. Another change in this PR is to rename ```SecondaryCacheHandle``` to ```SecondaryCacheResultHandle``` as it more accurately describes the return result of the secondary cache lookup, which is more like a future. Tests: 1. Add unit tests in lru_cache_test 2. Benchmark results with no secondary cache configured Master - ``` readrandom : 41.175 micros/op 388562 ops/sec; 106.7 MB/s (7277999 of 7277999 found) readrandom : 41.217 micros/op 388160 ops/sec; 106.6 MB/s (7274999 of 7274999 found) multireadrandom : 10.309 micros/op 1552082 ops/sec; (28908992 of 28908992 found) multireadrandom : 10.321 micros/op 1550218 ops/sec; (29081984 of 29081984 found) ``` This PR - ``` readrandom : 41.158 micros/op 388723 ops/sec; 106.8 MB/s (7290999 of 7290999 found) readrandom : 41.185 micros/op 388463 ops/sec; 106.7 MB/s (7287999 of 7287999 found) multireadrandom : 10.277 micros/op 1556801 ops/sec; (29346944 of 29346944 found) multireadrandom : 10.253 micros/op 1560539 ops/sec; (29274944 of 29274944 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8405 Reviewed By: zhichao-cao Differential Revision: D29190509 Pulled By: anand1976 fbshipit-source-id: 6f8eff6246712af8a297cfe22ea0d1c3b2a01bb0
3 years ago
void LRUCache::WaitAll(std::vector<Handle*>& handles) {
if (secondary_cache_) {
std::vector<SecondaryCacheResultHandle*> sec_handles;
sec_handles.reserve(handles.size());
for (Handle* handle : handles) {
if (!handle) {
continue;
}
LRUHandle* lru_handle = reinterpret_cast<LRUHandle*>(handle);
if (!lru_handle->IsPending()) {
continue;
}
sec_handles.emplace_back(lru_handle->sec_handle);
}
secondary_cache_->WaitAll(sec_handles);
for (Handle* handle : handles) {
if (!handle) {
continue;
}
LRUHandle* lru_handle = reinterpret_cast<LRUHandle*>(handle);
if (!lru_handle->IsPending()) {
continue;
}
uint32_t hash = GetHash(handle);
LRUCacheShard* shard = static_cast<LRUCacheShard*>(GetShard(Shard(hash)));
shard->Promote(lru_handle);
}
}
}
std::string LRUCache::GetPrintableOptions() const {
std::string ret;
ret.reserve(20000);
ret.append(ShardedCache::GetPrintableOptions());
if (secondary_cache_) {
ret.append(" secondary_cache:\n");
ret.append(secondary_cache_->GetPrintableOptions());
}
return ret;
}
} // namespace lru_cache
std::shared_ptr<Cache> NewLRUCache(
size_t capacity, int num_shard_bits, bool strict_capacity_limit,
double high_pri_pool_ratio,
std::shared_ptr<MemoryAllocator> memory_allocator, bool use_adaptive_mutex,
Initial support for secondary cache in LRUCache (#8271) Summary: Defined the abstract interface for a secondary cache in include/rocksdb/secondary_cache.h, and updated LRUCacheOptions to take a std::shared_ptr<SecondaryCache>. An item is initially inserted into the LRU (primary) cache. When it ages out and evicted from memory, its inserted into the secondary cache. On a LRU cache miss and successful lookup in the secondary cache, the item is promoted to the LRU cache. Only support synchronous lookup currently. The secondary cache would be used to implement a persistent (flash cache) or compressed cache. Tests: Results from cache_bench and db_bench don't show any regression due to these changes. cache_bench results before and after this change - Command ```./cache_bench -ops_per_thread=10000000 -threads=1``` Before ```Complete in 40.688 s; QPS = 245774``` ```Complete in 40.486 s; QPS = 246996``` ```Complete in 42.019 s; QPS = 237989``` After ```Complete in 40.672 s; QPS = 245869``` ```Complete in 44.622 s; QPS = 224107``` ```Complete in 42.445 s; QPS = 235599``` db_bench results before this change, and with this change + https://github.com/facebook/rocksdb/issues/8213 and https://github.com/facebook/rocksdb/issues/8191 - Commands ```./db_bench --benchmarks="fillseq,compact" -num=30000000 -key_size=32 -value_size=256 -use_direct_io_for_flush_and_compaction=true -db=/home/anand76/nvm_cache/db -partition_index_and_filters=true``` ```./db_bench -db=/home/anand76/nvm_cache/db -use_existing_db=true -benchmarks=readrandom -num=30000000 -key_size=32 -value_size=256 -use_direct_reads=true -cache_size=1073741824 -cache_numshardbits=6 -cache_index_and_filter_blocks=true -read_random_exp_range=17 -statistics -partition_index_and_filters=true -threads=16 -duration=300``` Before ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 80.702 micros/op 198104 ops/sec; 54.4 MB/s (3708999 of 3708999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 87.124 micros/op 183625 ops/sec; 50.4 MB/s (3439999 of 3439999 found) ``` After ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 77.653 micros/op 206025 ops/sec; 56.6 MB/s (3866999 of 3866999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 84.962 micros/op 188299 ops/sec; 51.7 MB/s (3535999 of 3535999 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8271 Reviewed By: zhichao-cao Differential Revision: D28357511 Pulled By: anand1976 fbshipit-source-id: d1cfa236f00e649a18c53328be10a8062a4b6da2
4 years ago
CacheMetadataChargePolicy metadata_charge_policy,
const std::shared_ptr<SecondaryCache>& secondary_cache,
double low_pri_pool_ratio) {
if (num_shard_bits >= 20) {
return nullptr; // The cache cannot be sharded into too many fine pieces.
}
if (high_pri_pool_ratio < 0.0 || high_pri_pool_ratio > 1.0) {
// Invalid high_pri_pool_ratio
return nullptr;
}
if (low_pri_pool_ratio < 0.0 || low_pri_pool_ratio > 1.0) {
// Invalid low_pri_pool_ratio
return nullptr;
}
if (low_pri_pool_ratio + high_pri_pool_ratio > 1.0) {
// Invalid high_pri_pool_ratio and low_pri_pool_ratio combination
return nullptr;
}
if (num_shard_bits < 0) {
num_shard_bits = GetDefaultCacheShardBits(capacity);
}
return std::make_shared<LRUCache>(
capacity, num_shard_bits, strict_capacity_limit, high_pri_pool_ratio,
low_pri_pool_ratio, std::move(memory_allocator), use_adaptive_mutex,
metadata_charge_policy, secondary_cache);
}
Initial support for secondary cache in LRUCache (#8271) Summary: Defined the abstract interface for a secondary cache in include/rocksdb/secondary_cache.h, and updated LRUCacheOptions to take a std::shared_ptr<SecondaryCache>. An item is initially inserted into the LRU (primary) cache. When it ages out and evicted from memory, its inserted into the secondary cache. On a LRU cache miss and successful lookup in the secondary cache, the item is promoted to the LRU cache. Only support synchronous lookup currently. The secondary cache would be used to implement a persistent (flash cache) or compressed cache. Tests: Results from cache_bench and db_bench don't show any regression due to these changes. cache_bench results before and after this change - Command ```./cache_bench -ops_per_thread=10000000 -threads=1``` Before ```Complete in 40.688 s; QPS = 245774``` ```Complete in 40.486 s; QPS = 246996``` ```Complete in 42.019 s; QPS = 237989``` After ```Complete in 40.672 s; QPS = 245869``` ```Complete in 44.622 s; QPS = 224107``` ```Complete in 42.445 s; QPS = 235599``` db_bench results before this change, and with this change + https://github.com/facebook/rocksdb/issues/8213 and https://github.com/facebook/rocksdb/issues/8191 - Commands ```./db_bench --benchmarks="fillseq,compact" -num=30000000 -key_size=32 -value_size=256 -use_direct_io_for_flush_and_compaction=true -db=/home/anand76/nvm_cache/db -partition_index_and_filters=true``` ```./db_bench -db=/home/anand76/nvm_cache/db -use_existing_db=true -benchmarks=readrandom -num=30000000 -key_size=32 -value_size=256 -use_direct_reads=true -cache_size=1073741824 -cache_numshardbits=6 -cache_index_and_filter_blocks=true -read_random_exp_range=17 -statistics -partition_index_and_filters=true -threads=16 -duration=300``` Before ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 80.702 micros/op 198104 ops/sec; 54.4 MB/s (3708999 of 3708999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 87.124 micros/op 183625 ops/sec; 50.4 MB/s (3439999 of 3439999 found) ``` After ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 77.653 micros/op 206025 ops/sec; 56.6 MB/s (3866999 of 3866999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 84.962 micros/op 188299 ops/sec; 51.7 MB/s (3535999 of 3535999 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8271 Reviewed By: zhichao-cao Differential Revision: D28357511 Pulled By: anand1976 fbshipit-source-id: d1cfa236f00e649a18c53328be10a8062a4b6da2
4 years ago
std::shared_ptr<Cache> NewLRUCache(const LRUCacheOptions& cache_opts) {
return NewLRUCache(cache_opts.capacity, cache_opts.num_shard_bits,
cache_opts.strict_capacity_limit,
cache_opts.high_pri_pool_ratio,
cache_opts.memory_allocator, cache_opts.use_adaptive_mutex,
cache_opts.metadata_charge_policy,
cache_opts.secondary_cache, cache_opts.low_pri_pool_ratio);
Initial support for secondary cache in LRUCache (#8271) Summary: Defined the abstract interface for a secondary cache in include/rocksdb/secondary_cache.h, and updated LRUCacheOptions to take a std::shared_ptr<SecondaryCache>. An item is initially inserted into the LRU (primary) cache. When it ages out and evicted from memory, its inserted into the secondary cache. On a LRU cache miss and successful lookup in the secondary cache, the item is promoted to the LRU cache. Only support synchronous lookup currently. The secondary cache would be used to implement a persistent (flash cache) or compressed cache. Tests: Results from cache_bench and db_bench don't show any regression due to these changes. cache_bench results before and after this change - Command ```./cache_bench -ops_per_thread=10000000 -threads=1``` Before ```Complete in 40.688 s; QPS = 245774``` ```Complete in 40.486 s; QPS = 246996``` ```Complete in 42.019 s; QPS = 237989``` After ```Complete in 40.672 s; QPS = 245869``` ```Complete in 44.622 s; QPS = 224107``` ```Complete in 42.445 s; QPS = 235599``` db_bench results before this change, and with this change + https://github.com/facebook/rocksdb/issues/8213 and https://github.com/facebook/rocksdb/issues/8191 - Commands ```./db_bench --benchmarks="fillseq,compact" -num=30000000 -key_size=32 -value_size=256 -use_direct_io_for_flush_and_compaction=true -db=/home/anand76/nvm_cache/db -partition_index_and_filters=true``` ```./db_bench -db=/home/anand76/nvm_cache/db -use_existing_db=true -benchmarks=readrandom -num=30000000 -key_size=32 -value_size=256 -use_direct_reads=true -cache_size=1073741824 -cache_numshardbits=6 -cache_index_and_filter_blocks=true -read_random_exp_range=17 -statistics -partition_index_and_filters=true -threads=16 -duration=300``` Before ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 80.702 micros/op 198104 ops/sec; 54.4 MB/s (3708999 of 3708999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 87.124 micros/op 183625 ops/sec; 50.4 MB/s (3439999 of 3439999 found) ``` After ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 77.653 micros/op 206025 ops/sec; 56.6 MB/s (3866999 of 3866999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 84.962 micros/op 188299 ops/sec; 51.7 MB/s (3535999 of 3535999 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8271 Reviewed By: zhichao-cao Differential Revision: D28357511 Pulled By: anand1976 fbshipit-source-id: d1cfa236f00e649a18c53328be10a8062a4b6da2
4 years ago
}
std::shared_ptr<Cache> NewLRUCache(
size_t capacity, int num_shard_bits, bool strict_capacity_limit,
double high_pri_pool_ratio,
std::shared_ptr<MemoryAllocator> memory_allocator, bool use_adaptive_mutex,
CacheMetadataChargePolicy metadata_charge_policy,
double low_pri_pool_ratio) {
Initial support for secondary cache in LRUCache (#8271) Summary: Defined the abstract interface for a secondary cache in include/rocksdb/secondary_cache.h, and updated LRUCacheOptions to take a std::shared_ptr<SecondaryCache>. An item is initially inserted into the LRU (primary) cache. When it ages out and evicted from memory, its inserted into the secondary cache. On a LRU cache miss and successful lookup in the secondary cache, the item is promoted to the LRU cache. Only support synchronous lookup currently. The secondary cache would be used to implement a persistent (flash cache) or compressed cache. Tests: Results from cache_bench and db_bench don't show any regression due to these changes. cache_bench results before and after this change - Command ```./cache_bench -ops_per_thread=10000000 -threads=1``` Before ```Complete in 40.688 s; QPS = 245774``` ```Complete in 40.486 s; QPS = 246996``` ```Complete in 42.019 s; QPS = 237989``` After ```Complete in 40.672 s; QPS = 245869``` ```Complete in 44.622 s; QPS = 224107``` ```Complete in 42.445 s; QPS = 235599``` db_bench results before this change, and with this change + https://github.com/facebook/rocksdb/issues/8213 and https://github.com/facebook/rocksdb/issues/8191 - Commands ```./db_bench --benchmarks="fillseq,compact" -num=30000000 -key_size=32 -value_size=256 -use_direct_io_for_flush_and_compaction=true -db=/home/anand76/nvm_cache/db -partition_index_and_filters=true``` ```./db_bench -db=/home/anand76/nvm_cache/db -use_existing_db=true -benchmarks=readrandom -num=30000000 -key_size=32 -value_size=256 -use_direct_reads=true -cache_size=1073741824 -cache_numshardbits=6 -cache_index_and_filter_blocks=true -read_random_exp_range=17 -statistics -partition_index_and_filters=true -threads=16 -duration=300``` Before ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 80.702 micros/op 198104 ops/sec; 54.4 MB/s (3708999 of 3708999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 87.124 micros/op 183625 ops/sec; 50.4 MB/s (3439999 of 3439999 found) ``` After ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 77.653 micros/op 206025 ops/sec; 56.6 MB/s (3866999 of 3866999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 84.962 micros/op 188299 ops/sec; 51.7 MB/s (3535999 of 3535999 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8271 Reviewed By: zhichao-cao Differential Revision: D28357511 Pulled By: anand1976 fbshipit-source-id: d1cfa236f00e649a18c53328be10a8062a4b6da2
4 years ago
return NewLRUCache(capacity, num_shard_bits, strict_capacity_limit,
high_pri_pool_ratio, memory_allocator, use_adaptive_mutex,
metadata_charge_policy, nullptr, low_pri_pool_ratio);
Initial support for secondary cache in LRUCache (#8271) Summary: Defined the abstract interface for a secondary cache in include/rocksdb/secondary_cache.h, and updated LRUCacheOptions to take a std::shared_ptr<SecondaryCache>. An item is initially inserted into the LRU (primary) cache. When it ages out and evicted from memory, its inserted into the secondary cache. On a LRU cache miss and successful lookup in the secondary cache, the item is promoted to the LRU cache. Only support synchronous lookup currently. The secondary cache would be used to implement a persistent (flash cache) or compressed cache. Tests: Results from cache_bench and db_bench don't show any regression due to these changes. cache_bench results before and after this change - Command ```./cache_bench -ops_per_thread=10000000 -threads=1``` Before ```Complete in 40.688 s; QPS = 245774``` ```Complete in 40.486 s; QPS = 246996``` ```Complete in 42.019 s; QPS = 237989``` After ```Complete in 40.672 s; QPS = 245869``` ```Complete in 44.622 s; QPS = 224107``` ```Complete in 42.445 s; QPS = 235599``` db_bench results before this change, and with this change + https://github.com/facebook/rocksdb/issues/8213 and https://github.com/facebook/rocksdb/issues/8191 - Commands ```./db_bench --benchmarks="fillseq,compact" -num=30000000 -key_size=32 -value_size=256 -use_direct_io_for_flush_and_compaction=true -db=/home/anand76/nvm_cache/db -partition_index_and_filters=true``` ```./db_bench -db=/home/anand76/nvm_cache/db -use_existing_db=true -benchmarks=readrandom -num=30000000 -key_size=32 -value_size=256 -use_direct_reads=true -cache_size=1073741824 -cache_numshardbits=6 -cache_index_and_filter_blocks=true -read_random_exp_range=17 -statistics -partition_index_and_filters=true -threads=16 -duration=300``` Before ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 80.702 micros/op 198104 ops/sec; 54.4 MB/s (3708999 of 3708999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 87.124 micros/op 183625 ops/sec; 50.4 MB/s (3439999 of 3439999 found) ``` After ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 77.653 micros/op 206025 ops/sec; 56.6 MB/s (3866999 of 3866999 found) ``` ``` DB path: [/home/anand76/nvm_cache/db] readrandom : 84.962 micros/op 188299 ops/sec; 51.7 MB/s (3535999 of 3535999 found) ``` Pull Request resolved: https://github.com/facebook/rocksdb/pull/8271 Reviewed By: zhichao-cao Differential Revision: D28357511 Pulled By: anand1976 fbshipit-source-id: d1cfa236f00e649a18c53328be10a8062a4b6da2
4 years ago
}
} // namespace ROCKSDB_NAMESPACE