|
|
|
// Copyright (c) 2014, Facebook, Inc. All rights reserved.
|
|
|
|
// This source code is licensed under the BSD-style license found in the
|
|
|
|
// LICENSE file in the root directory of this source tree. An additional grant
|
|
|
|
// of patent rights can be found in the PATENTS file in the same directory.
|
|
|
|
|
|
|
|
#ifndef ROCKSDB_LITE
|
|
|
|
#include "table/cuckoo_table_builder.h"
|
|
|
|
|
|
|
|
#include <assert.h>
|
|
|
|
#include <algorithm>
|
|
|
|
#include <limits>
|
|
|
|
#include <string>
|
|
|
|
#include <vector>
|
|
|
|
|
|
|
|
#include "db/dbformat.h"
|
|
|
|
#include "rocksdb/env.h"
|
|
|
|
#include "rocksdb/table.h"
|
|
|
|
#include "table/block_builder.h"
|
Improve Cuckoo Table Reader performance. Inlined hash function and number of buckets a power of two.
Summary:
Use inlined hash functions instead of function pointer. Make number of buckets a power of two and use bitwise and instead of mod.
After these changes, we get almost 50% improvement in performance.
Results:
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.231us (4.3 Mqps) with batch size of 0
Time taken per op is 0.229us (4.4 Mqps) with batch size of 0
Time taken per op is 0.185us (5.4 Mqps) with batch size of 0
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.108us (9.3 Mqps) with batch size of 10
Time taken per op is 0.100us (10.0 Mqps) with batch size of 10
Time taken per op is 0.103us (9.7 Mqps) with batch size of 10
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.101us (9.9 Mqps) with batch size of 25
Time taken per op is 0.098us (10.2 Mqps) with batch size of 25
Time taken per op is 0.097us (10.3 Mqps) with batch size of 25
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.100us (10.0 Mqps) with batch size of 50
Time taken per op is 0.097us (10.3 Mqps) with batch size of 50
Time taken per op is 0.097us (10.3 Mqps) with batch size of 50
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.102us (9.8 Mqps) with batch size of 100
Time taken per op is 0.098us (10.2 Mqps) with batch size of 100
Time taken per op is 0.115us (8.7 Mqps) with batch size of 100
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.201us (5.0 Mqps) with batch size of 0
Time taken per op is 0.155us (6.5 Mqps) with batch size of 0
Time taken per op is 0.152us (6.6 Mqps) with batch size of 0
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.089us (11.3 Mqps) with batch size of 10
Time taken per op is 0.084us (11.9 Mqps) with batch size of 10
Time taken per op is 0.086us (11.6 Mqps) with batch size of 10
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.087us (11.5 Mqps) with batch size of 25
Time taken per op is 0.085us (11.7 Mqps) with batch size of 25
Time taken per op is 0.093us (10.8 Mqps) with batch size of 25
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.094us (10.6 Mqps) with batch size of 50
Time taken per op is 0.094us (10.7 Mqps) with batch size of 50
Time taken per op is 0.093us (10.8 Mqps) with batch size of 50
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.092us (10.9 Mqps) with batch size of 100
Time taken per op is 0.089us (11.2 Mqps) with batch size of 100
Time taken per op is 0.088us (11.3 Mqps) with batch size of 100
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.154us (6.5 Mqps) with batch size of 0
Time taken per op is 0.168us (6.0 Mqps) with batch size of 0
Time taken per op is 0.190us (5.3 Mqps) with batch size of 0
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.081us (12.4 Mqps) with batch size of 10
Time taken per op is 0.077us (13.0 Mqps) with batch size of 10
Time taken per op is 0.083us (12.1 Mqps) with batch size of 10
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.077us (13.0 Mqps) with batch size of 25
Time taken per op is 0.073us (13.7 Mqps) with batch size of 25
Time taken per op is 0.073us (13.7 Mqps) with batch size of 25
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.076us (13.1 Mqps) with batch size of 50
Time taken per op is 0.072us (13.8 Mqps) with batch size of 50
Time taken per op is 0.072us (13.8 Mqps) with batch size of 50
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.077us (13.0 Mqps) with batch size of 100
Time taken per op is 0.074us (13.6 Mqps) with batch size of 100
Time taken per op is 0.073us (13.6 Mqps) with batch size of 100
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.190us (5.3 Mqps) with batch size of 0
Time taken per op is 0.186us (5.4 Mqps) with batch size of 0
Time taken per op is 0.184us (5.4 Mqps) with batch size of 0
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.079us (12.7 Mqps) with batch size of 10
Time taken per op is 0.070us (14.2 Mqps) with batch size of 10
Time taken per op is 0.072us (14.0 Mqps) with batch size of 10
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.080us (12.5 Mqps) with batch size of 25
Time taken per op is 0.072us (14.0 Mqps) with batch size of 25
Time taken per op is 0.071us (14.1 Mqps) with batch size of 25
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.082us (12.1 Mqps) with batch size of 50
Time taken per op is 0.071us (14.1 Mqps) with batch size of 50
Time taken per op is 0.073us (13.6 Mqps) with batch size of 50
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.080us (12.5 Mqps) with batch size of 100
Time taken per op is 0.077us (13.0 Mqps) with batch size of 100
Time taken per op is 0.078us (12.8 Mqps) with batch size of 100
Test Plan:
make check all
make valgrind_check
make asan_check
Reviewers: sdong, ljin
Reviewed By: ljin
Subscribers: leveldb
Differential Revision: https://reviews.facebook.net/D22539
10 years ago
|
|
|
#include "table/cuckoo_table_factory.h"
|
|
|
|
#include "table/format.h"
|
|
|
|
#include "table/meta_blocks.h"
|
|
|
|
#include "util/autovector.h"
|
|
|
|
#include "util/random.h"
|
|
|
|
|
|
|
|
namespace rocksdb {
|
|
|
|
const std::string CuckooTablePropertyNames::kEmptyKey =
|
|
|
|
"rocksdb.cuckoo.bucket.empty.key";
|
|
|
|
const std::string CuckooTablePropertyNames::kNumHashFunc =
|
|
|
|
"rocksdb.cuckoo.hash.num";
|
|
|
|
const std::string CuckooTablePropertyNames::kHashTableSize =
|
|
|
|
"rocksdb.cuckoo.hash.size";
|
|
|
|
const std::string CuckooTablePropertyNames::kValueLength =
|
|
|
|
"rocksdb.cuckoo.value.length";
|
|
|
|
const std::string CuckooTablePropertyNames::kIsLastLevel =
|
|
|
|
"rocksdb.cuckoo.file.islastlevel";
|
|
|
|
const std::string CuckooTablePropertyNames::kCuckooBlockSize =
|
|
|
|
"rocksdb.cuckoo.hash.cuckooblocksize";
|
|
|
|
|
|
|
|
// Obtained by running echo rocksdb.table.cuckoo | sha1sum
|
|
|
|
extern const uint64_t kCuckooTableMagicNumber = 0x926789d0c5f17873ull;
|
|
|
|
|
|
|
|
CuckooTableBuilder::CuckooTableBuilder(
|
Improve Cuckoo Table Reader performance. Inlined hash function and number of buckets a power of two.
Summary:
Use inlined hash functions instead of function pointer. Make number of buckets a power of two and use bitwise and instead of mod.
After these changes, we get almost 50% improvement in performance.
Results:
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.231us (4.3 Mqps) with batch size of 0
Time taken per op is 0.229us (4.4 Mqps) with batch size of 0
Time taken per op is 0.185us (5.4 Mqps) with batch size of 0
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.108us (9.3 Mqps) with batch size of 10
Time taken per op is 0.100us (10.0 Mqps) with batch size of 10
Time taken per op is 0.103us (9.7 Mqps) with batch size of 10
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.101us (9.9 Mqps) with batch size of 25
Time taken per op is 0.098us (10.2 Mqps) with batch size of 25
Time taken per op is 0.097us (10.3 Mqps) with batch size of 25
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.100us (10.0 Mqps) with batch size of 50
Time taken per op is 0.097us (10.3 Mqps) with batch size of 50
Time taken per op is 0.097us (10.3 Mqps) with batch size of 50
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.102us (9.8 Mqps) with batch size of 100
Time taken per op is 0.098us (10.2 Mqps) with batch size of 100
Time taken per op is 0.115us (8.7 Mqps) with batch size of 100
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.201us (5.0 Mqps) with batch size of 0
Time taken per op is 0.155us (6.5 Mqps) with batch size of 0
Time taken per op is 0.152us (6.6 Mqps) with batch size of 0
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.089us (11.3 Mqps) with batch size of 10
Time taken per op is 0.084us (11.9 Mqps) with batch size of 10
Time taken per op is 0.086us (11.6 Mqps) with batch size of 10
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.087us (11.5 Mqps) with batch size of 25
Time taken per op is 0.085us (11.7 Mqps) with batch size of 25
Time taken per op is 0.093us (10.8 Mqps) with batch size of 25
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.094us (10.6 Mqps) with batch size of 50
Time taken per op is 0.094us (10.7 Mqps) with batch size of 50
Time taken per op is 0.093us (10.8 Mqps) with batch size of 50
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.092us (10.9 Mqps) with batch size of 100
Time taken per op is 0.089us (11.2 Mqps) with batch size of 100
Time taken per op is 0.088us (11.3 Mqps) with batch size of 100
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.154us (6.5 Mqps) with batch size of 0
Time taken per op is 0.168us (6.0 Mqps) with batch size of 0
Time taken per op is 0.190us (5.3 Mqps) with batch size of 0
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.081us (12.4 Mqps) with batch size of 10
Time taken per op is 0.077us (13.0 Mqps) with batch size of 10
Time taken per op is 0.083us (12.1 Mqps) with batch size of 10
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.077us (13.0 Mqps) with batch size of 25
Time taken per op is 0.073us (13.7 Mqps) with batch size of 25
Time taken per op is 0.073us (13.7 Mqps) with batch size of 25
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.076us (13.1 Mqps) with batch size of 50
Time taken per op is 0.072us (13.8 Mqps) with batch size of 50
Time taken per op is 0.072us (13.8 Mqps) with batch size of 50
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.077us (13.0 Mqps) with batch size of 100
Time taken per op is 0.074us (13.6 Mqps) with batch size of 100
Time taken per op is 0.073us (13.6 Mqps) with batch size of 100
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.190us (5.3 Mqps) with batch size of 0
Time taken per op is 0.186us (5.4 Mqps) with batch size of 0
Time taken per op is 0.184us (5.4 Mqps) with batch size of 0
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.079us (12.7 Mqps) with batch size of 10
Time taken per op is 0.070us (14.2 Mqps) with batch size of 10
Time taken per op is 0.072us (14.0 Mqps) with batch size of 10
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.080us (12.5 Mqps) with batch size of 25
Time taken per op is 0.072us (14.0 Mqps) with batch size of 25
Time taken per op is 0.071us (14.1 Mqps) with batch size of 25
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.082us (12.1 Mqps) with batch size of 50
Time taken per op is 0.071us (14.1 Mqps) with batch size of 50
Time taken per op is 0.073us (13.6 Mqps) with batch size of 50
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.080us (12.5 Mqps) with batch size of 100
Time taken per op is 0.077us (13.0 Mqps) with batch size of 100
Time taken per op is 0.078us (12.8 Mqps) with batch size of 100
Test Plan:
make check all
make valgrind_check
make asan_check
Reviewers: sdong, ljin
Reviewed By: ljin
Subscribers: leveldb
Differential Revision: https://reviews.facebook.net/D22539
10 years ago
|
|
|
WritableFile* file, double max_hash_table_ratio,
|
|
|
|
uint32_t max_num_hash_table, uint32_t max_search_depth,
|
|
|
|
const Comparator* user_comparator, uint32_t cuckoo_block_size,
|
|
|
|
uint64_t (*get_slice_hash)(const Slice&, uint32_t, uint64_t))
|
|
|
|
: num_hash_func_(2),
|
|
|
|
file_(file),
|
Improve Cuckoo Table Reader performance. Inlined hash function and number of buckets a power of two.
Summary:
Use inlined hash functions instead of function pointer. Make number of buckets a power of two and use bitwise and instead of mod.
After these changes, we get almost 50% improvement in performance.
Results:
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.231us (4.3 Mqps) with batch size of 0
Time taken per op is 0.229us (4.4 Mqps) with batch size of 0
Time taken per op is 0.185us (5.4 Mqps) with batch size of 0
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.108us (9.3 Mqps) with batch size of 10
Time taken per op is 0.100us (10.0 Mqps) with batch size of 10
Time taken per op is 0.103us (9.7 Mqps) with batch size of 10
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.101us (9.9 Mqps) with batch size of 25
Time taken per op is 0.098us (10.2 Mqps) with batch size of 25
Time taken per op is 0.097us (10.3 Mqps) with batch size of 25
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.100us (10.0 Mqps) with batch size of 50
Time taken per op is 0.097us (10.3 Mqps) with batch size of 50
Time taken per op is 0.097us (10.3 Mqps) with batch size of 50
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.102us (9.8 Mqps) with batch size of 100
Time taken per op is 0.098us (10.2 Mqps) with batch size of 100
Time taken per op is 0.115us (8.7 Mqps) with batch size of 100
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.201us (5.0 Mqps) with batch size of 0
Time taken per op is 0.155us (6.5 Mqps) with batch size of 0
Time taken per op is 0.152us (6.6 Mqps) with batch size of 0
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.089us (11.3 Mqps) with batch size of 10
Time taken per op is 0.084us (11.9 Mqps) with batch size of 10
Time taken per op is 0.086us (11.6 Mqps) with batch size of 10
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.087us (11.5 Mqps) with batch size of 25
Time taken per op is 0.085us (11.7 Mqps) with batch size of 25
Time taken per op is 0.093us (10.8 Mqps) with batch size of 25
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.094us (10.6 Mqps) with batch size of 50
Time taken per op is 0.094us (10.7 Mqps) with batch size of 50
Time taken per op is 0.093us (10.8 Mqps) with batch size of 50
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.092us (10.9 Mqps) with batch size of 100
Time taken per op is 0.089us (11.2 Mqps) with batch size of 100
Time taken per op is 0.088us (11.3 Mqps) with batch size of 100
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.154us (6.5 Mqps) with batch size of 0
Time taken per op is 0.168us (6.0 Mqps) with batch size of 0
Time taken per op is 0.190us (5.3 Mqps) with batch size of 0
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.081us (12.4 Mqps) with batch size of 10
Time taken per op is 0.077us (13.0 Mqps) with batch size of 10
Time taken per op is 0.083us (12.1 Mqps) with batch size of 10
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.077us (13.0 Mqps) with batch size of 25
Time taken per op is 0.073us (13.7 Mqps) with batch size of 25
Time taken per op is 0.073us (13.7 Mqps) with batch size of 25
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.076us (13.1 Mqps) with batch size of 50
Time taken per op is 0.072us (13.8 Mqps) with batch size of 50
Time taken per op is 0.072us (13.8 Mqps) with batch size of 50
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.077us (13.0 Mqps) with batch size of 100
Time taken per op is 0.074us (13.6 Mqps) with batch size of 100
Time taken per op is 0.073us (13.6 Mqps) with batch size of 100
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.190us (5.3 Mqps) with batch size of 0
Time taken per op is 0.186us (5.4 Mqps) with batch size of 0
Time taken per op is 0.184us (5.4 Mqps) with batch size of 0
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.079us (12.7 Mqps) with batch size of 10
Time taken per op is 0.070us (14.2 Mqps) with batch size of 10
Time taken per op is 0.072us (14.0 Mqps) with batch size of 10
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.080us (12.5 Mqps) with batch size of 25
Time taken per op is 0.072us (14.0 Mqps) with batch size of 25
Time taken per op is 0.071us (14.1 Mqps) with batch size of 25
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.082us (12.1 Mqps) with batch size of 50
Time taken per op is 0.071us (14.1 Mqps) with batch size of 50
Time taken per op is 0.073us (13.6 Mqps) with batch size of 50
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.080us (12.5 Mqps) with batch size of 100
Time taken per op is 0.077us (13.0 Mqps) with batch size of 100
Time taken per op is 0.078us (12.8 Mqps) with batch size of 100
Test Plan:
make check all
make valgrind_check
make asan_check
Reviewers: sdong, ljin
Reviewed By: ljin
Subscribers: leveldb
Differential Revision: https://reviews.facebook.net/D22539
10 years ago
|
|
|
max_hash_table_ratio_(max_hash_table_ratio),
|
|
|
|
max_num_hash_func_(max_num_hash_table),
|
|
|
|
max_search_depth_(max_search_depth),
|
|
|
|
cuckoo_block_size_(std::max(1U, cuckoo_block_size)),
|
Improve Cuckoo Table Reader performance. Inlined hash function and number of buckets a power of two.
Summary:
Use inlined hash functions instead of function pointer. Make number of buckets a power of two and use bitwise and instead of mod.
After these changes, we get almost 50% improvement in performance.
Results:
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.231us (4.3 Mqps) with batch size of 0
Time taken per op is 0.229us (4.4 Mqps) with batch size of 0
Time taken per op is 0.185us (5.4 Mqps) with batch size of 0
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.108us (9.3 Mqps) with batch size of 10
Time taken per op is 0.100us (10.0 Mqps) with batch size of 10
Time taken per op is 0.103us (9.7 Mqps) with batch size of 10
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.101us (9.9 Mqps) with batch size of 25
Time taken per op is 0.098us (10.2 Mqps) with batch size of 25
Time taken per op is 0.097us (10.3 Mqps) with batch size of 25
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.100us (10.0 Mqps) with batch size of 50
Time taken per op is 0.097us (10.3 Mqps) with batch size of 50
Time taken per op is 0.097us (10.3 Mqps) with batch size of 50
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.102us (9.8 Mqps) with batch size of 100
Time taken per op is 0.098us (10.2 Mqps) with batch size of 100
Time taken per op is 0.115us (8.7 Mqps) with batch size of 100
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.201us (5.0 Mqps) with batch size of 0
Time taken per op is 0.155us (6.5 Mqps) with batch size of 0
Time taken per op is 0.152us (6.6 Mqps) with batch size of 0
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.089us (11.3 Mqps) with batch size of 10
Time taken per op is 0.084us (11.9 Mqps) with batch size of 10
Time taken per op is 0.086us (11.6 Mqps) with batch size of 10
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.087us (11.5 Mqps) with batch size of 25
Time taken per op is 0.085us (11.7 Mqps) with batch size of 25
Time taken per op is 0.093us (10.8 Mqps) with batch size of 25
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.094us (10.6 Mqps) with batch size of 50
Time taken per op is 0.094us (10.7 Mqps) with batch size of 50
Time taken per op is 0.093us (10.8 Mqps) with batch size of 50
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.092us (10.9 Mqps) with batch size of 100
Time taken per op is 0.089us (11.2 Mqps) with batch size of 100
Time taken per op is 0.088us (11.3 Mqps) with batch size of 100
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.154us (6.5 Mqps) with batch size of 0
Time taken per op is 0.168us (6.0 Mqps) with batch size of 0
Time taken per op is 0.190us (5.3 Mqps) with batch size of 0
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.081us (12.4 Mqps) with batch size of 10
Time taken per op is 0.077us (13.0 Mqps) with batch size of 10
Time taken per op is 0.083us (12.1 Mqps) with batch size of 10
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.077us (13.0 Mqps) with batch size of 25
Time taken per op is 0.073us (13.7 Mqps) with batch size of 25
Time taken per op is 0.073us (13.7 Mqps) with batch size of 25
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.076us (13.1 Mqps) with batch size of 50
Time taken per op is 0.072us (13.8 Mqps) with batch size of 50
Time taken per op is 0.072us (13.8 Mqps) with batch size of 50
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.077us (13.0 Mqps) with batch size of 100
Time taken per op is 0.074us (13.6 Mqps) with batch size of 100
Time taken per op is 0.073us (13.6 Mqps) with batch size of 100
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.190us (5.3 Mqps) with batch size of 0
Time taken per op is 0.186us (5.4 Mqps) with batch size of 0
Time taken per op is 0.184us (5.4 Mqps) with batch size of 0
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.079us (12.7 Mqps) with batch size of 10
Time taken per op is 0.070us (14.2 Mqps) with batch size of 10
Time taken per op is 0.072us (14.0 Mqps) with batch size of 10
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.080us (12.5 Mqps) with batch size of 25
Time taken per op is 0.072us (14.0 Mqps) with batch size of 25
Time taken per op is 0.071us (14.1 Mqps) with batch size of 25
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.082us (12.1 Mqps) with batch size of 50
Time taken per op is 0.071us (14.1 Mqps) with batch size of 50
Time taken per op is 0.073us (13.6 Mqps) with batch size of 50
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.080us (12.5 Mqps) with batch size of 100
Time taken per op is 0.077us (13.0 Mqps) with batch size of 100
Time taken per op is 0.078us (12.8 Mqps) with batch size of 100
Test Plan:
make check all
make valgrind_check
make asan_check
Reviewers: sdong, ljin
Reviewed By: ljin
Subscribers: leveldb
Differential Revision: https://reviews.facebook.net/D22539
10 years ago
|
|
|
hash_table_size_(2),
|
|
|
|
is_last_level_file_(false),
|
|
|
|
has_seen_first_key_(false),
|
|
|
|
ucomp_(user_comparator),
|
|
|
|
get_slice_hash_(get_slice_hash),
|
|
|
|
closed_(false) {
|
|
|
|
// Data is in a huge block.
|
|
|
|
properties_.num_data_blocks = 1;
|
|
|
|
properties_.index_size = 0;
|
|
|
|
properties_.filter_size = 0;
|
|
|
|
}
|
|
|
|
|
|
|
|
void CuckooTableBuilder::Add(const Slice& key, const Slice& value) {
|
|
|
|
if (kvs_.size() >= kMaxVectorIdx - 1) {
|
|
|
|
status_ = Status::NotSupported("Number of keys in a file must be < 2^32-1");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
ParsedInternalKey ikey;
|
|
|
|
if (!ParseInternalKey(key, &ikey)) {
|
|
|
|
status_ = Status::Corruption("Unable to parse key into inernal key.");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
// Determine if we can ignore the sequence number and value type from
|
|
|
|
// internal keys by looking at sequence number from first key. We assume
|
|
|
|
// that if first key has a zero sequence number, then all the remaining
|
|
|
|
// keys will have zero seq. no.
|
|
|
|
if (!has_seen_first_key_) {
|
|
|
|
is_last_level_file_ = ikey.sequence == 0;
|
|
|
|
has_seen_first_key_ = true;
|
|
|
|
smallest_user_key_.assign(ikey.user_key.data(), ikey.user_key.size());
|
|
|
|
largest_user_key_.assign(ikey.user_key.data(), ikey.user_key.size());
|
|
|
|
}
|
|
|
|
// Even if one sequence number is non-zero, then it is not last level.
|
|
|
|
assert(!is_last_level_file_ || ikey.sequence == 0);
|
|
|
|
if (is_last_level_file_) {
|
|
|
|
kvs_.emplace_back(std::make_pair(
|
|
|
|
ikey.user_key.ToString(), value.ToString()));
|
|
|
|
} else {
|
|
|
|
kvs_.emplace_back(std::make_pair(key.ToString(), value.ToString()));
|
|
|
|
}
|
|
|
|
|
|
|
|
// In order to fill the empty buckets in the hash table, we identify a
|
|
|
|
// key which is not used so far (unused_user_key). We determine this by
|
|
|
|
// maintaining smallest and largest keys inserted so far in bytewise order
|
|
|
|
// and use them to find a key outside this range in Finish() operation.
|
|
|
|
// Note that this strategy is independent of user comparator used here.
|
|
|
|
if (ikey.user_key.compare(smallest_user_key_) < 0) {
|
|
|
|
smallest_user_key_.assign(ikey.user_key.data(), ikey.user_key.size());
|
|
|
|
} else if (ikey.user_key.compare(largest_user_key_) > 0) {
|
|
|
|
largest_user_key_.assign(ikey.user_key.data(), ikey.user_key.size());
|
|
|
|
}
|
Improve Cuckoo Table Reader performance. Inlined hash function and number of buckets a power of two.
Summary:
Use inlined hash functions instead of function pointer. Make number of buckets a power of two and use bitwise and instead of mod.
After these changes, we get almost 50% improvement in performance.
Results:
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.231us (4.3 Mqps) with batch size of 0
Time taken per op is 0.229us (4.4 Mqps) with batch size of 0
Time taken per op is 0.185us (5.4 Mqps) with batch size of 0
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.108us (9.3 Mqps) with batch size of 10
Time taken per op is 0.100us (10.0 Mqps) with batch size of 10
Time taken per op is 0.103us (9.7 Mqps) with batch size of 10
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.101us (9.9 Mqps) with batch size of 25
Time taken per op is 0.098us (10.2 Mqps) with batch size of 25
Time taken per op is 0.097us (10.3 Mqps) with batch size of 25
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.100us (10.0 Mqps) with batch size of 50
Time taken per op is 0.097us (10.3 Mqps) with batch size of 50
Time taken per op is 0.097us (10.3 Mqps) with batch size of 50
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.102us (9.8 Mqps) with batch size of 100
Time taken per op is 0.098us (10.2 Mqps) with batch size of 100
Time taken per op is 0.115us (8.7 Mqps) with batch size of 100
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.201us (5.0 Mqps) with batch size of 0
Time taken per op is 0.155us (6.5 Mqps) with batch size of 0
Time taken per op is 0.152us (6.6 Mqps) with batch size of 0
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.089us (11.3 Mqps) with batch size of 10
Time taken per op is 0.084us (11.9 Mqps) with batch size of 10
Time taken per op is 0.086us (11.6 Mqps) with batch size of 10
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.087us (11.5 Mqps) with batch size of 25
Time taken per op is 0.085us (11.7 Mqps) with batch size of 25
Time taken per op is 0.093us (10.8 Mqps) with batch size of 25
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.094us (10.6 Mqps) with batch size of 50
Time taken per op is 0.094us (10.7 Mqps) with batch size of 50
Time taken per op is 0.093us (10.8 Mqps) with batch size of 50
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.092us (10.9 Mqps) with batch size of 100
Time taken per op is 0.089us (11.2 Mqps) with batch size of 100
Time taken per op is 0.088us (11.3 Mqps) with batch size of 100
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.154us (6.5 Mqps) with batch size of 0
Time taken per op is 0.168us (6.0 Mqps) with batch size of 0
Time taken per op is 0.190us (5.3 Mqps) with batch size of 0
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.081us (12.4 Mqps) with batch size of 10
Time taken per op is 0.077us (13.0 Mqps) with batch size of 10
Time taken per op is 0.083us (12.1 Mqps) with batch size of 10
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.077us (13.0 Mqps) with batch size of 25
Time taken per op is 0.073us (13.7 Mqps) with batch size of 25
Time taken per op is 0.073us (13.7 Mqps) with batch size of 25
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.076us (13.1 Mqps) with batch size of 50
Time taken per op is 0.072us (13.8 Mqps) with batch size of 50
Time taken per op is 0.072us (13.8 Mqps) with batch size of 50
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.077us (13.0 Mqps) with batch size of 100
Time taken per op is 0.074us (13.6 Mqps) with batch size of 100
Time taken per op is 0.073us (13.6 Mqps) with batch size of 100
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.190us (5.3 Mqps) with batch size of 0
Time taken per op is 0.186us (5.4 Mqps) with batch size of 0
Time taken per op is 0.184us (5.4 Mqps) with batch size of 0
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.079us (12.7 Mqps) with batch size of 10
Time taken per op is 0.070us (14.2 Mqps) with batch size of 10
Time taken per op is 0.072us (14.0 Mqps) with batch size of 10
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.080us (12.5 Mqps) with batch size of 25
Time taken per op is 0.072us (14.0 Mqps) with batch size of 25
Time taken per op is 0.071us (14.1 Mqps) with batch size of 25
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.082us (12.1 Mqps) with batch size of 50
Time taken per op is 0.071us (14.1 Mqps) with batch size of 50
Time taken per op is 0.073us (13.6 Mqps) with batch size of 50
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.080us (12.5 Mqps) with batch size of 100
Time taken per op is 0.077us (13.0 Mqps) with batch size of 100
Time taken per op is 0.078us (12.8 Mqps) with batch size of 100
Test Plan:
make check all
make valgrind_check
make asan_check
Reviewers: sdong, ljin
Reviewed By: ljin
Subscribers: leveldb
Differential Revision: https://reviews.facebook.net/D22539
10 years ago
|
|
|
if (hash_table_size_ < kvs_.size() / max_hash_table_ratio_) {
|
|
|
|
hash_table_size_ *= 2;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
Status CuckooTableBuilder::MakeHashTable(std::vector<CuckooBucket>* buckets) {
|
Improve Cuckoo Table Reader performance. Inlined hash function and number of buckets a power of two.
Summary:
Use inlined hash functions instead of function pointer. Make number of buckets a power of two and use bitwise and instead of mod.
After these changes, we get almost 50% improvement in performance.
Results:
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.231us (4.3 Mqps) with batch size of 0
Time taken per op is 0.229us (4.4 Mqps) with batch size of 0
Time taken per op is 0.185us (5.4 Mqps) with batch size of 0
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.108us (9.3 Mqps) with batch size of 10
Time taken per op is 0.100us (10.0 Mqps) with batch size of 10
Time taken per op is 0.103us (9.7 Mqps) with batch size of 10
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.101us (9.9 Mqps) with batch size of 25
Time taken per op is 0.098us (10.2 Mqps) with batch size of 25
Time taken per op is 0.097us (10.3 Mqps) with batch size of 25
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.100us (10.0 Mqps) with batch size of 50
Time taken per op is 0.097us (10.3 Mqps) with batch size of 50
Time taken per op is 0.097us (10.3 Mqps) with batch size of 50
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.102us (9.8 Mqps) with batch size of 100
Time taken per op is 0.098us (10.2 Mqps) with batch size of 100
Time taken per op is 0.115us (8.7 Mqps) with batch size of 100
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.201us (5.0 Mqps) with batch size of 0
Time taken per op is 0.155us (6.5 Mqps) with batch size of 0
Time taken per op is 0.152us (6.6 Mqps) with batch size of 0
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.089us (11.3 Mqps) with batch size of 10
Time taken per op is 0.084us (11.9 Mqps) with batch size of 10
Time taken per op is 0.086us (11.6 Mqps) with batch size of 10
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.087us (11.5 Mqps) with batch size of 25
Time taken per op is 0.085us (11.7 Mqps) with batch size of 25
Time taken per op is 0.093us (10.8 Mqps) with batch size of 25
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.094us (10.6 Mqps) with batch size of 50
Time taken per op is 0.094us (10.7 Mqps) with batch size of 50
Time taken per op is 0.093us (10.8 Mqps) with batch size of 50
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.092us (10.9 Mqps) with batch size of 100
Time taken per op is 0.089us (11.2 Mqps) with batch size of 100
Time taken per op is 0.088us (11.3 Mqps) with batch size of 100
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.154us (6.5 Mqps) with batch size of 0
Time taken per op is 0.168us (6.0 Mqps) with batch size of 0
Time taken per op is 0.190us (5.3 Mqps) with batch size of 0
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.081us (12.4 Mqps) with batch size of 10
Time taken per op is 0.077us (13.0 Mqps) with batch size of 10
Time taken per op is 0.083us (12.1 Mqps) with batch size of 10
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.077us (13.0 Mqps) with batch size of 25
Time taken per op is 0.073us (13.7 Mqps) with batch size of 25
Time taken per op is 0.073us (13.7 Mqps) with batch size of 25
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.076us (13.1 Mqps) with batch size of 50
Time taken per op is 0.072us (13.8 Mqps) with batch size of 50
Time taken per op is 0.072us (13.8 Mqps) with batch size of 50
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.077us (13.0 Mqps) with batch size of 100
Time taken per op is 0.074us (13.6 Mqps) with batch size of 100
Time taken per op is 0.073us (13.6 Mqps) with batch size of 100
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.190us (5.3 Mqps) with batch size of 0
Time taken per op is 0.186us (5.4 Mqps) with batch size of 0
Time taken per op is 0.184us (5.4 Mqps) with batch size of 0
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.079us (12.7 Mqps) with batch size of 10
Time taken per op is 0.070us (14.2 Mqps) with batch size of 10
Time taken per op is 0.072us (14.0 Mqps) with batch size of 10
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.080us (12.5 Mqps) with batch size of 25
Time taken per op is 0.072us (14.0 Mqps) with batch size of 25
Time taken per op is 0.071us (14.1 Mqps) with batch size of 25
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.082us (12.1 Mqps) with batch size of 50
Time taken per op is 0.071us (14.1 Mqps) with batch size of 50
Time taken per op is 0.073us (13.6 Mqps) with batch size of 50
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.080us (12.5 Mqps) with batch size of 100
Time taken per op is 0.077us (13.0 Mqps) with batch size of 100
Time taken per op is 0.078us (12.8 Mqps) with batch size of 100
Test Plan:
make check all
make valgrind_check
make asan_check
Reviewers: sdong, ljin
Reviewed By: ljin
Subscribers: leveldb
Differential Revision: https://reviews.facebook.net/D22539
10 years ago
|
|
|
uint64_t hash_table_size_minus_one = hash_table_size_ - 1;
|
|
|
|
buckets->resize(hash_table_size_minus_one + cuckoo_block_size_);
|
|
|
|
uint64_t make_space_for_key_call_id = 0;
|
|
|
|
for (uint32_t vector_idx = 0; vector_idx < kvs_.size(); vector_idx++) {
|
|
|
|
uint64_t bucket_id;
|
|
|
|
bool bucket_found = false;
|
|
|
|
autovector<uint64_t> hash_vals;
|
|
|
|
Slice user_key = is_last_level_file_ ? kvs_[vector_idx].first :
|
|
|
|
ExtractUserKey(kvs_[vector_idx].first);
|
|
|
|
for (uint32_t hash_cnt = 0; hash_cnt < num_hash_func_ && !bucket_found;
|
|
|
|
++hash_cnt) {
|
Improve Cuckoo Table Reader performance. Inlined hash function and number of buckets a power of two.
Summary:
Use inlined hash functions instead of function pointer. Make number of buckets a power of two and use bitwise and instead of mod.
After these changes, we get almost 50% improvement in performance.
Results:
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.231us (4.3 Mqps) with batch size of 0
Time taken per op is 0.229us (4.4 Mqps) with batch size of 0
Time taken per op is 0.185us (5.4 Mqps) with batch size of 0
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.108us (9.3 Mqps) with batch size of 10
Time taken per op is 0.100us (10.0 Mqps) with batch size of 10
Time taken per op is 0.103us (9.7 Mqps) with batch size of 10
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.101us (9.9 Mqps) with batch size of 25
Time taken per op is 0.098us (10.2 Mqps) with batch size of 25
Time taken per op is 0.097us (10.3 Mqps) with batch size of 25
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.100us (10.0 Mqps) with batch size of 50
Time taken per op is 0.097us (10.3 Mqps) with batch size of 50
Time taken per op is 0.097us (10.3 Mqps) with batch size of 50
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.102us (9.8 Mqps) with batch size of 100
Time taken per op is 0.098us (10.2 Mqps) with batch size of 100
Time taken per op is 0.115us (8.7 Mqps) with batch size of 100
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.201us (5.0 Mqps) with batch size of 0
Time taken per op is 0.155us (6.5 Mqps) with batch size of 0
Time taken per op is 0.152us (6.6 Mqps) with batch size of 0
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.089us (11.3 Mqps) with batch size of 10
Time taken per op is 0.084us (11.9 Mqps) with batch size of 10
Time taken per op is 0.086us (11.6 Mqps) with batch size of 10
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.087us (11.5 Mqps) with batch size of 25
Time taken per op is 0.085us (11.7 Mqps) with batch size of 25
Time taken per op is 0.093us (10.8 Mqps) with batch size of 25
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.094us (10.6 Mqps) with batch size of 50
Time taken per op is 0.094us (10.7 Mqps) with batch size of 50
Time taken per op is 0.093us (10.8 Mqps) with batch size of 50
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.092us (10.9 Mqps) with batch size of 100
Time taken per op is 0.089us (11.2 Mqps) with batch size of 100
Time taken per op is 0.088us (11.3 Mqps) with batch size of 100
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.154us (6.5 Mqps) with batch size of 0
Time taken per op is 0.168us (6.0 Mqps) with batch size of 0
Time taken per op is 0.190us (5.3 Mqps) with batch size of 0
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.081us (12.4 Mqps) with batch size of 10
Time taken per op is 0.077us (13.0 Mqps) with batch size of 10
Time taken per op is 0.083us (12.1 Mqps) with batch size of 10
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.077us (13.0 Mqps) with batch size of 25
Time taken per op is 0.073us (13.7 Mqps) with batch size of 25
Time taken per op is 0.073us (13.7 Mqps) with batch size of 25
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.076us (13.1 Mqps) with batch size of 50
Time taken per op is 0.072us (13.8 Mqps) with batch size of 50
Time taken per op is 0.072us (13.8 Mqps) with batch size of 50
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.077us (13.0 Mqps) with batch size of 100
Time taken per op is 0.074us (13.6 Mqps) with batch size of 100
Time taken per op is 0.073us (13.6 Mqps) with batch size of 100
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.190us (5.3 Mqps) with batch size of 0
Time taken per op is 0.186us (5.4 Mqps) with batch size of 0
Time taken per op is 0.184us (5.4 Mqps) with batch size of 0
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.079us (12.7 Mqps) with batch size of 10
Time taken per op is 0.070us (14.2 Mqps) with batch size of 10
Time taken per op is 0.072us (14.0 Mqps) with batch size of 10
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.080us (12.5 Mqps) with batch size of 25
Time taken per op is 0.072us (14.0 Mqps) with batch size of 25
Time taken per op is 0.071us (14.1 Mqps) with batch size of 25
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.082us (12.1 Mqps) with batch size of 50
Time taken per op is 0.071us (14.1 Mqps) with batch size of 50
Time taken per op is 0.073us (13.6 Mqps) with batch size of 50
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.080us (12.5 Mqps) with batch size of 100
Time taken per op is 0.077us (13.0 Mqps) with batch size of 100
Time taken per op is 0.078us (12.8 Mqps) with batch size of 100
Test Plan:
make check all
make valgrind_check
make asan_check
Reviewers: sdong, ljin
Reviewed By: ljin
Subscribers: leveldb
Differential Revision: https://reviews.facebook.net/D22539
10 years ago
|
|
|
uint64_t hash_val = CuckooHash(user_key, hash_cnt,
|
|
|
|
hash_table_size_minus_one, get_slice_hash_);
|
|
|
|
// If there is a collision, check next cuckoo_block_size_ locations for
|
|
|
|
// empty locations. While checking, if we reach end of the hash table,
|
|
|
|
// stop searching and proceed for next hash function.
|
|
|
|
for (uint32_t block_idx = 0; block_idx < cuckoo_block_size_;
|
|
|
|
++block_idx, ++hash_val) {
|
|
|
|
if ((*buckets)[hash_val].vector_idx == kMaxVectorIdx) {
|
|
|
|
bucket_id = hash_val;
|
|
|
|
bucket_found = true;
|
|
|
|
break;
|
|
|
|
} else {
|
|
|
|
if (ucomp_->Compare(user_key, is_last_level_file_
|
|
|
|
? Slice(kvs_[(*buckets)[hash_val].vector_idx].first)
|
|
|
|
: ExtractUserKey(
|
|
|
|
kvs_[(*buckets)[hash_val].vector_idx].first)) == 0) {
|
|
|
|
return Status::NotSupported("Same key is being inserted again.");
|
|
|
|
}
|
|
|
|
hash_vals.push_back(hash_val);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
while (!bucket_found && !MakeSpaceForKey(hash_vals,
|
Improve Cuckoo Table Reader performance. Inlined hash function and number of buckets a power of two.
Summary:
Use inlined hash functions instead of function pointer. Make number of buckets a power of two and use bitwise and instead of mod.
After these changes, we get almost 50% improvement in performance.
Results:
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.231us (4.3 Mqps) with batch size of 0
Time taken per op is 0.229us (4.4 Mqps) with batch size of 0
Time taken per op is 0.185us (5.4 Mqps) with batch size of 0
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.108us (9.3 Mqps) with batch size of 10
Time taken per op is 0.100us (10.0 Mqps) with batch size of 10
Time taken per op is 0.103us (9.7 Mqps) with batch size of 10
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.101us (9.9 Mqps) with batch size of 25
Time taken per op is 0.098us (10.2 Mqps) with batch size of 25
Time taken per op is 0.097us (10.3 Mqps) with batch size of 25
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.100us (10.0 Mqps) with batch size of 50
Time taken per op is 0.097us (10.3 Mqps) with batch size of 50
Time taken per op is 0.097us (10.3 Mqps) with batch size of 50
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.102us (9.8 Mqps) with batch size of 100
Time taken per op is 0.098us (10.2 Mqps) with batch size of 100
Time taken per op is 0.115us (8.7 Mqps) with batch size of 100
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.201us (5.0 Mqps) with batch size of 0
Time taken per op is 0.155us (6.5 Mqps) with batch size of 0
Time taken per op is 0.152us (6.6 Mqps) with batch size of 0
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.089us (11.3 Mqps) with batch size of 10
Time taken per op is 0.084us (11.9 Mqps) with batch size of 10
Time taken per op is 0.086us (11.6 Mqps) with batch size of 10
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.087us (11.5 Mqps) with batch size of 25
Time taken per op is 0.085us (11.7 Mqps) with batch size of 25
Time taken per op is 0.093us (10.8 Mqps) with batch size of 25
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.094us (10.6 Mqps) with batch size of 50
Time taken per op is 0.094us (10.7 Mqps) with batch size of 50
Time taken per op is 0.093us (10.8 Mqps) with batch size of 50
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.092us (10.9 Mqps) with batch size of 100
Time taken per op is 0.089us (11.2 Mqps) with batch size of 100
Time taken per op is 0.088us (11.3 Mqps) with batch size of 100
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.154us (6.5 Mqps) with batch size of 0
Time taken per op is 0.168us (6.0 Mqps) with batch size of 0
Time taken per op is 0.190us (5.3 Mqps) with batch size of 0
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.081us (12.4 Mqps) with batch size of 10
Time taken per op is 0.077us (13.0 Mqps) with batch size of 10
Time taken per op is 0.083us (12.1 Mqps) with batch size of 10
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.077us (13.0 Mqps) with batch size of 25
Time taken per op is 0.073us (13.7 Mqps) with batch size of 25
Time taken per op is 0.073us (13.7 Mqps) with batch size of 25
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.076us (13.1 Mqps) with batch size of 50
Time taken per op is 0.072us (13.8 Mqps) with batch size of 50
Time taken per op is 0.072us (13.8 Mqps) with batch size of 50
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.077us (13.0 Mqps) with batch size of 100
Time taken per op is 0.074us (13.6 Mqps) with batch size of 100
Time taken per op is 0.073us (13.6 Mqps) with batch size of 100
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.190us (5.3 Mqps) with batch size of 0
Time taken per op is 0.186us (5.4 Mqps) with batch size of 0
Time taken per op is 0.184us (5.4 Mqps) with batch size of 0
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.079us (12.7 Mqps) with batch size of 10
Time taken per op is 0.070us (14.2 Mqps) with batch size of 10
Time taken per op is 0.072us (14.0 Mqps) with batch size of 10
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.080us (12.5 Mqps) with batch size of 25
Time taken per op is 0.072us (14.0 Mqps) with batch size of 25
Time taken per op is 0.071us (14.1 Mqps) with batch size of 25
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.082us (12.1 Mqps) with batch size of 50
Time taken per op is 0.071us (14.1 Mqps) with batch size of 50
Time taken per op is 0.073us (13.6 Mqps) with batch size of 50
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.080us (12.5 Mqps) with batch size of 100
Time taken per op is 0.077us (13.0 Mqps) with batch size of 100
Time taken per op is 0.078us (12.8 Mqps) with batch size of 100
Test Plan:
make check all
make valgrind_check
make asan_check
Reviewers: sdong, ljin
Reviewed By: ljin
Subscribers: leveldb
Differential Revision: https://reviews.facebook.net/D22539
10 years ago
|
|
|
++make_space_for_key_call_id, buckets, &bucket_id)) {
|
|
|
|
// Rehash by increashing number of hash tables.
|
|
|
|
if (num_hash_func_ >= max_num_hash_func_) {
|
|
|
|
return Status::NotSupported("Too many collisions. Unable to hash.");
|
|
|
|
}
|
|
|
|
// We don't really need to rehash the entire table because old hashes are
|
|
|
|
// still valid and we only increased the number of hash functions.
|
Improve Cuckoo Table Reader performance. Inlined hash function and number of buckets a power of two.
Summary:
Use inlined hash functions instead of function pointer. Make number of buckets a power of two and use bitwise and instead of mod.
After these changes, we get almost 50% improvement in performance.
Results:
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.231us (4.3 Mqps) with batch size of 0
Time taken per op is 0.229us (4.4 Mqps) with batch size of 0
Time taken per op is 0.185us (5.4 Mqps) with batch size of 0
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.108us (9.3 Mqps) with batch size of 10
Time taken per op is 0.100us (10.0 Mqps) with batch size of 10
Time taken per op is 0.103us (9.7 Mqps) with batch size of 10
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.101us (9.9 Mqps) with batch size of 25
Time taken per op is 0.098us (10.2 Mqps) with batch size of 25
Time taken per op is 0.097us (10.3 Mqps) with batch size of 25
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.100us (10.0 Mqps) with batch size of 50
Time taken per op is 0.097us (10.3 Mqps) with batch size of 50
Time taken per op is 0.097us (10.3 Mqps) with batch size of 50
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.102us (9.8 Mqps) with batch size of 100
Time taken per op is 0.098us (10.2 Mqps) with batch size of 100
Time taken per op is 0.115us (8.7 Mqps) with batch size of 100
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.201us (5.0 Mqps) with batch size of 0
Time taken per op is 0.155us (6.5 Mqps) with batch size of 0
Time taken per op is 0.152us (6.6 Mqps) with batch size of 0
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.089us (11.3 Mqps) with batch size of 10
Time taken per op is 0.084us (11.9 Mqps) with batch size of 10
Time taken per op is 0.086us (11.6 Mqps) with batch size of 10
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.087us (11.5 Mqps) with batch size of 25
Time taken per op is 0.085us (11.7 Mqps) with batch size of 25
Time taken per op is 0.093us (10.8 Mqps) with batch size of 25
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.094us (10.6 Mqps) with batch size of 50
Time taken per op is 0.094us (10.7 Mqps) with batch size of 50
Time taken per op is 0.093us (10.8 Mqps) with batch size of 50
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.092us (10.9 Mqps) with batch size of 100
Time taken per op is 0.089us (11.2 Mqps) with batch size of 100
Time taken per op is 0.088us (11.3 Mqps) with batch size of 100
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.154us (6.5 Mqps) with batch size of 0
Time taken per op is 0.168us (6.0 Mqps) with batch size of 0
Time taken per op is 0.190us (5.3 Mqps) with batch size of 0
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.081us (12.4 Mqps) with batch size of 10
Time taken per op is 0.077us (13.0 Mqps) with batch size of 10
Time taken per op is 0.083us (12.1 Mqps) with batch size of 10
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.077us (13.0 Mqps) with batch size of 25
Time taken per op is 0.073us (13.7 Mqps) with batch size of 25
Time taken per op is 0.073us (13.7 Mqps) with batch size of 25
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.076us (13.1 Mqps) with batch size of 50
Time taken per op is 0.072us (13.8 Mqps) with batch size of 50
Time taken per op is 0.072us (13.8 Mqps) with batch size of 50
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.077us (13.0 Mqps) with batch size of 100
Time taken per op is 0.074us (13.6 Mqps) with batch size of 100
Time taken per op is 0.073us (13.6 Mqps) with batch size of 100
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.190us (5.3 Mqps) with batch size of 0
Time taken per op is 0.186us (5.4 Mqps) with batch size of 0
Time taken per op is 0.184us (5.4 Mqps) with batch size of 0
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.079us (12.7 Mqps) with batch size of 10
Time taken per op is 0.070us (14.2 Mqps) with batch size of 10
Time taken per op is 0.072us (14.0 Mqps) with batch size of 10
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.080us (12.5 Mqps) with batch size of 25
Time taken per op is 0.072us (14.0 Mqps) with batch size of 25
Time taken per op is 0.071us (14.1 Mqps) with batch size of 25
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.082us (12.1 Mqps) with batch size of 50
Time taken per op is 0.071us (14.1 Mqps) with batch size of 50
Time taken per op is 0.073us (13.6 Mqps) with batch size of 50
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.080us (12.5 Mqps) with batch size of 100
Time taken per op is 0.077us (13.0 Mqps) with batch size of 100
Time taken per op is 0.078us (12.8 Mqps) with batch size of 100
Test Plan:
make check all
make valgrind_check
make asan_check
Reviewers: sdong, ljin
Reviewed By: ljin
Subscribers: leveldb
Differential Revision: https://reviews.facebook.net/D22539
10 years ago
|
|
|
uint64_t hash_val = CuckooHash(user_key, num_hash_func_,
|
|
|
|
hash_table_size_minus_one, get_slice_hash_);
|
|
|
|
++num_hash_func_;
|
|
|
|
for (uint32_t block_idx = 0; block_idx < cuckoo_block_size_;
|
|
|
|
++block_idx, ++hash_val) {
|
|
|
|
if ((*buckets)[hash_val].vector_idx == kMaxVectorIdx) {
|
|
|
|
bucket_found = true;
|
|
|
|
bucket_id = hash_val;
|
|
|
|
break;
|
|
|
|
} else {
|
|
|
|
hash_vals.push_back(hash_val);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
(*buckets)[bucket_id].vector_idx = vector_idx;
|
|
|
|
}
|
|
|
|
return Status::OK();
|
|
|
|
}
|
|
|
|
|
|
|
|
Status CuckooTableBuilder::Finish() {
|
|
|
|
assert(!closed_);
|
|
|
|
closed_ = true;
|
|
|
|
std::vector<CuckooBucket> buckets;
|
Improve Cuckoo Table Reader performance. Inlined hash function and number of buckets a power of two.
Summary:
Use inlined hash functions instead of function pointer. Make number of buckets a power of two and use bitwise and instead of mod.
After these changes, we get almost 50% improvement in performance.
Results:
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.231us (4.3 Mqps) with batch size of 0
Time taken per op is 0.229us (4.4 Mqps) with batch size of 0
Time taken per op is 0.185us (5.4 Mqps) with batch size of 0
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.108us (9.3 Mqps) with batch size of 10
Time taken per op is 0.100us (10.0 Mqps) with batch size of 10
Time taken per op is 0.103us (9.7 Mqps) with batch size of 10
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.101us (9.9 Mqps) with batch size of 25
Time taken per op is 0.098us (10.2 Mqps) with batch size of 25
Time taken per op is 0.097us (10.3 Mqps) with batch size of 25
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.100us (10.0 Mqps) with batch size of 50
Time taken per op is 0.097us (10.3 Mqps) with batch size of 50
Time taken per op is 0.097us (10.3 Mqps) with batch size of 50
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.102us (9.8 Mqps) with batch size of 100
Time taken per op is 0.098us (10.2 Mqps) with batch size of 100
Time taken per op is 0.115us (8.7 Mqps) with batch size of 100
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.201us (5.0 Mqps) with batch size of 0
Time taken per op is 0.155us (6.5 Mqps) with batch size of 0
Time taken per op is 0.152us (6.6 Mqps) with batch size of 0
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.089us (11.3 Mqps) with batch size of 10
Time taken per op is 0.084us (11.9 Mqps) with batch size of 10
Time taken per op is 0.086us (11.6 Mqps) with batch size of 10
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.087us (11.5 Mqps) with batch size of 25
Time taken per op is 0.085us (11.7 Mqps) with batch size of 25
Time taken per op is 0.093us (10.8 Mqps) with batch size of 25
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.094us (10.6 Mqps) with batch size of 50
Time taken per op is 0.094us (10.7 Mqps) with batch size of 50
Time taken per op is 0.093us (10.8 Mqps) with batch size of 50
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.092us (10.9 Mqps) with batch size of 100
Time taken per op is 0.089us (11.2 Mqps) with batch size of 100
Time taken per op is 0.088us (11.3 Mqps) with batch size of 100
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.154us (6.5 Mqps) with batch size of 0
Time taken per op is 0.168us (6.0 Mqps) with batch size of 0
Time taken per op is 0.190us (5.3 Mqps) with batch size of 0
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.081us (12.4 Mqps) with batch size of 10
Time taken per op is 0.077us (13.0 Mqps) with batch size of 10
Time taken per op is 0.083us (12.1 Mqps) with batch size of 10
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.077us (13.0 Mqps) with batch size of 25
Time taken per op is 0.073us (13.7 Mqps) with batch size of 25
Time taken per op is 0.073us (13.7 Mqps) with batch size of 25
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.076us (13.1 Mqps) with batch size of 50
Time taken per op is 0.072us (13.8 Mqps) with batch size of 50
Time taken per op is 0.072us (13.8 Mqps) with batch size of 50
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.077us (13.0 Mqps) with batch size of 100
Time taken per op is 0.074us (13.6 Mqps) with batch size of 100
Time taken per op is 0.073us (13.6 Mqps) with batch size of 100
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.190us (5.3 Mqps) with batch size of 0
Time taken per op is 0.186us (5.4 Mqps) with batch size of 0
Time taken per op is 0.184us (5.4 Mqps) with batch size of 0
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.079us (12.7 Mqps) with batch size of 10
Time taken per op is 0.070us (14.2 Mqps) with batch size of 10
Time taken per op is 0.072us (14.0 Mqps) with batch size of 10
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.080us (12.5 Mqps) with batch size of 25
Time taken per op is 0.072us (14.0 Mqps) with batch size of 25
Time taken per op is 0.071us (14.1 Mqps) with batch size of 25
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.082us (12.1 Mqps) with batch size of 50
Time taken per op is 0.071us (14.1 Mqps) with batch size of 50
Time taken per op is 0.073us (13.6 Mqps) with batch size of 50
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.080us (12.5 Mqps) with batch size of 100
Time taken per op is 0.077us (13.0 Mqps) with batch size of 100
Time taken per op is 0.078us (12.8 Mqps) with batch size of 100
Test Plan:
make check all
make valgrind_check
make asan_check
Reviewers: sdong, ljin
Reviewed By: ljin
Subscribers: leveldb
Differential Revision: https://reviews.facebook.net/D22539
10 years ago
|
|
|
Status s;
|
|
|
|
std::string unused_bucket;
|
|
|
|
if (!kvs_.empty()) {
|
Improve Cuckoo Table Reader performance. Inlined hash function and number of buckets a power of two.
Summary:
Use inlined hash functions instead of function pointer. Make number of buckets a power of two and use bitwise and instead of mod.
After these changes, we get almost 50% improvement in performance.
Results:
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.231us (4.3 Mqps) with batch size of 0
Time taken per op is 0.229us (4.4 Mqps) with batch size of 0
Time taken per op is 0.185us (5.4 Mqps) with batch size of 0
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.108us (9.3 Mqps) with batch size of 10
Time taken per op is 0.100us (10.0 Mqps) with batch size of 10
Time taken per op is 0.103us (9.7 Mqps) with batch size of 10
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.101us (9.9 Mqps) with batch size of 25
Time taken per op is 0.098us (10.2 Mqps) with batch size of 25
Time taken per op is 0.097us (10.3 Mqps) with batch size of 25
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.100us (10.0 Mqps) with batch size of 50
Time taken per op is 0.097us (10.3 Mqps) with batch size of 50
Time taken per op is 0.097us (10.3 Mqps) with batch size of 50
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.102us (9.8 Mqps) with batch size of 100
Time taken per op is 0.098us (10.2 Mqps) with batch size of 100
Time taken per op is 0.115us (8.7 Mqps) with batch size of 100
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.201us (5.0 Mqps) with batch size of 0
Time taken per op is 0.155us (6.5 Mqps) with batch size of 0
Time taken per op is 0.152us (6.6 Mqps) with batch size of 0
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.089us (11.3 Mqps) with batch size of 10
Time taken per op is 0.084us (11.9 Mqps) with batch size of 10
Time taken per op is 0.086us (11.6 Mqps) with batch size of 10
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.087us (11.5 Mqps) with batch size of 25
Time taken per op is 0.085us (11.7 Mqps) with batch size of 25
Time taken per op is 0.093us (10.8 Mqps) with batch size of 25
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.094us (10.6 Mqps) with batch size of 50
Time taken per op is 0.094us (10.7 Mqps) with batch size of 50
Time taken per op is 0.093us (10.8 Mqps) with batch size of 50
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.092us (10.9 Mqps) with batch size of 100
Time taken per op is 0.089us (11.2 Mqps) with batch size of 100
Time taken per op is 0.088us (11.3 Mqps) with batch size of 100
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.154us (6.5 Mqps) with batch size of 0
Time taken per op is 0.168us (6.0 Mqps) with batch size of 0
Time taken per op is 0.190us (5.3 Mqps) with batch size of 0
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.081us (12.4 Mqps) with batch size of 10
Time taken per op is 0.077us (13.0 Mqps) with batch size of 10
Time taken per op is 0.083us (12.1 Mqps) with batch size of 10
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.077us (13.0 Mqps) with batch size of 25
Time taken per op is 0.073us (13.7 Mqps) with batch size of 25
Time taken per op is 0.073us (13.7 Mqps) with batch size of 25
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.076us (13.1 Mqps) with batch size of 50
Time taken per op is 0.072us (13.8 Mqps) with batch size of 50
Time taken per op is 0.072us (13.8 Mqps) with batch size of 50
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.077us (13.0 Mqps) with batch size of 100
Time taken per op is 0.074us (13.6 Mqps) with batch size of 100
Time taken per op is 0.073us (13.6 Mqps) with batch size of 100
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.190us (5.3 Mqps) with batch size of 0
Time taken per op is 0.186us (5.4 Mqps) with batch size of 0
Time taken per op is 0.184us (5.4 Mqps) with batch size of 0
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.079us (12.7 Mqps) with batch size of 10
Time taken per op is 0.070us (14.2 Mqps) with batch size of 10
Time taken per op is 0.072us (14.0 Mqps) with batch size of 10
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.080us (12.5 Mqps) with batch size of 25
Time taken per op is 0.072us (14.0 Mqps) with batch size of 25
Time taken per op is 0.071us (14.1 Mqps) with batch size of 25
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.082us (12.1 Mqps) with batch size of 50
Time taken per op is 0.071us (14.1 Mqps) with batch size of 50
Time taken per op is 0.073us (13.6 Mqps) with batch size of 50
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.080us (12.5 Mqps) with batch size of 100
Time taken per op is 0.077us (13.0 Mqps) with batch size of 100
Time taken per op is 0.078us (12.8 Mqps) with batch size of 100
Test Plan:
make check all
make valgrind_check
make asan_check
Reviewers: sdong, ljin
Reviewed By: ljin
Subscribers: leveldb
Differential Revision: https://reviews.facebook.net/D22539
10 years ago
|
|
|
s = MakeHashTable(&buckets);
|
|
|
|
if (!s.ok()) {
|
|
|
|
return s;
|
|
|
|
}
|
|
|
|
// Determine unused_user_key to fill empty buckets.
|
|
|
|
std::string unused_user_key = smallest_user_key_;
|
|
|
|
int curr_pos = unused_user_key.size() - 1;
|
|
|
|
while (curr_pos >= 0) {
|
|
|
|
--unused_user_key[curr_pos];
|
|
|
|
if (Slice(unused_user_key).compare(smallest_user_key_) < 0) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
--curr_pos;
|
|
|
|
}
|
|
|
|
if (curr_pos < 0) {
|
|
|
|
// Try using the largest key to identify an unused key.
|
|
|
|
unused_user_key = largest_user_key_;
|
|
|
|
curr_pos = unused_user_key.size() - 1;
|
|
|
|
while (curr_pos >= 0) {
|
|
|
|
++unused_user_key[curr_pos];
|
|
|
|
if (Slice(unused_user_key).compare(largest_user_key_) > 0) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
--curr_pos;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (curr_pos < 0) {
|
|
|
|
return Status::Corruption("Unable to find unused key");
|
|
|
|
}
|
|
|
|
if (is_last_level_file_) {
|
|
|
|
unused_bucket = unused_user_key;
|
|
|
|
} else {
|
|
|
|
ParsedInternalKey ikey(unused_user_key, 0, kTypeValue);
|
|
|
|
AppendInternalKey(&unused_bucket, ikey);
|
|
|
|
}
|
|
|
|
}
|
Improve Cuckoo Table Reader performance. Inlined hash function and number of buckets a power of two.
Summary:
Use inlined hash functions instead of function pointer. Make number of buckets a power of two and use bitwise and instead of mod.
After these changes, we get almost 50% improvement in performance.
Results:
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.231us (4.3 Mqps) with batch size of 0
Time taken per op is 0.229us (4.4 Mqps) with batch size of 0
Time taken per op is 0.185us (5.4 Mqps) with batch size of 0
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.108us (9.3 Mqps) with batch size of 10
Time taken per op is 0.100us (10.0 Mqps) with batch size of 10
Time taken per op is 0.103us (9.7 Mqps) with batch size of 10
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.101us (9.9 Mqps) with batch size of 25
Time taken per op is 0.098us (10.2 Mqps) with batch size of 25
Time taken per op is 0.097us (10.3 Mqps) with batch size of 25
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.100us (10.0 Mqps) with batch size of 50
Time taken per op is 0.097us (10.3 Mqps) with batch size of 50
Time taken per op is 0.097us (10.3 Mqps) with batch size of 50
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.102us (9.8 Mqps) with batch size of 100
Time taken per op is 0.098us (10.2 Mqps) with batch size of 100
Time taken per op is 0.115us (8.7 Mqps) with batch size of 100
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.201us (5.0 Mqps) with batch size of 0
Time taken per op is 0.155us (6.5 Mqps) with batch size of 0
Time taken per op is 0.152us (6.6 Mqps) with batch size of 0
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.089us (11.3 Mqps) with batch size of 10
Time taken per op is 0.084us (11.9 Mqps) with batch size of 10
Time taken per op is 0.086us (11.6 Mqps) with batch size of 10
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.087us (11.5 Mqps) with batch size of 25
Time taken per op is 0.085us (11.7 Mqps) with batch size of 25
Time taken per op is 0.093us (10.8 Mqps) with batch size of 25
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.094us (10.6 Mqps) with batch size of 50
Time taken per op is 0.094us (10.7 Mqps) with batch size of 50
Time taken per op is 0.093us (10.8 Mqps) with batch size of 50
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.092us (10.9 Mqps) with batch size of 100
Time taken per op is 0.089us (11.2 Mqps) with batch size of 100
Time taken per op is 0.088us (11.3 Mqps) with batch size of 100
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.154us (6.5 Mqps) with batch size of 0
Time taken per op is 0.168us (6.0 Mqps) with batch size of 0
Time taken per op is 0.190us (5.3 Mqps) with batch size of 0
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.081us (12.4 Mqps) with batch size of 10
Time taken per op is 0.077us (13.0 Mqps) with batch size of 10
Time taken per op is 0.083us (12.1 Mqps) with batch size of 10
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.077us (13.0 Mqps) with batch size of 25
Time taken per op is 0.073us (13.7 Mqps) with batch size of 25
Time taken per op is 0.073us (13.7 Mqps) with batch size of 25
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.076us (13.1 Mqps) with batch size of 50
Time taken per op is 0.072us (13.8 Mqps) with batch size of 50
Time taken per op is 0.072us (13.8 Mqps) with batch size of 50
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.077us (13.0 Mqps) with batch size of 100
Time taken per op is 0.074us (13.6 Mqps) with batch size of 100
Time taken per op is 0.073us (13.6 Mqps) with batch size of 100
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.190us (5.3 Mqps) with batch size of 0
Time taken per op is 0.186us (5.4 Mqps) with batch size of 0
Time taken per op is 0.184us (5.4 Mqps) with batch size of 0
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.079us (12.7 Mqps) with batch size of 10
Time taken per op is 0.070us (14.2 Mqps) with batch size of 10
Time taken per op is 0.072us (14.0 Mqps) with batch size of 10
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.080us (12.5 Mqps) with batch size of 25
Time taken per op is 0.072us (14.0 Mqps) with batch size of 25
Time taken per op is 0.071us (14.1 Mqps) with batch size of 25
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.082us (12.1 Mqps) with batch size of 50
Time taken per op is 0.071us (14.1 Mqps) with batch size of 50
Time taken per op is 0.073us (13.6 Mqps) with batch size of 50
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.080us (12.5 Mqps) with batch size of 100
Time taken per op is 0.077us (13.0 Mqps) with batch size of 100
Time taken per op is 0.078us (12.8 Mqps) with batch size of 100
Test Plan:
make check all
make valgrind_check
make asan_check
Reviewers: sdong, ljin
Reviewed By: ljin
Subscribers: leveldb
Differential Revision: https://reviews.facebook.net/D22539
10 years ago
|
|
|
properties_.num_entries = kvs_.size();
|
|
|
|
properties_.fixed_key_len = unused_bucket.size();
|
|
|
|
uint32_t value_length = kvs_.empty() ? 0 : kvs_[0].second.size();
|
|
|
|
uint32_t bucket_size = value_length + properties_.fixed_key_len;
|
|
|
|
properties_.user_collected_properties[
|
|
|
|
CuckooTablePropertyNames::kValueLength].assign(
|
|
|
|
reinterpret_cast<const char*>(&value_length), sizeof(value_length));
|
|
|
|
|
|
|
|
unused_bucket.resize(bucket_size, 'a');
|
|
|
|
// Write the table.
|
|
|
|
uint32_t num_added = 0;
|
|
|
|
for (auto& bucket : buckets) {
|
|
|
|
if (bucket.vector_idx == kMaxVectorIdx) {
|
|
|
|
s = file_->Append(Slice(unused_bucket));
|
|
|
|
} else {
|
|
|
|
++num_added;
|
|
|
|
s = file_->Append(kvs_[bucket.vector_idx].first);
|
|
|
|
if (s.ok()) {
|
|
|
|
s = file_->Append(kvs_[bucket.vector_idx].second);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (!s.ok()) {
|
|
|
|
return s;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
assert(num_added == NumEntries());
|
|
|
|
properties_.raw_key_size = num_added * properties_.fixed_key_len;
|
|
|
|
properties_.raw_value_size = num_added * value_length;
|
|
|
|
|
|
|
|
uint64_t offset = buckets.size() * bucket_size;
|
|
|
|
properties_.data_size = offset;
|
|
|
|
unused_bucket.resize(properties_.fixed_key_len);
|
|
|
|
properties_.user_collected_properties[
|
|
|
|
CuckooTablePropertyNames::kEmptyKey] = unused_bucket;
|
|
|
|
properties_.user_collected_properties[
|
|
|
|
CuckooTablePropertyNames::kNumHashFunc].assign(
|
|
|
|
reinterpret_cast<char*>(&num_hash_func_), sizeof(num_hash_func_));
|
|
|
|
|
|
|
|
uint64_t hash_table_size = buckets.size() - cuckoo_block_size_ + 1;
|
|
|
|
properties_.user_collected_properties[
|
|
|
|
CuckooTablePropertyNames::kHashTableSize].assign(
|
|
|
|
reinterpret_cast<const char*>(&hash_table_size),
|
|
|
|
sizeof(hash_table_size));
|
|
|
|
properties_.user_collected_properties[
|
|
|
|
CuckooTablePropertyNames::kIsLastLevel].assign(
|
|
|
|
reinterpret_cast<const char*>(&is_last_level_file_),
|
|
|
|
sizeof(is_last_level_file_));
|
|
|
|
properties_.user_collected_properties[
|
|
|
|
CuckooTablePropertyNames::kCuckooBlockSize].assign(
|
|
|
|
reinterpret_cast<const char*>(&cuckoo_block_size_),
|
|
|
|
sizeof(cuckoo_block_size_));
|
|
|
|
|
|
|
|
// Write meta blocks.
|
|
|
|
MetaIndexBuilder meta_index_builder;
|
|
|
|
PropertyBlockBuilder property_block_builder;
|
|
|
|
|
|
|
|
property_block_builder.AddTableProperty(properties_);
|
|
|
|
property_block_builder.Add(properties_.user_collected_properties);
|
|
|
|
Slice property_block = property_block_builder.Finish();
|
|
|
|
BlockHandle property_block_handle;
|
|
|
|
property_block_handle.set_offset(offset);
|
|
|
|
property_block_handle.set_size(property_block.size());
|
|
|
|
s = file_->Append(property_block);
|
|
|
|
offset += property_block.size();
|
|
|
|
if (!s.ok()) {
|
|
|
|
return s;
|
|
|
|
}
|
|
|
|
|
|
|
|
meta_index_builder.Add(kPropertiesBlock, property_block_handle);
|
|
|
|
Slice meta_index_block = meta_index_builder.Finish();
|
|
|
|
|
|
|
|
BlockHandle meta_index_block_handle;
|
|
|
|
meta_index_block_handle.set_offset(offset);
|
|
|
|
meta_index_block_handle.set_size(meta_index_block.size());
|
|
|
|
s = file_->Append(meta_index_block);
|
|
|
|
if (!s.ok()) {
|
|
|
|
return s;
|
|
|
|
}
|
|
|
|
|
|
|
|
Footer footer(kCuckooTableMagicNumber);
|
|
|
|
footer.set_metaindex_handle(meta_index_block_handle);
|
|
|
|
footer.set_index_handle(BlockHandle::NullBlockHandle());
|
|
|
|
std::string footer_encoding;
|
|
|
|
footer.EncodeTo(&footer_encoding);
|
|
|
|
s = file_->Append(footer_encoding);
|
|
|
|
return s;
|
|
|
|
}
|
|
|
|
|
|
|
|
void CuckooTableBuilder::Abandon() {
|
|
|
|
assert(!closed_);
|
|
|
|
closed_ = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
uint64_t CuckooTableBuilder::NumEntries() const {
|
Improve Cuckoo Table Reader performance. Inlined hash function and number of buckets a power of two.
Summary:
Use inlined hash functions instead of function pointer. Make number of buckets a power of two and use bitwise and instead of mod.
After these changes, we get almost 50% improvement in performance.
Results:
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.231us (4.3 Mqps) with batch size of 0
Time taken per op is 0.229us (4.4 Mqps) with batch size of 0
Time taken per op is 0.185us (5.4 Mqps) with batch size of 0
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.108us (9.3 Mqps) with batch size of 10
Time taken per op is 0.100us (10.0 Mqps) with batch size of 10
Time taken per op is 0.103us (9.7 Mqps) with batch size of 10
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.101us (9.9 Mqps) with batch size of 25
Time taken per op is 0.098us (10.2 Mqps) with batch size of 25
Time taken per op is 0.097us (10.3 Mqps) with batch size of 25
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.100us (10.0 Mqps) with batch size of 50
Time taken per op is 0.097us (10.3 Mqps) with batch size of 50
Time taken per op is 0.097us (10.3 Mqps) with batch size of 50
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.102us (9.8 Mqps) with batch size of 100
Time taken per op is 0.098us (10.2 Mqps) with batch size of 100
Time taken per op is 0.115us (8.7 Mqps) with batch size of 100
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.201us (5.0 Mqps) with batch size of 0
Time taken per op is 0.155us (6.5 Mqps) with batch size of 0
Time taken per op is 0.152us (6.6 Mqps) with batch size of 0
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.089us (11.3 Mqps) with batch size of 10
Time taken per op is 0.084us (11.9 Mqps) with batch size of 10
Time taken per op is 0.086us (11.6 Mqps) with batch size of 10
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.087us (11.5 Mqps) with batch size of 25
Time taken per op is 0.085us (11.7 Mqps) with batch size of 25
Time taken per op is 0.093us (10.8 Mqps) with batch size of 25
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.094us (10.6 Mqps) with batch size of 50
Time taken per op is 0.094us (10.7 Mqps) with batch size of 50
Time taken per op is 0.093us (10.8 Mqps) with batch size of 50
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.092us (10.9 Mqps) with batch size of 100
Time taken per op is 0.089us (11.2 Mqps) with batch size of 100
Time taken per op is 0.088us (11.3 Mqps) with batch size of 100
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.154us (6.5 Mqps) with batch size of 0
Time taken per op is 0.168us (6.0 Mqps) with batch size of 0
Time taken per op is 0.190us (5.3 Mqps) with batch size of 0
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.081us (12.4 Mqps) with batch size of 10
Time taken per op is 0.077us (13.0 Mqps) with batch size of 10
Time taken per op is 0.083us (12.1 Mqps) with batch size of 10
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.077us (13.0 Mqps) with batch size of 25
Time taken per op is 0.073us (13.7 Mqps) with batch size of 25
Time taken per op is 0.073us (13.7 Mqps) with batch size of 25
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.076us (13.1 Mqps) with batch size of 50
Time taken per op is 0.072us (13.8 Mqps) with batch size of 50
Time taken per op is 0.072us (13.8 Mqps) with batch size of 50
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.077us (13.0 Mqps) with batch size of 100
Time taken per op is 0.074us (13.6 Mqps) with batch size of 100
Time taken per op is 0.073us (13.6 Mqps) with batch size of 100
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.190us (5.3 Mqps) with batch size of 0
Time taken per op is 0.186us (5.4 Mqps) with batch size of 0
Time taken per op is 0.184us (5.4 Mqps) with batch size of 0
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.079us (12.7 Mqps) with batch size of 10
Time taken per op is 0.070us (14.2 Mqps) with batch size of 10
Time taken per op is 0.072us (14.0 Mqps) with batch size of 10
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.080us (12.5 Mqps) with batch size of 25
Time taken per op is 0.072us (14.0 Mqps) with batch size of 25
Time taken per op is 0.071us (14.1 Mqps) with batch size of 25
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.082us (12.1 Mqps) with batch size of 50
Time taken per op is 0.071us (14.1 Mqps) with batch size of 50
Time taken per op is 0.073us (13.6 Mqps) with batch size of 50
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.080us (12.5 Mqps) with batch size of 100
Time taken per op is 0.077us (13.0 Mqps) with batch size of 100
Time taken per op is 0.078us (12.8 Mqps) with batch size of 100
Test Plan:
make check all
make valgrind_check
make asan_check
Reviewers: sdong, ljin
Reviewed By: ljin
Subscribers: leveldb
Differential Revision: https://reviews.facebook.net/D22539
10 years ago
|
|
|
return kvs_.size();
|
|
|
|
}
|
|
|
|
|
|
|
|
uint64_t CuckooTableBuilder::FileSize() const {
|
|
|
|
if (closed_) {
|
|
|
|
return file_->GetFileSize();
|
|
|
|
} else if (kvs_.size() == 0) {
|
|
|
|
return 0;
|
|
|
|
}
|
Improve Cuckoo Table Reader performance. Inlined hash function and number of buckets a power of two.
Summary:
Use inlined hash functions instead of function pointer. Make number of buckets a power of two and use bitwise and instead of mod.
After these changes, we get almost 50% improvement in performance.
Results:
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.231us (4.3 Mqps) with batch size of 0
Time taken per op is 0.229us (4.4 Mqps) with batch size of 0
Time taken per op is 0.185us (5.4 Mqps) with batch size of 0
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.108us (9.3 Mqps) with batch size of 10
Time taken per op is 0.100us (10.0 Mqps) with batch size of 10
Time taken per op is 0.103us (9.7 Mqps) with batch size of 10
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.101us (9.9 Mqps) with batch size of 25
Time taken per op is 0.098us (10.2 Mqps) with batch size of 25
Time taken per op is 0.097us (10.3 Mqps) with batch size of 25
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.100us (10.0 Mqps) with batch size of 50
Time taken per op is 0.097us (10.3 Mqps) with batch size of 50
Time taken per op is 0.097us (10.3 Mqps) with batch size of 50
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.102us (9.8 Mqps) with batch size of 100
Time taken per op is 0.098us (10.2 Mqps) with batch size of 100
Time taken per op is 0.115us (8.7 Mqps) with batch size of 100
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.201us (5.0 Mqps) with batch size of 0
Time taken per op is 0.155us (6.5 Mqps) with batch size of 0
Time taken per op is 0.152us (6.6 Mqps) with batch size of 0
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.089us (11.3 Mqps) with batch size of 10
Time taken per op is 0.084us (11.9 Mqps) with batch size of 10
Time taken per op is 0.086us (11.6 Mqps) with batch size of 10
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.087us (11.5 Mqps) with batch size of 25
Time taken per op is 0.085us (11.7 Mqps) with batch size of 25
Time taken per op is 0.093us (10.8 Mqps) with batch size of 25
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.094us (10.6 Mqps) with batch size of 50
Time taken per op is 0.094us (10.7 Mqps) with batch size of 50
Time taken per op is 0.093us (10.8 Mqps) with batch size of 50
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.092us (10.9 Mqps) with batch size of 100
Time taken per op is 0.089us (11.2 Mqps) with batch size of 100
Time taken per op is 0.088us (11.3 Mqps) with batch size of 100
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.154us (6.5 Mqps) with batch size of 0
Time taken per op is 0.168us (6.0 Mqps) with batch size of 0
Time taken per op is 0.190us (5.3 Mqps) with batch size of 0
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.081us (12.4 Mqps) with batch size of 10
Time taken per op is 0.077us (13.0 Mqps) with batch size of 10
Time taken per op is 0.083us (12.1 Mqps) with batch size of 10
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.077us (13.0 Mqps) with batch size of 25
Time taken per op is 0.073us (13.7 Mqps) with batch size of 25
Time taken per op is 0.073us (13.7 Mqps) with batch size of 25
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.076us (13.1 Mqps) with batch size of 50
Time taken per op is 0.072us (13.8 Mqps) with batch size of 50
Time taken per op is 0.072us (13.8 Mqps) with batch size of 50
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.077us (13.0 Mqps) with batch size of 100
Time taken per op is 0.074us (13.6 Mqps) with batch size of 100
Time taken per op is 0.073us (13.6 Mqps) with batch size of 100
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.190us (5.3 Mqps) with batch size of 0
Time taken per op is 0.186us (5.4 Mqps) with batch size of 0
Time taken per op is 0.184us (5.4 Mqps) with batch size of 0
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.079us (12.7 Mqps) with batch size of 10
Time taken per op is 0.070us (14.2 Mqps) with batch size of 10
Time taken per op is 0.072us (14.0 Mqps) with batch size of 10
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.080us (12.5 Mqps) with batch size of 25
Time taken per op is 0.072us (14.0 Mqps) with batch size of 25
Time taken per op is 0.071us (14.1 Mqps) with batch size of 25
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.082us (12.1 Mqps) with batch size of 50
Time taken per op is 0.071us (14.1 Mqps) with batch size of 50
Time taken per op is 0.073us (13.6 Mqps) with batch size of 50
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.080us (12.5 Mqps) with batch size of 100
Time taken per op is 0.077us (13.0 Mqps) with batch size of 100
Time taken per op is 0.078us (12.8 Mqps) with batch size of 100
Test Plan:
make check all
make valgrind_check
make asan_check
Reviewers: sdong, ljin
Reviewed By: ljin
Subscribers: leveldb
Differential Revision: https://reviews.facebook.net/D22539
10 years ago
|
|
|
|
|
|
|
// Account for buckets being a power of two.
|
|
|
|
// As elements are added, file size remains constant for a while and doubles
|
|
|
|
// its size. Since compaction algorithm stops adding elements only after it
|
|
|
|
// exceeds the file limit, we account for the extra element being added here.
|
|
|
|
uint64_t expected_hash_table_size = hash_table_size_;
|
|
|
|
if (expected_hash_table_size < (kvs_.size() + 1) / max_hash_table_ratio_) {
|
|
|
|
expected_hash_table_size *= 2;
|
|
|
|
}
|
|
|
|
return (kvs_[0].first.size() + kvs_[0].second.size()) *
|
|
|
|
expected_hash_table_size;
|
|
|
|
}
|
|
|
|
|
|
|
|
// This method is invoked when there is no place to insert the target key.
|
|
|
|
// It searches for a set of elements that can be moved to accommodate target
|
|
|
|
// key. The search is a BFS graph traversal with first level (hash_vals)
|
|
|
|
// being all the buckets target key could go to.
|
|
|
|
// Then, from each node (curr_node), we find all the buckets that curr_node
|
|
|
|
// could go to. They form the children of curr_node in the tree.
|
|
|
|
// We continue the traversal until we find an empty bucket, in which case, we
|
|
|
|
// move all elements along the path from first level to this empty bucket, to
|
|
|
|
// make space for target key which is inserted at first level (*bucket_id).
|
|
|
|
// If tree depth exceedes max depth, we return false indicating failure.
|
|
|
|
bool CuckooTableBuilder::MakeSpaceForKey(
|
|
|
|
const autovector<uint64_t>& hash_vals,
|
|
|
|
const uint64_t make_space_for_key_call_id,
|
|
|
|
std::vector<CuckooBucket>* buckets,
|
|
|
|
uint64_t* bucket_id) {
|
|
|
|
struct CuckooNode {
|
|
|
|
uint64_t bucket_id;
|
|
|
|
uint32_t depth;
|
|
|
|
uint32_t parent_pos;
|
|
|
|
CuckooNode(uint64_t bucket_id, uint32_t depth, int parent_pos)
|
|
|
|
: bucket_id(bucket_id), depth(depth), parent_pos(parent_pos) {}
|
|
|
|
};
|
|
|
|
// This is BFS search tree that is stored simply as a vector.
|
|
|
|
// Each node stores the index of parent node in the vector.
|
|
|
|
std::vector<CuckooNode> tree;
|
|
|
|
// We want to identify already visited buckets in the current method call so
|
|
|
|
// that we don't add same buckets again for exploration in the tree.
|
|
|
|
// We do this by maintaining a count of current method call in
|
|
|
|
// make_space_for_key_call_id, which acts as a unique id for this invocation
|
|
|
|
// of the method. We store this number into the nodes that we explore in
|
|
|
|
// current method call.
|
|
|
|
// It is unlikely for the increment operation to overflow because the maximum
|
|
|
|
// no. of times this will be called is <= max_num_hash_func_ + kvs_.size().
|
|
|
|
for (uint32_t hash_cnt = 0; hash_cnt < num_hash_func_; ++hash_cnt) {
|
|
|
|
uint64_t bucket_id = hash_vals[hash_cnt];
|
|
|
|
(*buckets)[bucket_id].make_space_for_key_call_id =
|
|
|
|
make_space_for_key_call_id;
|
|
|
|
tree.push_back(CuckooNode(bucket_id, 0, 0));
|
|
|
|
}
|
Improve Cuckoo Table Reader performance. Inlined hash function and number of buckets a power of two.
Summary:
Use inlined hash functions instead of function pointer. Make number of buckets a power of two and use bitwise and instead of mod.
After these changes, we get almost 50% improvement in performance.
Results:
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.231us (4.3 Mqps) with batch size of 0
Time taken per op is 0.229us (4.4 Mqps) with batch size of 0
Time taken per op is 0.185us (5.4 Mqps) with batch size of 0
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.108us (9.3 Mqps) with batch size of 10
Time taken per op is 0.100us (10.0 Mqps) with batch size of 10
Time taken per op is 0.103us (9.7 Mqps) with batch size of 10
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.101us (9.9 Mqps) with batch size of 25
Time taken per op is 0.098us (10.2 Mqps) with batch size of 25
Time taken per op is 0.097us (10.3 Mqps) with batch size of 25
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.100us (10.0 Mqps) with batch size of 50
Time taken per op is 0.097us (10.3 Mqps) with batch size of 50
Time taken per op is 0.097us (10.3 Mqps) with batch size of 50
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.102us (9.8 Mqps) with batch size of 100
Time taken per op is 0.098us (10.2 Mqps) with batch size of 100
Time taken per op is 0.115us (8.7 Mqps) with batch size of 100
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.201us (5.0 Mqps) with batch size of 0
Time taken per op is 0.155us (6.5 Mqps) with batch size of 0
Time taken per op is 0.152us (6.6 Mqps) with batch size of 0
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.089us (11.3 Mqps) with batch size of 10
Time taken per op is 0.084us (11.9 Mqps) with batch size of 10
Time taken per op is 0.086us (11.6 Mqps) with batch size of 10
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.087us (11.5 Mqps) with batch size of 25
Time taken per op is 0.085us (11.7 Mqps) with batch size of 25
Time taken per op is 0.093us (10.8 Mqps) with batch size of 25
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.094us (10.6 Mqps) with batch size of 50
Time taken per op is 0.094us (10.7 Mqps) with batch size of 50
Time taken per op is 0.093us (10.8 Mqps) with batch size of 50
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.092us (10.9 Mqps) with batch size of 100
Time taken per op is 0.089us (11.2 Mqps) with batch size of 100
Time taken per op is 0.088us (11.3 Mqps) with batch size of 100
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.154us (6.5 Mqps) with batch size of 0
Time taken per op is 0.168us (6.0 Mqps) with batch size of 0
Time taken per op is 0.190us (5.3 Mqps) with batch size of 0
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.081us (12.4 Mqps) with batch size of 10
Time taken per op is 0.077us (13.0 Mqps) with batch size of 10
Time taken per op is 0.083us (12.1 Mqps) with batch size of 10
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.077us (13.0 Mqps) with batch size of 25
Time taken per op is 0.073us (13.7 Mqps) with batch size of 25
Time taken per op is 0.073us (13.7 Mqps) with batch size of 25
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.076us (13.1 Mqps) with batch size of 50
Time taken per op is 0.072us (13.8 Mqps) with batch size of 50
Time taken per op is 0.072us (13.8 Mqps) with batch size of 50
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.077us (13.0 Mqps) with batch size of 100
Time taken per op is 0.074us (13.6 Mqps) with batch size of 100
Time taken per op is 0.073us (13.6 Mqps) with batch size of 100
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.190us (5.3 Mqps) with batch size of 0
Time taken per op is 0.186us (5.4 Mqps) with batch size of 0
Time taken per op is 0.184us (5.4 Mqps) with batch size of 0
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.079us (12.7 Mqps) with batch size of 10
Time taken per op is 0.070us (14.2 Mqps) with batch size of 10
Time taken per op is 0.072us (14.0 Mqps) with batch size of 10
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.080us (12.5 Mqps) with batch size of 25
Time taken per op is 0.072us (14.0 Mqps) with batch size of 25
Time taken per op is 0.071us (14.1 Mqps) with batch size of 25
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.082us (12.1 Mqps) with batch size of 50
Time taken per op is 0.071us (14.1 Mqps) with batch size of 50
Time taken per op is 0.073us (13.6 Mqps) with batch size of 50
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.080us (12.5 Mqps) with batch size of 100
Time taken per op is 0.077us (13.0 Mqps) with batch size of 100
Time taken per op is 0.078us (12.8 Mqps) with batch size of 100
Test Plan:
make check all
make valgrind_check
make asan_check
Reviewers: sdong, ljin
Reviewed By: ljin
Subscribers: leveldb
Differential Revision: https://reviews.facebook.net/D22539
10 years ago
|
|
|
uint64_t hash_table_size_minus_one = hash_table_size_ - 1;
|
|
|
|
bool null_found = false;
|
|
|
|
uint32_t curr_pos = 0;
|
|
|
|
while (!null_found && curr_pos < tree.size()) {
|
|
|
|
CuckooNode& curr_node = tree[curr_pos];
|
|
|
|
uint32_t curr_depth = curr_node.depth;
|
|
|
|
if (curr_depth >= max_search_depth_) {
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
CuckooBucket& curr_bucket = (*buckets)[curr_node.bucket_id];
|
|
|
|
for (uint32_t hash_cnt = 0;
|
|
|
|
hash_cnt < num_hash_func_ && !null_found; ++hash_cnt) {
|
Improve Cuckoo Table Reader performance. Inlined hash function and number of buckets a power of two.
Summary:
Use inlined hash functions instead of function pointer. Make number of buckets a power of two and use bitwise and instead of mod.
After these changes, we get almost 50% improvement in performance.
Results:
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.231us (4.3 Mqps) with batch size of 0
Time taken per op is 0.229us (4.4 Mqps) with batch size of 0
Time taken per op is 0.185us (5.4 Mqps) with batch size of 0
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.108us (9.3 Mqps) with batch size of 10
Time taken per op is 0.100us (10.0 Mqps) with batch size of 10
Time taken per op is 0.103us (9.7 Mqps) with batch size of 10
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.101us (9.9 Mqps) with batch size of 25
Time taken per op is 0.098us (10.2 Mqps) with batch size of 25
Time taken per op is 0.097us (10.3 Mqps) with batch size of 25
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.100us (10.0 Mqps) with batch size of 50
Time taken per op is 0.097us (10.3 Mqps) with batch size of 50
Time taken per op is 0.097us (10.3 Mqps) with batch size of 50
With 120000000 items, utilization is 89.41%, number of hash functions: 2.
Time taken per op is 0.102us (9.8 Mqps) with batch size of 100
Time taken per op is 0.098us (10.2 Mqps) with batch size of 100
Time taken per op is 0.115us (8.7 Mqps) with batch size of 100
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.201us (5.0 Mqps) with batch size of 0
Time taken per op is 0.155us (6.5 Mqps) with batch size of 0
Time taken per op is 0.152us (6.6 Mqps) with batch size of 0
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.089us (11.3 Mqps) with batch size of 10
Time taken per op is 0.084us (11.9 Mqps) with batch size of 10
Time taken per op is 0.086us (11.6 Mqps) with batch size of 10
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.087us (11.5 Mqps) with batch size of 25
Time taken per op is 0.085us (11.7 Mqps) with batch size of 25
Time taken per op is 0.093us (10.8 Mqps) with batch size of 25
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.094us (10.6 Mqps) with batch size of 50
Time taken per op is 0.094us (10.7 Mqps) with batch size of 50
Time taken per op is 0.093us (10.8 Mqps) with batch size of 50
With 100000000 items, utilization is 74.51%, number of hash functions: 2.
Time taken per op is 0.092us (10.9 Mqps) with batch size of 100
Time taken per op is 0.089us (11.2 Mqps) with batch size of 100
Time taken per op is 0.088us (11.3 Mqps) with batch size of 100
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.154us (6.5 Mqps) with batch size of 0
Time taken per op is 0.168us (6.0 Mqps) with batch size of 0
Time taken per op is 0.190us (5.3 Mqps) with batch size of 0
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.081us (12.4 Mqps) with batch size of 10
Time taken per op is 0.077us (13.0 Mqps) with batch size of 10
Time taken per op is 0.083us (12.1 Mqps) with batch size of 10
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.077us (13.0 Mqps) with batch size of 25
Time taken per op is 0.073us (13.7 Mqps) with batch size of 25
Time taken per op is 0.073us (13.7 Mqps) with batch size of 25
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.076us (13.1 Mqps) with batch size of 50
Time taken per op is 0.072us (13.8 Mqps) with batch size of 50
Time taken per op is 0.072us (13.8 Mqps) with batch size of 50
With 80000000 items, utilization is 59.60%, number of hash functions: 2.
Time taken per op is 0.077us (13.0 Mqps) with batch size of 100
Time taken per op is 0.074us (13.6 Mqps) with batch size of 100
Time taken per op is 0.073us (13.6 Mqps) with batch size of 100
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.190us (5.3 Mqps) with batch size of 0
Time taken per op is 0.186us (5.4 Mqps) with batch size of 0
Time taken per op is 0.184us (5.4 Mqps) with batch size of 0
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.079us (12.7 Mqps) with batch size of 10
Time taken per op is 0.070us (14.2 Mqps) with batch size of 10
Time taken per op is 0.072us (14.0 Mqps) with batch size of 10
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.080us (12.5 Mqps) with batch size of 25
Time taken per op is 0.072us (14.0 Mqps) with batch size of 25
Time taken per op is 0.071us (14.1 Mqps) with batch size of 25
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.082us (12.1 Mqps) with batch size of 50
Time taken per op is 0.071us (14.1 Mqps) with batch size of 50
Time taken per op is 0.073us (13.6 Mqps) with batch size of 50
With 70000000 items, utilization is 52.15%, number of hash functions: 2.
Time taken per op is 0.080us (12.5 Mqps) with batch size of 100
Time taken per op is 0.077us (13.0 Mqps) with batch size of 100
Time taken per op is 0.078us (12.8 Mqps) with batch size of 100
Test Plan:
make check all
make valgrind_check
make asan_check
Reviewers: sdong, ljin
Reviewed By: ljin
Subscribers: leveldb
Differential Revision: https://reviews.facebook.net/D22539
10 years ago
|
|
|
uint64_t child_bucket_id = CuckooHash(
|
|
|
|
(is_last_level_file_ ? kvs_[curr_bucket.vector_idx].first :
|
|
|
|
ExtractUserKey(Slice(kvs_[curr_bucket.vector_idx].first))),
|
|
|
|
hash_cnt, hash_table_size_minus_one, get_slice_hash_);
|
|
|
|
// Iterate inside Cuckoo Block.
|
|
|
|
for (uint32_t block_idx = 0; block_idx < cuckoo_block_size_;
|
|
|
|
++block_idx, ++child_bucket_id) {
|
|
|
|
if ((*buckets)[child_bucket_id].make_space_for_key_call_id ==
|
|
|
|
make_space_for_key_call_id) {
|
|
|
|
continue;
|
|
|
|
}
|
|
|
|
(*buckets)[child_bucket_id].make_space_for_key_call_id =
|
|
|
|
make_space_for_key_call_id;
|
|
|
|
tree.push_back(CuckooNode(child_bucket_id, curr_depth + 1,
|
|
|
|
curr_pos));
|
|
|
|
if ((*buckets)[child_bucket_id].vector_idx == kMaxVectorIdx) {
|
|
|
|
null_found = true;
|
|
|
|
break;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
++curr_pos;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (null_found) {
|
|
|
|
// There is an empty node in tree.back(). Now, traverse the path from this
|
|
|
|
// empty node to top of the tree and at every node in the path, replace
|
|
|
|
// child with the parent. Stop when first level is reached in the tree
|
|
|
|
// (happens when 0 <= bucket_to_replace_pos < num_hash_func_) and return
|
|
|
|
// this location in first level for target key to be inserted.
|
|
|
|
uint32_t bucket_to_replace_pos = tree.size()-1;
|
|
|
|
while (bucket_to_replace_pos >= num_hash_func_) {
|
|
|
|
CuckooNode& curr_node = tree[bucket_to_replace_pos];
|
|
|
|
(*buckets)[curr_node.bucket_id] =
|
|
|
|
(*buckets)[tree[curr_node.parent_pos].bucket_id];
|
|
|
|
bucket_to_replace_pos = curr_node.parent_pos;
|
|
|
|
}
|
|
|
|
*bucket_id = tree[bucket_to_replace_pos].bucket_id;
|
|
|
|
}
|
|
|
|
return null_found;
|
|
|
|
}
|
|
|
|
|
|
|
|
} // namespace rocksdb
|
|
|
|
#endif // ROCKSDB_LITE
|