Summary:
This change establishes a distinctive name for the experimental new lock-free clock cache (originally developed by guidotag and revamped in PR https://github.com/facebook/rocksdb/issues/10626). A few reasons:
* We want to make it clear that this is a fundamentally different implementation vs. the old clock cache, to avoid people saying "I already tried clock cache."
* We want to highlight the key feature: it's fast (especially under parallel load)
* Because it requires an estimated charge per entry, it is not drop-in API compatible with old clock cache. This estimate might always be required for highest performance, and giving it a distinct name should reduce confusion about the distinct API requirements.
* We might develop a variant requiring the same estimate parameter but with LRU eviction. In that case, using the name HyperLRUCache should make things more clear. (FastLRUCache is just a prototype that might soon be removed.)
Some API detail:
* To reduce copy-pasting parameter lists, etc. as in LRUCache construction, I have a `MakeSharedCache()` function on `HyperClockCacheOptions` instead of `NewHyperClockCache()`.
* Changes -cache_type=clock_cache to -cache_type=hyper_clock_cache for applicable tools. I think this is more consistent / sustainable for reasons already stated.
For performance tests see https://github.com/facebook/rocksdb/pull/10626
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10684
Test Plan: no interesting functional changes; tests updated
Reviewed By: anand1976
Differential Revision: D39547800
Pulled By: pdillinger
fbshipit-source-id: 5c0fe1b5cf3cb680ab369b928c8569682b9795bf
main
Peter Dillinger2 years agocommitted byFacebook GitHub Bot
* RocksDB does internal auto prefetching if it notices 2 sequential reads if readahead_size is not specified. New option `num_file_reads_for_auto_readahead` is added in BlockBasedTableOptions which indicates after how many sequential reads internal auto prefetching should be start (default is 2).
* RocksDB does internal auto prefetching if it notices 2 sequential reads if readahead_size is not specified. New option `num_file_reads_for_auto_readahead` is added in BlockBasedTableOptions which indicates after how many sequential reads internal auto prefetching should be start (default is 2).
* Added new perf context counters `block_cache_standalone_handle_count`, `block_cache_real_handle_count`,`compressed_sec_cache_insert_real_count`, `compressed_sec_cache_insert_dummy_count`, `compressed_sec_cache_uncompressed_bytes`, and `compressed_sec_cache_compressed_bytes`.
* Added new perf context counters `block_cache_standalone_handle_count`, `block_cache_real_handle_count`,`compressed_sec_cache_insert_real_count`, `compressed_sec_cache_insert_dummy_count`, `compressed_sec_cache_uncompressed_bytes`, and `compressed_sec_cache_compressed_bytes`.
* Memory for blobs which are to be inserted into the blob cache is now allocated using the cache's allocator (see #10628 and #10647).
* Memory for blobs which are to be inserted into the blob cache is now allocated using the cache's allocator (see #10628 and #10647).
* HyperClockCache is an experimental, lock-free Cache alternative for block cache that offers much improved CPU efficiency under high parallel load or high contention, with some caveats. As much as 4.5x higher ops/sec vs. LRUCache has been seen in db_bench under high parallel load.
### Performance Improvements
### Performance Improvements
* Iterator performance is improved for `DeleteRange()` users. Internally, iterator will skip to the end of a range tombstone when possible, instead of looping through each key and check individually if a key is range deleted.
* Iterator performance is improved for `DeleteRange()` users. Internally, iterator will skip to the end of a range tombstone when possible, instead of looping through each key and check individually if a key is range deleted.