Separate the aligned and unaligned memory allocation

Summary: Use two vectors for different types of memory allocation.

Test Plan: run all unit tests.

Reviewers: haobo, sdong

Reviewed By: haobo

CC: leveldb

Differential Revision: https://reviews.facebook.net/D15027
main
kailiu 11 years ago
parent 50994bf699
commit 12b6d2b839
  1. 67
      include/rocksdb/options.h
  2. 81
      util/arena_impl.cc
  3. 67
      util/arena_impl.h
  4. 34
      util/arena_test.cc

@ -44,15 +44,15 @@ using std::shared_ptr;
enum CompressionType : char { enum CompressionType : char {
// NOTE: do not change the values of existing entries, as these are // NOTE: do not change the values of existing entries, as these are
// part of the persistent format on disk. // part of the persistent format on disk.
kNoCompression = 0x0, kNoCompression = 0x0,
kSnappyCompression = 0x1, kSnappyCompression = 0x1,
kZlibCompression = 0x2, kZlibCompression = 0x2,
kBZip2Compression = 0x3 kBZip2Compression = 0x3
}; };
enum CompactionStyle : char { enum CompactionStyle : char {
kCompactionStyleLevel = 0x0, // level based compaction style kCompactionStyleLevel = 0x0, // level based compaction style
kCompactionStyleUniversal = 0x1 // Universal compaction style kCompactionStyleUniversal = 0x1 // Universal compaction style
}; };
// Compression options for different compression algorithms like Zlib // Compression options for different compression algorithms like Zlib
@ -60,12 +60,9 @@ struct CompressionOptions {
int window_bits; int window_bits;
int level; int level;
int strategy; int strategy;
CompressionOptions():window_bits(-14), CompressionOptions() : window_bits(-14), level(-1), strategy(0) {}
level(-1), CompressionOptions(int wbits, int lev, int strategy)
strategy(0){} : window_bits(wbits), level(lev), strategy(strategy) {}
CompressionOptions(int wbits, int lev, int strategy):window_bits(wbits),
level(lev),
strategy(strategy){}
}; };
// Options to control the behavior of a database (passed to DB::Open) // Options to control the behavior of a database (passed to DB::Open)
@ -216,7 +213,6 @@ struct Options {
// Default: 16 // Default: 16
int block_restart_interval; int block_restart_interval;
// Compress blocks using the specified compression algorithm. This // Compress blocks using the specified compression algorithm. This
// parameter can be changed dynamically. // parameter can be changed dynamically.
// //
@ -247,7 +243,7 @@ struct Options {
// java/C api hard to construct. // java/C api hard to construct.
std::vector<CompressionType> compression_per_level; std::vector<CompressionType> compression_per_level;
//different options for compression algorithms // different options for compression algorithms
CompressionOptions compression_opts; CompressionOptions compression_opts;
// If non-nullptr, use the specified filter policy to reduce disk reads. // If non-nullptr, use the specified filter policy to reduce disk reads.
@ -326,7 +322,6 @@ struct Options {
// will be 20MB, total file size for level-2 will be 200MB, // will be 20MB, total file size for level-2 will be 200MB,
// and total file size for level-3 will be 2GB. // and total file size for level-3 will be 2GB.
// by default 'max_bytes_for_level_base' is 10MB. // by default 'max_bytes_for_level_base' is 10MB.
uint64_t max_bytes_for_level_base; uint64_t max_bytes_for_level_base;
// by default 'max_bytes_for_level_base' is 10. // by default 'max_bytes_for_level_base' is 10.
@ -484,10 +479,19 @@ struct Options {
// order. // order.
int table_cache_remove_scan_count_limit; int table_cache_remove_scan_count_limit;
// size of one block in arena memory allocation. // Size of one block in arena memory allocation.
// If <= 0, a proper value is automatically calculated (usually 1/10 of //
// If <= 0, a proper value is automatically calculated (usually about 1/10 of
// writer_buffer_size). // writer_buffer_size).
// //
// There are two additonal restriction of the The specified size:
// (1) size should be in the range of [4096, 2 << 30] and
// (2) be the multiple of the CPU word (which helps with the memory
// alignment).
//
// We'll automatically check and adjust the size number to make sure it
// conforms to the restrictions.
//
// Default: 0 // Default: 0
size_t arena_block_size; size_t arena_block_size;
@ -572,7 +576,12 @@ struct Options {
// Specify the file access pattern once a compaction is started. // Specify the file access pattern once a compaction is started.
// It will be applied to all input files of a compaction. // It will be applied to all input files of a compaction.
// Default: NORMAL // Default: NORMAL
enum { NONE, NORMAL, SEQUENTIAL, WILLNEED } access_hint_on_compaction_start; enum {
NONE,
NORMAL,
SEQUENTIAL,
WILLNEED
} access_hint_on_compaction_start;
// Use adaptive mutex, which spins in the user space before resorting // Use adaptive mutex, which spins in the user space before resorting
// to kernel. This could reduce context switch when the mutex is not // to kernel. This could reduce context switch when the mutex is not
@ -622,7 +631,7 @@ struct Options {
// Default: emtpy vector -- no user-defined statistics collection will be // Default: emtpy vector -- no user-defined statistics collection will be
// performed. // performed.
std::vector<std::shared_ptr<TablePropertiesCollector>> std::vector<std::shared_ptr<TablePropertiesCollector>>
table_properties_collectors; table_properties_collectors;
// Allows thread-safe inplace updates. Requires Updates iff // Allows thread-safe inplace updates. Requires Updates iff
// * key exists in current memtable // * key exists in current memtable
@ -644,7 +653,7 @@ struct Options {
// the block cache. It will not page in data from the OS cache or data that // the block cache. It will not page in data from the OS cache or data that
// resides in storage. // resides in storage.
enum ReadTier { enum ReadTier {
kReadAllTier = 0x0, // data in memtable, block cache, OS cache or storage kReadAllTier = 0x0, // data in memtable, block cache, OS cache or storage
kBlockCacheTier = 0x1 // data in memtable or block cache kBlockCacheTier = 0x1 // data in memtable or block cache
}; };
@ -697,13 +706,14 @@ struct ReadOptions {
prefix_seek(false), prefix_seek(false),
snapshot(nullptr), snapshot(nullptr),
prefix(nullptr), prefix(nullptr),
read_tier(kReadAllTier) { read_tier(kReadAllTier) {}
} ReadOptions(bool cksum, bool cache)
ReadOptions(bool cksum, bool cache) : : verify_checksums(cksum),
verify_checksums(cksum), fill_cache(cache), fill_cache(cache),
prefix_seek(false), snapshot(nullptr), prefix(nullptr), prefix_seek(false),
read_tier(kReadAllTier) { snapshot(nullptr),
} prefix(nullptr),
read_tier(kReadAllTier) {}
}; };
// Options that control write operations // Options that control write operations
@ -730,10 +740,7 @@ struct WriteOptions {
// and the write may got lost after a crash. // and the write may got lost after a crash.
bool disableWAL; bool disableWAL;
WriteOptions() WriteOptions() : sync(false), disableWAL(false) {}
: sync(false),
disableWAL(false) {
}
}; };
// Options that control flush operations // Options that control flush operations
@ -742,9 +749,7 @@ struct FlushOptions {
// Default: true // Default: true
bool wait; bool wait;
FlushOptions() FlushOptions() : wait(true) {}
: wait(true) {
}
}; };
} // namespace rocksdb } // namespace rocksdb

@ -8,71 +8,86 @@
// found in the LICENSE file. See the AUTHORS file for names of contributors. // found in the LICENSE file. See the AUTHORS file for names of contributors.
#include "util/arena_impl.h" #include "util/arena_impl.h"
#include <algorithm>
namespace rocksdb { namespace rocksdb {
ArenaImpl::ArenaImpl(size_t block_size) { const size_t ArenaImpl::kMinBlockSize = 4096;
if (block_size < kMinBlockSize) { const size_t ArenaImpl::kMaxBlockSize = 2 << 30;
block_size_ = kMinBlockSize; static const int kAlignUnit = sizeof(void*);
} else if (block_size > kMaxBlockSize) {
block_size_ = kMaxBlockSize; size_t OptimizeBlockSize(size_t block_size) {
} else { // Make sure block_size is in optimal range
block_size_ = block_size; block_size = std::max(ArenaImpl::kMinBlockSize, block_size);
block_size = std::min(ArenaImpl::kMaxBlockSize, block_size);
// make sure block_size is the multiple of kAlignUnit
if (block_size % kAlignUnit != 0) {
block_size = (1 + block_size / kAlignUnit) * kAlignUnit;
} }
blocks_memory_ = 0; return block_size;
alloc_ptr_ = nullptr; // First allocation will allocate a block }
alloc_bytes_remaining_ = 0;
ArenaImpl::ArenaImpl(size_t block_size)
: kBlockSize(OptimizeBlockSize(block_size)) {
assert(kBlockSize >= kMinBlockSize && kBlockSize <= kMaxBlockSize &&
kBlockSize % kAlignUnit == 0);
} }
ArenaImpl::~ArenaImpl() { ArenaImpl::~ArenaImpl() {
for (size_t i = 0; i < blocks_.size(); i++) { for (const auto& block : blocks_) {
delete[] blocks_[i]; delete[] block;
} }
} }
char* ArenaImpl::AllocateFallback(size_t bytes) { char* ArenaImpl::AllocateFallback(size_t bytes, bool aligned) {
if (bytes > block_size_ / 4) { if (bytes > kBlockSize / 4) {
// Object is more than a quarter of our block size. Allocate it separately // Object is more than a quarter of our block size. Allocate it separately
// to avoid wasting too much space in leftover bytes. // to avoid wasting too much space in leftover bytes.
char* result = AllocateNewBlock(bytes); return AllocateNewBlock(bytes);
return result;
} }
// We waste the remaining space in the current block. // We waste the remaining space in the current block.
alloc_ptr_ = AllocateNewBlock(block_size_); auto block_head = AllocateNewBlock(kBlockSize);
alloc_bytes_remaining_ = block_size_; alloc_bytes_remaining_ = kBlockSize - bytes;
char* result = alloc_ptr_; if (aligned) {
alloc_ptr_ += bytes; aligned_alloc_ptr_ = block_head + bytes;
alloc_bytes_remaining_ -= bytes; unaligned_alloc_ptr_ = block_head + kBlockSize;
return result; return block_head;
} else {
aligned_alloc_ptr_ = block_head;
unaligned_alloc_ptr_ = block_head + kBlockSize - bytes;
return unaligned_alloc_ptr_;
}
} }
char* ArenaImpl::AllocateAligned(size_t bytes) { char* ArenaImpl::AllocateAligned(size_t bytes) {
const int align = sizeof(void*); // We'll align to pointer size assert((kAlignUnit & (kAlignUnit - 1)) ==
assert((align & (align-1)) == 0); // Pointer size should be a power of 2 0); // Pointer size should be a power of 2
size_t current_mod = reinterpret_cast<uintptr_t>(alloc_ptr_) & (align-1); size_t current_mod =
size_t slop = (current_mod == 0 ? 0 : align - current_mod); reinterpret_cast<uintptr_t>(aligned_alloc_ptr_) & (kAlignUnit - 1);
size_t slop = (current_mod == 0 ? 0 : kAlignUnit - current_mod);
size_t needed = bytes + slop; size_t needed = bytes + slop;
char* result; char* result;
if (needed <= alloc_bytes_remaining_) { if (needed <= alloc_bytes_remaining_) {
result = alloc_ptr_ + slop; result = aligned_alloc_ptr_ + slop;
alloc_ptr_ += needed; aligned_alloc_ptr_ += needed;
alloc_bytes_remaining_ -= needed; alloc_bytes_remaining_ -= needed;
} else { } else {
// AllocateFallback always returned aligned memory // AllocateFallback always returned aligned memory
result = AllocateFallback(bytes); result = AllocateFallback(bytes, true /* aligned */);
} }
assert((reinterpret_cast<uintptr_t>(result) & (align-1)) == 0); assert((reinterpret_cast<uintptr_t>(result) & (kAlignUnit - 1)) == 0);
return result; return result;
} }
char* ArenaImpl::AllocateNewBlock(size_t block_bytes) { char* ArenaImpl::AllocateNewBlock(size_t block_bytes) {
char* result = new char[block_bytes]; char* block = new char[block_bytes];
blocks_memory_ += block_bytes; blocks_memory_ += block_bytes;
blocks_.push_back(result); blocks_.push_back(block);
return result; return block;
} }
} // namespace rocksdb } // namespace rocksdb

@ -22,49 +22,54 @@ namespace rocksdb {
class ArenaImpl : public Arena { class ArenaImpl : public Arena {
public: public:
// No copying allowed
ArenaImpl(const ArenaImpl&) = delete;
void operator=(const ArenaImpl&) = delete;
static const size_t kMinBlockSize;
static const size_t kMaxBlockSize;
explicit ArenaImpl(size_t block_size = kMinBlockSize); explicit ArenaImpl(size_t block_size = kMinBlockSize);
virtual ~ArenaImpl(); virtual ~ArenaImpl();
virtual char* Allocate(size_t bytes); virtual char* Allocate(size_t bytes) override;
virtual char* AllocateAligned(size_t bytes); virtual char* AllocateAligned(size_t bytes) override;
// Returns an estimate of the total memory usage of data allocated // Returns an estimate of the total memory usage of data allocated
// by the arena (including space allocated but not yet used for user // by the arena (exclude the space allocated but not yet used for future
// allocations). // allocations).
//
// TODO: Do we need to exclude space allocated but not used?
virtual const size_t ApproximateMemoryUsage() { virtual const size_t ApproximateMemoryUsage() {
return blocks_memory_ + blocks_.capacity() * sizeof(char*); return blocks_memory_ + blocks_.capacity() * sizeof(char*) -
alloc_bytes_remaining_;
} }
virtual const size_t MemoryAllocatedBytes() { virtual const size_t MemoryAllocatedBytes() override {
return blocks_memory_; return blocks_memory_;
} }
private: private:
char* AllocateFallback(size_t bytes);
char* AllocateNewBlock(size_t block_bytes);
static const size_t kMinBlockSize = 4096;
static const size_t kMaxBlockSize = 2 << 30;
// Number of bytes allocated in one block // Number of bytes allocated in one block
size_t block_size_; const size_t kBlockSize;
// Allocation state
char* alloc_ptr_;
size_t alloc_bytes_remaining_;
// Array of new[] allocated memory blocks // Array of new[] allocated memory blocks
std::vector<char*> blocks_; typedef std::vector<char*> Blocks;
Blocks blocks_;
// Stats for current active block.
// For each block, we allocate aligned memory chucks from one end and
// allocate unaligned memory chucks from the other end. Otherwise the
// memory waste for alignment will be higher if we allocate both types of
// memory from one direction.
char* unaligned_alloc_ptr_ = nullptr;
char* aligned_alloc_ptr_ = nullptr;
// How many bytes left in currently active block?
size_t alloc_bytes_remaining_ = 0;
char* AllocateFallback(size_t bytes, bool aligned);
char* AllocateNewBlock(size_t block_bytes);
// Bytes of memory in blocks allocated so far // Bytes of memory in blocks allocated so far
size_t blocks_memory_; size_t blocks_memory_ = 0;
// No copying allowed
ArenaImpl(const ArenaImpl&);
void operator=(const ArenaImpl&);
}; };
inline char* ArenaImpl::Allocate(size_t bytes) { inline char* ArenaImpl::Allocate(size_t bytes) {
@ -73,12 +78,16 @@ inline char* ArenaImpl::Allocate(size_t bytes) {
// them for our internal use). // them for our internal use).
assert(bytes > 0); assert(bytes > 0);
if (bytes <= alloc_bytes_remaining_) { if (bytes <= alloc_bytes_remaining_) {
char* result = alloc_ptr_; unaligned_alloc_ptr_ -= bytes;
alloc_ptr_ += bytes;
alloc_bytes_remaining_ -= bytes; alloc_bytes_remaining_ -= bytes;
return result; return unaligned_alloc_ptr_;
} }
return AllocateFallback(bytes); return AllocateFallback(bytes, false /* unaligned */);
} }
// check and adjust the block_size so that the return value is
// 1. in the range of [kMinBlockSize, kMaxBlockSize].
// 2. the multiple of align unit.
extern size_t OptimizeBlockSize(size_t block_size);
} // namespace rocksdb } // namespace rocksdb

@ -57,8 +57,33 @@ TEST(ArenaImplTest, MemoryAllocatedBytes) {
ASSERT_EQ(arena_impl.MemoryAllocatedBytes(), expected_memory_allocated); ASSERT_EQ(arena_impl.MemoryAllocatedBytes(), expected_memory_allocated);
} }
// Make sure we didn't count the allocate but not used memory space in
// Arena::ApproximateMemoryUsage()
TEST(ArenaImplTest, ApproximateMemoryUsageTest) {
const size_t kBlockSize = 4096;
const size_t kEntrySize = kBlockSize / 8;
ArenaImpl arena(kBlockSize);
ASSERT_EQ(0, arena.ApproximateMemoryUsage());
auto num_blocks = kBlockSize / kEntrySize;
// first allocation
arena.AllocateAligned(kEntrySize);
auto mem_usage = arena.MemoryAllocatedBytes();
ASSERT_EQ(mem_usage, kBlockSize);
auto usage = arena.ApproximateMemoryUsage();
ASSERT_LT(usage, mem_usage);
for (size_t i = 1; i < num_blocks; ++i) {
arena.AllocateAligned(kEntrySize);
ASSERT_EQ(mem_usage, arena.MemoryAllocatedBytes());
ASSERT_EQ(arena.ApproximateMemoryUsage(), usage + kEntrySize);
usage = arena.ApproximateMemoryUsage();
}
ASSERT_GT(usage, mem_usage);
}
TEST(ArenaImplTest, Simple) { TEST(ArenaImplTest, Simple) {
std::vector<std::pair<size_t, char*> > allocated; std::vector<std::pair<size_t, char*>> allocated;
ArenaImpl arena_impl; ArenaImpl arena_impl;
const int N = 100000; const int N = 100000;
size_t bytes = 0; size_t bytes = 0;
@ -68,8 +93,9 @@ TEST(ArenaImplTest, Simple) {
if (i % (N / 10) == 0) { if (i % (N / 10) == 0) {
s = i; s = i;
} else { } else {
s = rnd.OneIn(4000) ? rnd.Uniform(6000) : s = rnd.OneIn(4000)
(rnd.OneIn(10) ? rnd.Uniform(100) : rnd.Uniform(20)); ? rnd.Uniform(6000)
: (rnd.OneIn(10) ? rnd.Uniform(100) : rnd.Uniform(20));
} }
if (s == 0) { if (s == 0) {
// Our arena disallows size 0 allocations. // Our arena disallows size 0 allocations.
@ -89,7 +115,7 @@ TEST(ArenaImplTest, Simple) {
bytes += s; bytes += s;
allocated.push_back(std::make_pair(s, r)); allocated.push_back(std::make_pair(s, r));
ASSERT_GE(arena_impl.ApproximateMemoryUsage(), bytes); ASSERT_GE(arena_impl.ApproximateMemoryUsage(), bytes);
if (i > N/10) { if (i > N / 10) {
ASSERT_LE(arena_impl.ApproximateMemoryUsage(), bytes * 1.10); ASSERT_LE(arena_impl.ApproximateMemoryUsage(), bytes * 1.10);
} }
} }

Loading…
Cancel
Save