Summary: Pull Request resolved: https://github.com/facebook/rocksdb/pull/5563 Test Plan: Manually run the script on files generated by block_cache_trace_analyzer. Differential Revision: D16214400 Pulled By: HaoyuHuang fbshipit-source-id: 94485eed995e9b2b63e197c5dfeb80129fa7897fmain
parent
61876614dc
commit
68d43b4d30
@ -0,0 +1,403 @@ |
||||
#!/usr/bin/env python3 |
||||
import csv |
||||
import os |
||||
import random |
||||
import sys |
||||
|
||||
import matplotlib.backends.backend_pdf |
||||
import matplotlib.pyplot as plt |
||||
import numpy as np |
||||
|
||||
|
||||
# Make sure a legend has the same color across all generated graphs. |
||||
def get_cmap(n, name="hsv"): |
||||
"""Returns a function that maps each index in 0, 1, ..., n-1 to a distinct |
||||
RGB color; the keyword argument name must be a standard mpl colormap name.""" |
||||
return plt.cm.get_cmap(name, n) |
||||
|
||||
|
||||
color_index = 0 |
||||
bar_color_maps = {} |
||||
colors = [] |
||||
n_colors = 60 |
||||
linear_colors = get_cmap(n_colors) |
||||
for i in range(n_colors): |
||||
colors.append(linear_colors(i)) |
||||
# Shuffle the colors so that adjacent bars in a graph are obvious to differentiate. |
||||
random.shuffle(colors) |
||||
|
||||
|
||||
def num_to_gb(n): |
||||
one_gb = 1024 * 1024 * 1024 |
||||
if float(n) % one_gb == 0: |
||||
return "{}".format(n / one_gb) |
||||
# Keep two decimal points. |
||||
return "{0:.2f}".format(float(n) / one_gb) |
||||
|
||||
|
||||
def plot_miss_ratio_graphs(csv_result_dir, output_result_dir): |
||||
mrc_file_path = csv_result_dir + "/mrc" |
||||
if not os.path.exists(mrc_file_path): |
||||
return |
||||
miss_ratios = {} |
||||
print("Processing file {}".format(mrc_file_path)) |
||||
with open(mrc_file_path, "r") as csvfile: |
||||
rows = csv.reader(csvfile, delimiter=",") |
||||
is_header = False |
||||
for row in rows: |
||||
if not is_header: |
||||
is_header = True |
||||
continue |
||||
cache_name = row[0] |
||||
num_shard_bits = int(row[1]) |
||||
ghost_capacity = int(row[2]) |
||||
capacity = int(row[3]) |
||||
miss_ratio = float(row[4]) |
||||
config = "{}-{}-{}".format(cache_name, num_shard_bits, ghost_capacity) |
||||
if config not in miss_ratios: |
||||
miss_ratios[config] = {} |
||||
miss_ratios[config]["x"] = [] |
||||
miss_ratios[config]["y"] = [] |
||||
miss_ratios[config]["x"].append(num_to_gb(capacity)) |
||||
miss_ratios[config]["y"].append(miss_ratio) |
||||
fig = plt.figure() |
||||
for config in miss_ratios: |
||||
plt.plot(miss_ratios[config]["x"], miss_ratios[config]["y"], label=config) |
||||
plt.xlabel("Cache capacity (GB)") |
||||
plt.ylabel("Miss Ratio (%)") |
||||
# plt.xscale('log', basex=2) |
||||
plt.ylim(ymin=0) |
||||
plt.title("RocksDB block cache miss ratios") |
||||
plt.legend() |
||||
fig.savefig(output_result_dir + "/mrc.pdf", bbox_inches="tight") |
||||
|
||||
|
||||
def sanitize(label): |
||||
# matplotlib cannot plot legends that is prefixed with "_" |
||||
# so we need to remove them here. |
||||
index = 0 |
||||
for i in range(len(label)): |
||||
if label[i] == "_": |
||||
index += 1 |
||||
else: |
||||
break |
||||
data = label[index:] |
||||
# The value of uint64_max in c++. |
||||
if "18446744073709551615" in data: |
||||
return "max" |
||||
return data |
||||
|
||||
|
||||
# Read the csv file vertically, i.e., group the data by columns. |
||||
def read_data_for_plot_vertical(csvfile): |
||||
x = [] |
||||
labels = [] |
||||
label_stats = {} |
||||
csv_rows = csv.reader(csvfile, delimiter=",") |
||||
data_rows = [] |
||||
for row in csv_rows: |
||||
data_rows.append(row) |
||||
# header |
||||
for i in range(1, len(data_rows[0])): |
||||
labels.append(sanitize(data_rows[0][i])) |
||||
label_stats[i - 1] = [] |
||||
for i in range(1, len(data_rows)): |
||||
for j in range(len(data_rows[i])): |
||||
if j == 0: |
||||
x.append(sanitize(data_rows[i][j])) |
||||
continue |
||||
label_stats[j - 1].append(float(data_rows[i][j])) |
||||
return x, labels, label_stats |
||||
|
||||
|
||||
# Read the csv file horizontally, i.e., group the data by rows. |
||||
def read_data_for_plot_horizontal(csvfile): |
||||
x = [] |
||||
labels = [] |
||||
label_stats = {} |
||||
csv_rows = csv.reader(csvfile, delimiter=",") |
||||
data_rows = [] |
||||
for row in csv_rows: |
||||
data_rows.append(row) |
||||
# header |
||||
for i in range(1, len(data_rows)): |
||||
labels.append(sanitize(data_rows[i][0])) |
||||
label_stats[i - 1] = [] |
||||
for i in range(1, len(data_rows[0])): |
||||
x.append(sanitize(data_rows[0][i])) |
||||
for i in range(1, len(data_rows)): |
||||
for j in range(len(data_rows[i])): |
||||
if j == 0: |
||||
# label |
||||
continue |
||||
label_stats[i - 1].append(float(data_rows[i][j])) |
||||
return x, labels, label_stats |
||||
|
||||
|
||||
def read_data_for_plot(csvfile, vertical): |
||||
if vertical: |
||||
return read_data_for_plot_vertical(csvfile) |
||||
return read_data_for_plot_horizontal(csvfile) |
||||
|
||||
|
||||
def plot_line_charts( |
||||
csv_result_dir, |
||||
output_result_dir, |
||||
filename_suffix, |
||||
pdf_name, |
||||
xlabel, |
||||
ylabel, |
||||
title, |
||||
vertical, |
||||
legend, |
||||
): |
||||
pdf = matplotlib.backends.backend_pdf.PdfPages(output_result_dir + "/" + pdf_name) |
||||
for file in os.listdir(csv_result_dir): |
||||
if not file.endswith(filename_suffix): |
||||
continue |
||||
print("Processing file {}".format(file)) |
||||
with open(csv_result_dir + "/" + file, "r") as csvfile: |
||||
x, labels, label_stats = read_data_for_plot(csvfile, vertical) |
||||
if len(x) == 0 or len(labels) == 0: |
||||
continue |
||||
# plot figure |
||||
fig = plt.figure() |
||||
for label_index in label_stats: |
||||
plt.plot( |
||||
[int(x[i]) for i in range(len(x))], |
||||
label_stats[label_index], |
||||
label=labels[label_index], |
||||
) |
||||
|
||||
# Translate time unit into x labels. |
||||
if "_60" in file: |
||||
plt.xlabel("{} (Minute)".format(xlabel)) |
||||
if "_3600" in file: |
||||
plt.xlabel("{} (Hour)".format(xlabel)) |
||||
plt.ylabel(ylabel) |
||||
plt.title("{} {}".format(title, file)) |
||||
if legend: |
||||
plt.legend() |
||||
pdf.savefig(fig) |
||||
pdf.close() |
||||
|
||||
|
||||
def plot_stacked_bar_charts( |
||||
csv_result_dir, |
||||
output_result_dir, |
||||
filename_suffix, |
||||
pdf_name, |
||||
xlabel, |
||||
ylabel, |
||||
title, |
||||
vertical, |
||||
x_prefix, |
||||
): |
||||
global color_index, bar_color_maps, colors |
||||
pdf = matplotlib.backends.backend_pdf.PdfPages( |
||||
"{}/{}".format(output_result_dir, pdf_name) |
||||
) |
||||
for file in os.listdir(csv_result_dir): |
||||
if not file.endswith(filename_suffix): |
||||
continue |
||||
with open(csv_result_dir + "/" + file, "r") as csvfile: |
||||
print("Processing file {}/{}".format(csv_result_dir, file)) |
||||
x, labels, label_stats = read_data_for_plot(csvfile, vertical) |
||||
if len(x) == 0 or len(label_stats) == 0: |
||||
continue |
||||
# Plot figure |
||||
fig = plt.figure() |
||||
ind = np.arange(len(x)) # the x locations for the groups |
||||
width = 0.5 # the width of the bars: can also be len(x) sequence |
||||
bars = [] |
||||
bottom_bars = [] |
||||
for _i in label_stats[0]: |
||||
bottom_bars.append(0) |
||||
for i in range(0, len(label_stats)): |
||||
# Assign a unique color to this label. |
||||
if labels[i] not in bar_color_maps: |
||||
bar_color_maps[labels[i]] = colors[color_index] |
||||
color_index += 1 |
||||
p = plt.bar( |
||||
ind, |
||||
label_stats[i], |
||||
width, |
||||
bottom=bottom_bars, |
||||
color=bar_color_maps[labels[i]], |
||||
) |
||||
bars.append(p[0]) |
||||
for j in range(len(label_stats[i])): |
||||
bottom_bars[j] += label_stats[i][j] |
||||
plt.xlabel(xlabel) |
||||
plt.ylabel(ylabel) |
||||
plt.xticks( |
||||
ind, [x_prefix + x[i] for i in range(len(x))], rotation=20, fontsize=8 |
||||
) |
||||
plt.legend(bars, labels) |
||||
plt.title("{} filename:{}".format(title, file)) |
||||
pdf.savefig(fig) |
||||
pdf.close() |
||||
|
||||
|
||||
def plot_access_timeline(csv_result_dir, output_result_dir): |
||||
plot_line_charts( |
||||
csv_result_dir, |
||||
output_result_dir, |
||||
filename_suffix="access_timeline", |
||||
pdf_name="access_time.pdf", |
||||
xlabel="Time", |
||||
ylabel="Throughput", |
||||
title="Access timeline with group by label", |
||||
vertical=False, |
||||
legend=True, |
||||
) |
||||
|
||||
|
||||
def plot_reuse_graphs(csv_result_dir, output_result_dir): |
||||
plot_stacked_bar_charts( |
||||
csv_result_dir, |
||||
output_result_dir, |
||||
filename_suffix="avg_reuse_interval_naccesses", |
||||
pdf_name="avg_reuse_interval_naccesses.pdf", |
||||
xlabel="", |
||||
ylabel="Percentage of accesses", |
||||
title="Average reuse interval", |
||||
vertical=True, |
||||
x_prefix="< ", |
||||
) |
||||
plot_stacked_bar_charts( |
||||
csv_result_dir, |
||||
output_result_dir, |
||||
filename_suffix="avg_reuse_interval", |
||||
pdf_name="avg_reuse_interval.pdf", |
||||
xlabel="", |
||||
ylabel="Percentage of blocks", |
||||
title="Average reuse interval", |
||||
vertical=True, |
||||
x_prefix="< ", |
||||
) |
||||
plot_stacked_bar_charts( |
||||
csv_result_dir, |
||||
output_result_dir, |
||||
filename_suffix="access_reuse_interval", |
||||
pdf_name="reuse_interval.pdf", |
||||
xlabel="Seconds", |
||||
ylabel="Percentage of accesses", |
||||
title="Reuse interval", |
||||
vertical=True, |
||||
x_prefix="< ", |
||||
) |
||||
plot_stacked_bar_charts( |
||||
csv_result_dir, |
||||
output_result_dir, |
||||
filename_suffix="reuse_lifetime", |
||||
pdf_name="reuse_lifetime.pdf", |
||||
xlabel="Seconds", |
||||
ylabel="Percentage of blocks", |
||||
title="Reuse lifetime", |
||||
vertical=True, |
||||
x_prefix="< ", |
||||
) |
||||
plot_line_charts( |
||||
csv_result_dir, |
||||
output_result_dir, |
||||
filename_suffix="reuse_blocks_timeline", |
||||
pdf_name="reuse_blocks_timeline.pdf", |
||||
xlabel="", |
||||
ylabel="Percentage of blocks", |
||||
title="Reuse blocks timeline", |
||||
vertical=False, |
||||
legend=False, |
||||
) |
||||
|
||||
|
||||
def plot_percentage_access_summary(csv_result_dir, output_result_dir): |
||||
plot_stacked_bar_charts( |
||||
csv_result_dir, |
||||
output_result_dir, |
||||
filename_suffix="percentage_of_accesses_summary", |
||||
pdf_name="percentage_access.pdf", |
||||
xlabel="", |
||||
ylabel="Percentage of accesses", |
||||
title="", |
||||
vertical=True, |
||||
x_prefix="", |
||||
) |
||||
plot_stacked_bar_charts( |
||||
csv_result_dir, |
||||
output_result_dir, |
||||
filename_suffix="percent_ref_keys", |
||||
pdf_name="percent_ref_keys.pdf", |
||||
xlabel="", |
||||
ylabel="Percentage of blocks", |
||||
title="", |
||||
vertical=True, |
||||
x_prefix="", |
||||
) |
||||
plot_stacked_bar_charts( |
||||
csv_result_dir, |
||||
output_result_dir, |
||||
filename_suffix="percent_data_size_on_ref_keys", |
||||
pdf_name="percent_data_size_on_ref_keys.pdf", |
||||
xlabel="", |
||||
ylabel="Percentage of blocks", |
||||
title="", |
||||
vertical=True, |
||||
x_prefix="", |
||||
) |
||||
plot_stacked_bar_charts( |
||||
csv_result_dir, |
||||
output_result_dir, |
||||
filename_suffix="percent_accesses_on_ref_keys", |
||||
pdf_name="percent_accesses_on_ref_keys.pdf", |
||||
xlabel="", |
||||
ylabel="Percentage of blocks", |
||||
title="", |
||||
vertical=True, |
||||
x_prefix="", |
||||
) |
||||
|
||||
|
||||
def plot_access_count_summary(csv_result_dir, output_result_dir): |
||||
plot_stacked_bar_charts( |
||||
csv_result_dir, |
||||
output_result_dir, |
||||
filename_suffix="access_count_summary", |
||||
pdf_name="access_count_summary.pdf", |
||||
xlabel="Access count", |
||||
ylabel="Percentage of blocks", |
||||
title="", |
||||
vertical=True, |
||||
x_prefix="< ", |
||||
) |
||||
|
||||
|
||||
if __name__ == "__main__": |
||||
if len(sys.argv) < 3: |
||||
print( |
||||
"Must provide two arguments: 1) The directory that saves a list of " |
||||
"directories which contain block cache trace analyzer result files " |
||||
"2) the directory to save plotted graphs." |
||||
) |
||||
exit(1) |
||||
csv_result_dir = sys.argv[1] |
||||
output_result_dir = sys.argv[2] |
||||
print( |
||||
"Processing directory {} and save graphs to {}.".format( |
||||
csv_result_dir, output_result_dir |
||||
) |
||||
) |
||||
for csv_relative_dir in os.listdir(csv_result_dir): |
||||
csv_abs_dir = csv_result_dir + "/" + csv_relative_dir |
||||
result_dir = output_result_dir + "/" + csv_relative_dir |
||||
if not os.path.isdir(csv_abs_dir): |
||||
print("{} is not a directory".format(csv_abs_dir)) |
||||
continue |
||||
print("Processing experiment dir: {}".format(csv_relative_dir)) |
||||
if not os.path.exists(result_dir): |
||||
os.makedirs(result_dir) |
||||
plot_miss_ratio_graphs(csv_abs_dir, result_dir) |
||||
plot_access_timeline(csv_abs_dir, result_dir) |
||||
plot_reuse_graphs(csv_abs_dir, result_dir) |
||||
plot_percentage_access_summary(csv_abs_dir, result_dir) |
||||
plot_access_count_summary(csv_abs_dir, result_dir) |
Loading…
Reference in new issue