A python script to plot graphs for cvs files generated by block_cache_trace_analyzer

Summary: Pull Request resolved: https://github.com/facebook/rocksdb/pull/5563

Test Plan: Manually run the script on files generated by block_cache_trace_analyzer.

Differential Revision: D16214400

Pulled By: HaoyuHuang

fbshipit-source-id: 94485eed995e9b2b63e197c5dfeb80129fa7897f
main
haoyuhuang 5 years ago committed by Facebook Github Bot
parent 61876614dc
commit 68d43b4d30
  1. 403
      tools/block_cache_trace_analyzer_plot.py

@ -0,0 +1,403 @@
#!/usr/bin/env python3
import csv
import os
import random
import sys
import matplotlib.backends.backend_pdf
import matplotlib.pyplot as plt
import numpy as np
# Make sure a legend has the same color across all generated graphs.
def get_cmap(n, name="hsv"):
"""Returns a function that maps each index in 0, 1, ..., n-1 to a distinct
RGB color; the keyword argument name must be a standard mpl colormap name."""
return plt.cm.get_cmap(name, n)
color_index = 0
bar_color_maps = {}
colors = []
n_colors = 60
linear_colors = get_cmap(n_colors)
for i in range(n_colors):
colors.append(linear_colors(i))
# Shuffle the colors so that adjacent bars in a graph are obvious to differentiate.
random.shuffle(colors)
def num_to_gb(n):
one_gb = 1024 * 1024 * 1024
if float(n) % one_gb == 0:
return "{}".format(n / one_gb)
# Keep two decimal points.
return "{0:.2f}".format(float(n) / one_gb)
def plot_miss_ratio_graphs(csv_result_dir, output_result_dir):
mrc_file_path = csv_result_dir + "/mrc"
if not os.path.exists(mrc_file_path):
return
miss_ratios = {}
print("Processing file {}".format(mrc_file_path))
with open(mrc_file_path, "r") as csvfile:
rows = csv.reader(csvfile, delimiter=",")
is_header = False
for row in rows:
if not is_header:
is_header = True
continue
cache_name = row[0]
num_shard_bits = int(row[1])
ghost_capacity = int(row[2])
capacity = int(row[3])
miss_ratio = float(row[4])
config = "{}-{}-{}".format(cache_name, num_shard_bits, ghost_capacity)
if config not in miss_ratios:
miss_ratios[config] = {}
miss_ratios[config]["x"] = []
miss_ratios[config]["y"] = []
miss_ratios[config]["x"].append(num_to_gb(capacity))
miss_ratios[config]["y"].append(miss_ratio)
fig = plt.figure()
for config in miss_ratios:
plt.plot(miss_ratios[config]["x"], miss_ratios[config]["y"], label=config)
plt.xlabel("Cache capacity (GB)")
plt.ylabel("Miss Ratio (%)")
# plt.xscale('log', basex=2)
plt.ylim(ymin=0)
plt.title("RocksDB block cache miss ratios")
plt.legend()
fig.savefig(output_result_dir + "/mrc.pdf", bbox_inches="tight")
def sanitize(label):
# matplotlib cannot plot legends that is prefixed with "_"
# so we need to remove them here.
index = 0
for i in range(len(label)):
if label[i] == "_":
index += 1
else:
break
data = label[index:]
# The value of uint64_max in c++.
if "18446744073709551615" in data:
return "max"
return data
# Read the csv file vertically, i.e., group the data by columns.
def read_data_for_plot_vertical(csvfile):
x = []
labels = []
label_stats = {}
csv_rows = csv.reader(csvfile, delimiter=",")
data_rows = []
for row in csv_rows:
data_rows.append(row)
# header
for i in range(1, len(data_rows[0])):
labels.append(sanitize(data_rows[0][i]))
label_stats[i - 1] = []
for i in range(1, len(data_rows)):
for j in range(len(data_rows[i])):
if j == 0:
x.append(sanitize(data_rows[i][j]))
continue
label_stats[j - 1].append(float(data_rows[i][j]))
return x, labels, label_stats
# Read the csv file horizontally, i.e., group the data by rows.
def read_data_for_plot_horizontal(csvfile):
x = []
labels = []
label_stats = {}
csv_rows = csv.reader(csvfile, delimiter=",")
data_rows = []
for row in csv_rows:
data_rows.append(row)
# header
for i in range(1, len(data_rows)):
labels.append(sanitize(data_rows[i][0]))
label_stats[i - 1] = []
for i in range(1, len(data_rows[0])):
x.append(sanitize(data_rows[0][i]))
for i in range(1, len(data_rows)):
for j in range(len(data_rows[i])):
if j == 0:
# label
continue
label_stats[i - 1].append(float(data_rows[i][j]))
return x, labels, label_stats
def read_data_for_plot(csvfile, vertical):
if vertical:
return read_data_for_plot_vertical(csvfile)
return read_data_for_plot_horizontal(csvfile)
def plot_line_charts(
csv_result_dir,
output_result_dir,
filename_suffix,
pdf_name,
xlabel,
ylabel,
title,
vertical,
legend,
):
pdf = matplotlib.backends.backend_pdf.PdfPages(output_result_dir + "/" + pdf_name)
for file in os.listdir(csv_result_dir):
if not file.endswith(filename_suffix):
continue
print("Processing file {}".format(file))
with open(csv_result_dir + "/" + file, "r") as csvfile:
x, labels, label_stats = read_data_for_plot(csvfile, vertical)
if len(x) == 0 or len(labels) == 0:
continue
# plot figure
fig = plt.figure()
for label_index in label_stats:
plt.plot(
[int(x[i]) for i in range(len(x))],
label_stats[label_index],
label=labels[label_index],
)
# Translate time unit into x labels.
if "_60" in file:
plt.xlabel("{} (Minute)".format(xlabel))
if "_3600" in file:
plt.xlabel("{} (Hour)".format(xlabel))
plt.ylabel(ylabel)
plt.title("{} {}".format(title, file))
if legend:
plt.legend()
pdf.savefig(fig)
pdf.close()
def plot_stacked_bar_charts(
csv_result_dir,
output_result_dir,
filename_suffix,
pdf_name,
xlabel,
ylabel,
title,
vertical,
x_prefix,
):
global color_index, bar_color_maps, colors
pdf = matplotlib.backends.backend_pdf.PdfPages(
"{}/{}".format(output_result_dir, pdf_name)
)
for file in os.listdir(csv_result_dir):
if not file.endswith(filename_suffix):
continue
with open(csv_result_dir + "/" + file, "r") as csvfile:
print("Processing file {}/{}".format(csv_result_dir, file))
x, labels, label_stats = read_data_for_plot(csvfile, vertical)
if len(x) == 0 or len(label_stats) == 0:
continue
# Plot figure
fig = plt.figure()
ind = np.arange(len(x)) # the x locations for the groups
width = 0.5 # the width of the bars: can also be len(x) sequence
bars = []
bottom_bars = []
for _i in label_stats[0]:
bottom_bars.append(0)
for i in range(0, len(label_stats)):
# Assign a unique color to this label.
if labels[i] not in bar_color_maps:
bar_color_maps[labels[i]] = colors[color_index]
color_index += 1
p = plt.bar(
ind,
label_stats[i],
width,
bottom=bottom_bars,
color=bar_color_maps[labels[i]],
)
bars.append(p[0])
for j in range(len(label_stats[i])):
bottom_bars[j] += label_stats[i][j]
plt.xlabel(xlabel)
plt.ylabel(ylabel)
plt.xticks(
ind, [x_prefix + x[i] for i in range(len(x))], rotation=20, fontsize=8
)
plt.legend(bars, labels)
plt.title("{} filename:{}".format(title, file))
pdf.savefig(fig)
pdf.close()
def plot_access_timeline(csv_result_dir, output_result_dir):
plot_line_charts(
csv_result_dir,
output_result_dir,
filename_suffix="access_timeline",
pdf_name="access_time.pdf",
xlabel="Time",
ylabel="Throughput",
title="Access timeline with group by label",
vertical=False,
legend=True,
)
def plot_reuse_graphs(csv_result_dir, output_result_dir):
plot_stacked_bar_charts(
csv_result_dir,
output_result_dir,
filename_suffix="avg_reuse_interval_naccesses",
pdf_name="avg_reuse_interval_naccesses.pdf",
xlabel="",
ylabel="Percentage of accesses",
title="Average reuse interval",
vertical=True,
x_prefix="< ",
)
plot_stacked_bar_charts(
csv_result_dir,
output_result_dir,
filename_suffix="avg_reuse_interval",
pdf_name="avg_reuse_interval.pdf",
xlabel="",
ylabel="Percentage of blocks",
title="Average reuse interval",
vertical=True,
x_prefix="< ",
)
plot_stacked_bar_charts(
csv_result_dir,
output_result_dir,
filename_suffix="access_reuse_interval",
pdf_name="reuse_interval.pdf",
xlabel="Seconds",
ylabel="Percentage of accesses",
title="Reuse interval",
vertical=True,
x_prefix="< ",
)
plot_stacked_bar_charts(
csv_result_dir,
output_result_dir,
filename_suffix="reuse_lifetime",
pdf_name="reuse_lifetime.pdf",
xlabel="Seconds",
ylabel="Percentage of blocks",
title="Reuse lifetime",
vertical=True,
x_prefix="< ",
)
plot_line_charts(
csv_result_dir,
output_result_dir,
filename_suffix="reuse_blocks_timeline",
pdf_name="reuse_blocks_timeline.pdf",
xlabel="",
ylabel="Percentage of blocks",
title="Reuse blocks timeline",
vertical=False,
legend=False,
)
def plot_percentage_access_summary(csv_result_dir, output_result_dir):
plot_stacked_bar_charts(
csv_result_dir,
output_result_dir,
filename_suffix="percentage_of_accesses_summary",
pdf_name="percentage_access.pdf",
xlabel="",
ylabel="Percentage of accesses",
title="",
vertical=True,
x_prefix="",
)
plot_stacked_bar_charts(
csv_result_dir,
output_result_dir,
filename_suffix="percent_ref_keys",
pdf_name="percent_ref_keys.pdf",
xlabel="",
ylabel="Percentage of blocks",
title="",
vertical=True,
x_prefix="",
)
plot_stacked_bar_charts(
csv_result_dir,
output_result_dir,
filename_suffix="percent_data_size_on_ref_keys",
pdf_name="percent_data_size_on_ref_keys.pdf",
xlabel="",
ylabel="Percentage of blocks",
title="",
vertical=True,
x_prefix="",
)
plot_stacked_bar_charts(
csv_result_dir,
output_result_dir,
filename_suffix="percent_accesses_on_ref_keys",
pdf_name="percent_accesses_on_ref_keys.pdf",
xlabel="",
ylabel="Percentage of blocks",
title="",
vertical=True,
x_prefix="",
)
def plot_access_count_summary(csv_result_dir, output_result_dir):
plot_stacked_bar_charts(
csv_result_dir,
output_result_dir,
filename_suffix="access_count_summary",
pdf_name="access_count_summary.pdf",
xlabel="Access count",
ylabel="Percentage of blocks",
title="",
vertical=True,
x_prefix="< ",
)
if __name__ == "__main__":
if len(sys.argv) < 3:
print(
"Must provide two arguments: 1) The directory that saves a list of "
"directories which contain block cache trace analyzer result files "
"2) the directory to save plotted graphs."
)
exit(1)
csv_result_dir = sys.argv[1]
output_result_dir = sys.argv[2]
print(
"Processing directory {} and save graphs to {}.".format(
csv_result_dir, output_result_dir
)
)
for csv_relative_dir in os.listdir(csv_result_dir):
csv_abs_dir = csv_result_dir + "/" + csv_relative_dir
result_dir = output_result_dir + "/" + csv_relative_dir
if not os.path.isdir(csv_abs_dir):
print("{} is not a directory".format(csv_abs_dir))
continue
print("Processing experiment dir: {}".format(csv_relative_dir))
if not os.path.exists(result_dir):
os.makedirs(result_dir)
plot_miss_ratio_graphs(csv_abs_dir, result_dir)
plot_access_timeline(csv_abs_dir, result_dir)
plot_reuse_graphs(csv_abs_dir, result_dir)
plot_percentage_access_summary(csv_abs_dir, result_dir)
plot_access_count_summary(csv_abs_dir, result_dir)
Loading…
Cancel
Save