Pull from upstream.

git-svn-id: https://leveldb.googlecode.com/svn/trunk@14 62dab493-f737-651d-591e-8d6aee1b9529
main
jorlow@chromium.org 14 years ago
parent 6d243ebf79
commit 8303bb1b33
  1. 10
      db/db_impl.cc
  2. 2
      db/db_impl.h
  3. 6
      db/db_iter.cc
  4. 17
      db/db_test.cc
  5. 2
      db/dbformat.cc
  6. 2
      db/dbformat_test.cc
  7. 2
      db/filename_test.cc
  8. 2
      db/version_edit_test.cc
  9. 51
      db/version_set.cc
  10. 8
      db/version_set.h
  11. 10
      include/options.h
  12. 21
      port/port_android.h
  13. 14
      port/port_chromium.cc
  14. 8
      port/port_chromium.h
  15. 13
      port/port_example.h
  16. 25
      port/port_posix.h
  17. 4
      table/format.cc
  18. 13
      table/table_builder.cc
  19. 17
      table/table_test.cc
  20. 2
      util/env_chromium.cc
  21. 2
      util/options.cc

@ -866,7 +866,7 @@ Iterator* DBImpl::TEST_NewInternalIterator() {
return NewInternalIterator(ReadOptions(), &ignored); return NewInternalIterator(ReadOptions(), &ignored);
} }
int64 DBImpl::TEST_MaxNextLevelOverlappingBytes() { int64_t DBImpl::TEST_MaxNextLevelOverlappingBytes() {
MutexLock l(&mutex_); MutexLock l(&mutex_);
return versions_->MaxNextLevelOverlappingBytes(); return versions_->MaxNextLevelOverlappingBytes();
} }
@ -989,11 +989,11 @@ void DBImpl::MaybeCompressLargeValue(
std::string* scratch, std::string* scratch,
LargeValueRef* ref) { LargeValueRef* ref) {
switch (options_.compression) { switch (options_.compression) {
case kLightweightCompression: { case kSnappyCompression: {
port::Lightweight_Compress(raw_value.data(), raw_value.size(), scratch); if (port::Snappy_Compress(raw_value.data(), raw_value.size(), scratch) &&
if (scratch->size() < (raw_value.size() / 8) * 7) { (scratch->size() < (raw_value.size() / 8) * 7)) {
*file_bytes = *scratch; *file_bytes = *scratch;
*ref = LargeValueRef::Make(raw_value, kLightweightCompression); *ref = LargeValueRef::Make(raw_value, kSnappyCompression);
return; return;
} }

@ -57,7 +57,7 @@ class DBImpl : public DB {
// Return the maximum overlapping data (in bytes) at next level for any // Return the maximum overlapping data (in bytes) at next level for any
// file at a level >= 1. // file at a level >= 1.
int64 TEST_MaxNextLevelOverlappingBytes(); int64_t TEST_MaxNextLevelOverlappingBytes();
private: private:
friend class DB; friend class DB;

@ -374,10 +374,10 @@ void DBIter::ReadIndirectValue() const {
} }
break; break;
} }
case kLightweightCompression: { case kSnappyCompression: {
std::string uncompressed; std::string uncompressed;
if (port::Lightweight_Uncompress(result.data(), result.size(), if (port::Snappy_Uncompress(result.data(), result.size(),
&uncompressed) && &uncompressed) &&
uncompressed.size() == large_ref.ValueSize()) { uncompressed.size() == large_ref.ValueSize()) {
swap(uncompressed, large_->value); swap(uncompressed, large_->value);
} else { } else {

@ -674,6 +674,12 @@ TEST(DBTest, LargeValues1) {
ASSERT_TRUE(LargeValuesOK(this, expected)); ASSERT_TRUE(LargeValuesOK(this, expected));
} }
static bool SnappyCompressionSupported() {
std::string out;
Slice in = "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa";
return port::Snappy_Compress(in.data(), in.size(), &out);
}
TEST(DBTest, LargeValues2) { TEST(DBTest, LargeValues2) {
Options options; Options options;
options.large_value_threshold = 10000; options.large_value_threshold = 10000;
@ -694,12 +700,11 @@ TEST(DBTest, LargeValues2) {
ASSERT_OK(Put("big2", big2)); ASSERT_OK(Put("big2", big2));
ASSERT_EQ(big2, Get("big2")); ASSERT_EQ(big2, Get("big2"));
#if defined(LEVELDB_PLATFORM_POSIX) || defined(LEVELDB_PLATFORM_CHROMIUM) if (SnappyCompressionSupported()) {
// TODO(sanjay) Reenable after compression support is added expected.insert(LargeValueRef::Make(big2, kSnappyCompression));
expected.insert(LargeValueRef::Make(big2, kNoCompression)); } else {
#else expected.insert(LargeValueRef::Make(big2, kNoCompression));
expected.insert(LargeValueRef::Make(big2, kLightweightCompression)); }
#endif
ASSERT_TRUE(LargeValuesOK(this, expected)); ASSERT_TRUE(LargeValuesOK(this, expected));
ASSERT_OK(dbfull()->TEST_CompactMemTable()); ASSERT_OK(dbfull()->TEST_CompactMemTable());

@ -140,7 +140,7 @@ bool FilenameStringToLargeValueRef(const Slice& s, LargeValueRef* h) {
ConsumeChar(&in, '-') && ConsumeChar(&in, '-') &&
ConsumeDecimalNumber(&in, &ctype) && ConsumeDecimalNumber(&in, &ctype) &&
in.empty() && in.empty() &&
(ctype <= kLightweightCompression)) { (ctype <= kSnappyCompression)) {
EncodeFixed64(&h->data[20], value_size); EncodeFixed64(&h->data[20], value_size);
h->data[28] = static_cast<unsigned char>(ctype); h->data[28] = static_cast<unsigned char>(ctype);
return true; return true;

@ -117,7 +117,7 @@ TEST(FormatTest, SHA1) {
LargeValueRef::Make("hello", kNoCompression))); LargeValueRef::Make("hello", kNoCompression)));
ASSERT_EQ("aaf4c61ddcc5e8a2dabede0f3b482cd9aea9434d-5-1", // SHA1, lwcompr ASSERT_EQ("aaf4c61ddcc5e8a2dabede0f3b482cd9aea9434d-5-1", // SHA1, lwcompr
LargeValueRefToFilenameString( LargeValueRefToFilenameString(
LargeValueRef::Make("hello", kLightweightCompression))); LargeValueRef::Make("hello", kSnappyCompression)));
} }
} }

@ -136,7 +136,7 @@ TEST(FileNameTest, Construction) {
ASSERT_EQ(999, number); ASSERT_EQ(999, number);
ASSERT_EQ(kTempFile, type); ASSERT_EQ(kTempFile, type);
for (int i = 0; i <= kLightweightCompression; i++) { for (int i = 0; i <= kSnappyCompression; i++) {
CompressionType ctype = static_cast<CompressionType>(i); CompressionType ctype = static_cast<CompressionType>(i);
std::string value = "abcdef"; std::string value = "abcdef";
LargeValueRef real_large_ref = LargeValueRef::Make(Slice(value), ctype); LargeValueRef real_large_ref = LargeValueRef::Make(Slice(value), ctype);

@ -31,7 +31,7 @@ TEST(VersionEditTest, EncodeDecode) {
edit.DeleteFile(4, kBig + 700 + i); edit.DeleteFile(4, kBig + 700 + i);
edit.AddLargeValueRef(LargeValueRef::Make("big", kNoCompression), edit.AddLargeValueRef(LargeValueRef::Make("big", kNoCompression),
kBig + 800 + i, "foobar"); kBig + 800 + i, "foobar");
edit.AddLargeValueRef(LargeValueRef::Make("big2", kLightweightCompression), edit.AddLargeValueRef(LargeValueRef::Make("big2", kSnappyCompression),
kBig + 801 + i, "baz"); kBig + 801 + i, "baz");
edit.SetCompactPointer(i, InternalKey("x", kBig + 900 + i, kTypeValue)); edit.SetCompactPointer(i, InternalKey("x", kBig + 900 + i, kTypeValue));
} }

@ -20,9 +20,11 @@
namespace leveldb { namespace leveldb {
// Maximum number of overlaps in grandparent (i.e., level+2) before we static const int kTargetFileSize = 2 * 1048576;
// Maximum bytes of overlaps in grandparent (i.e., level+2) before we
// stop building a single file in a level->level+1 compaction. // stop building a single file in a level->level+1 compaction.
static const int kMaxGrandParentFiles = 10; static const int64_t kMaxGrandParentOverlapBytes = 10 * kTargetFileSize;
static double MaxBytesForLevel(int level) { static double MaxBytesForLevel(int level) {
if (level == 0) { if (level == 0) {
@ -38,7 +40,7 @@ static double MaxBytesForLevel(int level) {
} }
static uint64_t MaxFileSizeForLevel(int level) { static uint64_t MaxFileSizeForLevel(int level) {
return 2 << 20; // We could vary per level to reduce number of files? return kTargetFileSize; // We could vary per level to reduce number of files?
} }
namespace { namespace {
@ -755,17 +757,22 @@ void VersionSet::AddLiveFiles(std::set<uint64_t>* live) {
} }
} }
int64 VersionSet::MaxNextLevelOverlappingBytes() { static int64_t TotalFileSize(const std::vector<FileMetaData*>& files) {
int64 result = 0; int64_t sum = 0;
for (int i = 0; i < files.size(); i++) {
sum += files[i]->file_size;
}
return sum;
}
int64_t VersionSet::MaxNextLevelOverlappingBytes() {
int64_t result = 0;
std::vector<FileMetaData*> overlaps; std::vector<FileMetaData*> overlaps;
for (int level = 0; level < config::kNumLevels - 1; level++) { for (int level = 0; level < config::kNumLevels - 1; level++) {
for (int i = 0; i < current_->files_[level].size(); i++) { for (int i = 0; i < current_->files_[level].size(); i++) {
const FileMetaData* f = current_->files_[level][i]; const FileMetaData* f = current_->files_[level][i];
GetOverlappingInputs(level+1, f->smallest, f->largest, &overlaps); GetOverlappingInputs(level+1, f->smallest, f->largest, &overlaps);
int64 sum = 0; const int64_t sum = TotalFileSize(overlaps);
for (int j = 0; j < overlaps.size(); j++) {
sum += overlaps[j]->file_size;
}
if (sum > result) { if (sum > result) {
result = sum; result = sum;
} }
@ -989,7 +996,8 @@ Compaction::Compaction(int level)
max_output_file_size_(MaxFileSizeForLevel(level)), max_output_file_size_(MaxFileSizeForLevel(level)),
input_version_(NULL), input_version_(NULL),
grandparent_index_(0), grandparent_index_(0),
output_start_(-1) { seen_key_(false),
overlapped_bytes_(0) {
for (int i = 0; i < config::kNumLevels; i++) { for (int i = 0; i < config::kNumLevels; i++) {
level_ptrs_[i] = 0; level_ptrs_[i] = 0;
} }
@ -1002,12 +1010,12 @@ Compaction::~Compaction() {
} }
bool Compaction::IsTrivialMove() const { bool Compaction::IsTrivialMove() const {
// Avoid a move if there are lots of overlapping grandparent files. // Avoid a move if there is lots of overlapping grandparent data.
// Otherwise, the move could create a parent file that will require // Otherwise, the move could create a parent file that will require
// a very expensive merge later on. // a very expensive merge later on.
return (num_input_files(0) == 1 return (num_input_files(0) == 1 &&
&& num_input_files(1) == 0 num_input_files(1) == 0 &&
&& grandparents_.size() <= kMaxGrandParentFiles); TotalFileSize(grandparents_) <= kMaxGrandParentOverlapBytes);
} }
void Compaction::AddInputDeletions(VersionEdit* edit) { void Compaction::AddInputDeletions(VersionEdit* edit) {
@ -1044,17 +1052,16 @@ bool Compaction::ShouldStopBefore(const InternalKey& key) {
const InternalKeyComparator* icmp = &input_version_->vset_->icmp_; const InternalKeyComparator* icmp = &input_version_->vset_->icmp_;
while (grandparent_index_ < grandparents_.size() && while (grandparent_index_ < grandparents_.size() &&
icmp->Compare(key, grandparents_[grandparent_index_]->largest) > 0) { icmp->Compare(key, grandparents_[grandparent_index_]->largest) > 0) {
if (seen_key_) {
overlapped_bytes_ += grandparents_[grandparent_index_]->file_size;
}
grandparent_index_++; grandparent_index_++;
} }
seen_key_ = true;
// First call? if (overlapped_bytes_ > kMaxGrandParentOverlapBytes) {
if (output_start_ < 0) { // Too much overlap for current output; start new output
output_start_ = grandparent_index_; overlapped_bytes_ = 0;
}
if (grandparent_index_ - output_start_ + 1 > kMaxGrandParentFiles) {
// Too many overlaps for current output; start new output
output_start_ = grandparent_index_;
return true; return true;
} else { } else {
return false; return false;

@ -141,7 +141,7 @@ class VersionSet {
// Return the maximum overlapping data (in bytes) at next level for any // Return the maximum overlapping data (in bytes) at next level for any
// file at a level >= 1. // file at a level >= 1.
int64 MaxNextLevelOverlappingBytes(); int64_t MaxNextLevelOverlappingBytes();
// Create an iterator that reads over the compaction inputs for "*c". // Create an iterator that reads over the compaction inputs for "*c".
// The caller should delete the iterator when no longer needed. // The caller should delete the iterator when no longer needed.
@ -298,8 +298,10 @@ class Compaction {
// State used to check for number of of overlapping grandparent files // State used to check for number of of overlapping grandparent files
// (parent == level_ + 1, grandparent == level_ + 2) // (parent == level_ + 1, grandparent == level_ + 2)
std::vector<FileMetaData*> grandparents_; std::vector<FileMetaData*> grandparents_;
int grandparent_index_; // Index in grandparent_starts_ int grandparent_index_; // Index in grandparent_starts_
int output_start_; // Index in grandparent_starts_ where output started bool seen_key_; // Some output key has been seen
int64_t overlapped_bytes_; // Bytes of overlap between current output
// and grandparent files
// State for implementing IsBaseLevelForKey // State for implementing IsBaseLevelForKey

@ -22,8 +22,8 @@ class WritableFile;
enum CompressionType { enum CompressionType {
// NOTE: do not change the values of existing entries, as these are // NOTE: do not change the values of existing entries, as these are
// part of the persistent format on disk. // part of the persistent format on disk.
kNoCompression = 0x0, kNoCompression = 0x0,
kLightweightCompression = 0x1, kSnappyCompression = 0x1,
}; };
// Options to control the behavior of a database (passed to DB::Open) // Options to control the behavior of a database (passed to DB::Open)
@ -122,16 +122,16 @@ struct Options {
// Compress blocks using the specified compression algorithm. This // Compress blocks using the specified compression algorithm. This
// parameter can be changed dynamically. // parameter can be changed dynamically.
// //
// Default: kLightweightCompression, which gives lightweight but fast // Default: kSnappyCompression, which gives lightweight but fast
// compression. // compression.
// //
// Typical speeds of kLightweightCompression on an Intel(R) Core(TM)2 2.4GHz: // Typical speeds of kSnappyCompression on an Intel(R) Core(TM)2 2.4GHz:
// ~200-500MB/s compression // ~200-500MB/s compression
// ~400-800MB/s decompression // ~400-800MB/s decompression
// Note that these speeds are significantly faster than most // Note that these speeds are significantly faster than most
// persistent storage speeds, and therefore it is typically never // persistent storage speeds, and therefore it is typically never
// worth switching to kNoCompression. Even if the input data is // worth switching to kNoCompression. Even if the input data is
// incompressible, the kLightweightCompression implementation will // incompressible, the kSnappyCompression implementation will
// efficiently detect that and will switch to uncompressed mode. // efficiently detect that and will switch to uncompressed mode.
CompressionType compression; CompressionType compression;

@ -82,29 +82,20 @@ class AtomicPointer {
} }
}; };
/** // TODO(gabor): Implement actual compress
* TODO(gabor): Implement actual compress inline bool Snappy_Compress(
* This is a hack - it just copies input to output.
* No actual compression occurs.
*/
inline void Lightweight_Compress(
const char* input, const char* input,
size_t input_length, size_t input_length,
std::string* output) { std::string* output) {
output->copy((char*)input,0,input_length); return false;
} }
/** // TODO(gabor): Implement actual uncompress
* TODO(gabor): Implement actual compress inline bool Snappy_Uncompress(
* This is a hack - it just copies input to output.
* No actual uncompression occurs.
*/
inline bool Lightweight_Uncompress(
const char* input_data, const char* input_data,
size_t input_length, size_t input_length,
std::string* output) { std::string* output) {
output->copy((char*)input_data,0,input_length); return false;
return (bool)1;
} }
inline void SHA1_Hash(const char* data, size_t len, char* hash_array) { inline void SHA1_Hash(const char* data, size_t len, char* hash_array) {

@ -49,20 +49,21 @@ void CondVar::SignalAll() {
cv_.Broadcast(); cv_.Broadcast();
} }
void Lightweight_Compress(const char* input, size_t input_length, bool Snappy_Compress(const char* input, size_t input_length,
std::string* output) { std::string* output) {
#if defined(USE_SNAPPY) #if defined(USE_SNAPPY)
output->resize(snappy::MaxCompressedLength(input_length)); output->resize(snappy::MaxCompressedLength(input_length));
size_t outlen; size_t outlen;
snappy::RawCompress(input, input_length, &(*output)[0], &outlen); snappy::RawCompress(input, input_length, &(*output)[0], &outlen);
output->resize(outlen); output->resize(outlen);
return true;
#else #else
output->assign(input, input_length); return false;
#endif #endif
} }
bool Lightweight_Uncompress(const char* input_data, size_t input_length, bool Snappy_Uncompress(const char* input_data, size_t input_length,
std::string* output) { std::string* output) {
#if defined(USE_SNAPPY) #if defined(USE_SNAPPY)
size_t ulength; size_t ulength;
if (!snappy::GetUncompressedLength(input_data, input_length, &ulength)) { if (!snappy::GetUncompressedLength(input_data, input_length, &ulength)) {
@ -71,8 +72,7 @@ bool Lightweight_Uncompress(const char* input_data, size_t input_length,
output->resize(ulength); output->resize(ulength);
return snappy::RawUncompress(input_data, input_length, &(*output)[0]); return snappy::RawUncompress(input_data, input_length, &(*output)[0]);
#else #else
output->assign(input_data, input_length); return false;
return true;
#endif #endif
} }

@ -89,10 +89,10 @@ inline void SHA1_Hash(const char* data, size_t len, char* hash_array) {
reinterpret_cast<unsigned char*>(hash_array)); reinterpret_cast<unsigned char*>(hash_array));
} }
void Lightweight_Compress(const char* input, size_t input_length, bool Snappy_Compress(const char* input, size_t input_length,
std::string* output); std::string* output);
bool Lightweight_Uncompress(const char* input_data, size_t input_length, bool Snappy_Uncompress(const char* input_data, size_t input_length,
std::string* output); std::string* output);
inline bool GetHeapProfile(void (*func)(void*, const char*, int), void* arg) { inline bool GetHeapProfile(void (*func)(void*, const char*, int), void* arg) {
return false; return false;

@ -96,15 +96,16 @@ extern void SHA1_Hash(const char* data, size_t len, char* hash_array);
// ------------------ Compression ------------------- // ------------------ Compression -------------------
// Store the lightweight compression of "input[0,input_length-1]" in *output. // Store the snappy compression of "input[0,input_length-1]" in *output.
extern void Lightweight_Compress(const char* input, size_t input_length, // Returns false if snappy is not supported by this port.
std::string* output); extern bool Snappy_Compress(const char* input, size_t input_length,
std::string* output);
// Attempt to lightweight uncompress input[0,input_length-1] into *output. // Attempt to snappy uncompress input[0,input_length-1] into *output.
// Returns true if successful, false if the input is invalid lightweight // Returns true if successful, false if the input is invalid lightweight
// compressed data. // compressed data.
extern bool Lightweight_Uncompress(const char* input_data, size_t input_length, extern bool Snappy_Uncompress(const char* input_data, size_t input_length,
std::string* output); std::string* output);
// ------------------ Miscellaneous ------------------- // ------------------ Miscellaneous -------------------

@ -77,25 +77,16 @@ inline void SHA1_Hash(const char* data, size_t len, char* hash_array) {
SHA1_Hash_Portable(data, len, hash_array); SHA1_Hash_Portable(data, len, hash_array);
} }
/** // TODO(gabor): Implement actual compress
* TODO(gabor): Implement actual compress inline bool Snappy_Compress(const char* input, size_t input_length,
* This is a hack - it just copies input to output. std::string* output) {
* No actual compression occurs. return false;
*/
inline void Lightweight_Compress(const char* input, size_t input_length,
std::string* output) {
output->assign(input, input_length);
} }
/** // TODO(gabor): Implement actual uncompress
* TODO(gabor): Implement actual uncompress inline bool Snappy_Uncompress(const char* input_data, size_t input_length,
* This is a hack - it just copies input to output. std::string* output) {
* No actual uncompression occurs. return false;
*/
inline bool Lightweight_Uncompress(const char* input_data, size_t input_length,
std::string* output) {
output->assign(input_data, input_length);
return true;
} }
inline bool GetHeapProfile(void (*func)(void*, const char*, int), void* arg) { inline bool GetHeapProfile(void (*func)(void*, const char*, int), void* arg) {

@ -106,9 +106,9 @@ Status ReadBlock(RandomAccessFile* file,
// Ok // Ok
break; break;
case kLightweightCompression: { case kSnappyCompression: {
std::string decompressed; std::string decompressed;
if (!port::Lightweight_Uncompress(data, n, &decompressed)) { if (!port::Snappy_Uncompress(data, n, &decompressed)) {
delete[] buf; delete[] buf;
s = Status::Corruption("corrupted compressed block contents"); s = Status::Corruption("corrupted compressed block contents");
return s; return s;

@ -138,11 +138,14 @@ void TableBuilder::WriteBlock(BlockBuilder* block, BlockHandle* handle) {
block_contents = raw; block_contents = raw;
break; break;
case kLightweightCompression: { case kSnappyCompression: {
port::Lightweight_Compress(raw.data(), raw.size(), &r->compressed_output); std::string* compressed = &r->compressed_output;
block_contents = r->compressed_output; if (port::Snappy_Compress(raw.data(), raw.size(), compressed) &&
if (block_contents.size() >= raw.size() - (raw.size() / 8u)) { compressed->size() < raw.size() - (raw.size() / 8u)) {
// Compressed less than 12.5%, so just store uncompressed form block_contents = *compressed;
} else {
// Snappy not supported, or compressed less than 12.5%, so just
// store uncompressed form
block_contents = raw; block_contents = raw;
type = kNoCompression; type = kNoCompression;
} }

@ -800,12 +800,17 @@ TEST(TableTest, ApproximateOffsetOfPlain) {
} }
static bool SnappyCompressionSupported() {
std::string out;
Slice in = "aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa";
return port::Snappy_Compress(in.data(), in.size(), &out);
}
TEST(TableTest, ApproximateOffsetOfCompressed) { TEST(TableTest, ApproximateOffsetOfCompressed) {
#if defined(LEVELDB_PLATFORM_POSIX) || defined(LEVELDB_PLATFORM_CHROMIUM) if (!SnappyCompressionSupported()) {
// Compression not supported yet, so skip this test. fprintf(stderr, "skipping compression tests\n");
// TODO(sanjay) Reenable after compression support is added return;
return; }
#endif
Random rnd(301); Random rnd(301);
TableConstructor c(BytewiseComparator()); TableConstructor c(BytewiseComparator());
@ -818,7 +823,7 @@ TEST(TableTest, ApproximateOffsetOfCompressed) {
KVMap kvmap; KVMap kvmap;
Options options; Options options;
options.block_size = 1024; options.block_size = 1024;
options.compression = kLightweightCompression; options.compression = kSnappyCompression;
c.Finish(options, &keys, &kvmap); c.Finish(options, &keys, &kvmap);
ASSERT_TRUE(Between(c.ApproximateOffsetOf("abc"), 0, 0)); ASSERT_TRUE(Between(c.ApproximateOffsetOf("abc"), 0, 0));

@ -326,7 +326,7 @@ class ChromiumEnv : public Env {
virtual Status GetFileSize(const std::string& fname, uint64_t* size) { virtual Status GetFileSize(const std::string& fname, uint64_t* size) {
Status s; Status s;
int64 signed_size; int64_t signed_size;
if (!::file_util::GetFileSize(CreateFilePath(fname), &signed_size)) { if (!::file_util::GetFileSize(CreateFilePath(fname), &signed_size)) {
*size = 0; *size = 0;
s = Status::IOError(fname, "Could not determine file size."); s = Status::IOError(fname, "Could not determine file size.");

@ -22,7 +22,7 @@ Options::Options()
block_cache(NULL), block_cache(NULL),
block_size(8192), block_size(8192),
block_restart_interval(16), block_restart_interval(16),
compression(kLightweightCompression) { compression(kSnappyCompression) {
} }

Loading…
Cancel
Save