Fixed a dependency issue of ThreadLocalPtr

Summary:
When a child thread that uses ThreadLocalPtr, ThreadLocalPtr::OnThreadExit
will be called when that child thread is destroyed.  However,
OnThreadExit will try to access a static singleton of ThreadLocalPtr,
which will be destroyed when the main thread exit.  As a result,
when a child thread that uses ThreadLocalPtr exits AFTER the main thread
exits, illegal memory access will occur.

This diff includes a test that reproduce this legacy bug.

    ==2095206==ERROR: AddressSanitizer: heap-use-after-free on address
    0x608000007fa0 at pc 0x959b79 bp 0x7f5fa7426b60 sp 0x7f5fa7426b58
    READ of size 8 at 0x608000007fa0 thread T1

This patch fix this issue by having the thread local mutex never be deleted
(but will leak small piece of memory at the end.)   The patch also describe
a better solution (thread_local) in the comment that requires gcc 4.8.1 and
in latest clang as a future work once we agree to move toward gcc 4.8.

Test Plan:
COMPILE_WITH_ASAN=1 make thread_local_test -j32
./thread_local_test --gtest_filter="*MainThreadDiesFirst"

Reviewers: anthony, hermanlee4, sdong

Reviewed By: sdong

Subscribers: dhruba, leveldb

Differential Revision: https://reviews.facebook.net/D53013
main
Yueh-Hsuan Chiang 9 years ago
parent 337671b688
commit 908100399c
  1. 1
      util/env_posix.cc
  2. 47
      util/thread_local.cc
  3. 51
      util/thread_local.h
  4. 36
      util/thread_local_test.cc

@ -132,6 +132,7 @@ class PosixEnv : public Env {
// All threads must be joined before the deletion of // All threads must be joined before the deletion of
// thread_status_updater_. // thread_status_updater_.
delete thread_status_updater_; delete thread_status_updater_;
TEST_SYNC_POINT("PosixEnv::~PosixEnv():End");
} }
void SetFD_CLOEXEC(int fd, const EnvOptions* options) { void SetFD_CLOEXEC(int fd, const EnvOptions* options) {

@ -104,7 +104,6 @@ PIMAGE_TLS_CALLBACK p_thread_callback_on_exit = wintlscleanup::WinOnThreadExit;
void ThreadLocalPtr::InitSingletons() { void ThreadLocalPtr::InitSingletons() {
ThreadLocalPtr::StaticMeta::InitSingletons(); ThreadLocalPtr::StaticMeta::InitSingletons();
ThreadLocalPtr::Instance();
} }
ThreadLocalPtr::StaticMeta* ThreadLocalPtr::Instance() { ThreadLocalPtr::StaticMeta* ThreadLocalPtr::Instance() {
@ -113,30 +112,46 @@ ThreadLocalPtr::StaticMeta* ThreadLocalPtr::Instance() {
// when the function is first call. As a result, we can properly // when the function is first call. As a result, we can properly
// control their construction order by properly preparing their // control their construction order by properly preparing their
// first function call. // first function call.
static ThreadLocalPtr::StaticMeta inst; //
return &inst; // Note that here we decide to make "inst" a static pointer w/o deleting
// it at the end instead of a static variable. This is to avoid the following
// destruction order desester happens when a child thread using ThreadLocalPtr
// dies AFTER the main thread dies: When a child thread happens to use
// ThreadLocalPtr, it will try to delete its thread-local data on its
// OnThreadExit when the child thread dies. However, OnThreadExit depends
// on the following variable. As a result, if the main thread dies before any
// child thread happen to use ThreadLocalPtr dies, then the destruction of
// the following variable will go first, then OnThreadExit, therefore causing
// invalid access.
//
// The above problem can be solved by using thread_local to store tls_ instead
// of using __thread. The major difference between thread_local and __thread
// is that thread_local supports dynamic construction and destruction of
// non-primitive typed variables. As a result, we can guarantee the
// desturction order even when the main thread dies before any child threads.
// However, thread_local requires gcc 4.8 and is not supported in all the
// compilers that accepts -std=c++11 (e.g., the default clang on Mac), while
// the current RocksDB still accept gcc 4.7.
static ThreadLocalPtr::StaticMeta* inst = new ThreadLocalPtr::StaticMeta();
return inst;
} }
void ThreadLocalPtr::StaticMeta::InitSingletons() { Mutex(); } void ThreadLocalPtr::StaticMeta::InitSingletons() { Mutex(); }
port::Mutex* ThreadLocalPtr::StaticMeta::Mutex() { port::Mutex* ThreadLocalPtr::StaticMeta::Mutex() { return &Instance()->mutex_; }
// Here we prefer function static variable instead of global
// static variable as function static variable is initialized
// when the function is first call. As a result, we can properly
// control their construction order by properly preparing their
// first function call.
static port::Mutex mutex;
return &mutex;
}
void ThreadLocalPtr::StaticMeta::OnThreadExit(void* ptr) { void ThreadLocalPtr::StaticMeta::OnThreadExit(void* ptr) {
auto* tls = static_cast<ThreadData*>(ptr); auto* tls = static_cast<ThreadData*>(ptr);
assert(tls != nullptr); assert(tls != nullptr);
auto* inst = Instance(); // Use the cached StaticMeta::Instance() instead of directly calling
// the variable inside StaticMeta::Instance() might already go out of
// scope here in case this OnThreadExit is called after the main thread
// dies.
auto* inst = tls->inst;
pthread_setspecific(inst->pthread_key_, nullptr); pthread_setspecific(inst->pthread_key_, nullptr);
MutexLock l(Mutex()); MutexLock l(inst->MemberMutex());
inst->RemoveThreadData(tls); inst->RemoveThreadData(tls);
// Unref stored pointers of current thread from all instances // Unref stored pointers of current thread from all instances
uint32_t id = 0; uint32_t id = 0;
@ -154,7 +169,7 @@ void ThreadLocalPtr::StaticMeta::OnThreadExit(void* ptr) {
delete tls; delete tls;
} }
ThreadLocalPtr::StaticMeta::StaticMeta() : next_instance_id_(0) { ThreadLocalPtr::StaticMeta::StaticMeta() : next_instance_id_(0), head_(this) {
if (pthread_key_create(&pthread_key_, &OnThreadExit) != 0) { if (pthread_key_create(&pthread_key_, &OnThreadExit) != 0) {
abort(); abort();
} }
@ -221,7 +236,7 @@ ThreadLocalPtr::ThreadData* ThreadLocalPtr::StaticMeta::GetThreadLocal() {
if (UNLIKELY(tls_ == nullptr)) { if (UNLIKELY(tls_ == nullptr)) {
auto* inst = Instance(); auto* inst = Instance();
tls_ = new ThreadData(); tls_ = new ThreadData(inst);
{ {
// Register it in the global chain, needs to be done before thread exit // Register it in the global chain, needs to be done before thread exit
// handler registration // handler registration

@ -79,6 +79,8 @@ class ThreadLocalPtr {
std::atomic<void*> ptr; std::atomic<void*> ptr;
}; };
class StaticMeta;
// This is the structure that is declared as "thread_local" storage. // This is the structure that is declared as "thread_local" storage.
// The vector keep list of atomic pointer for all instances for "current" // The vector keep list of atomic pointer for all instances for "current"
// thread. The vector is indexed by an Id that is unique in process and // thread. The vector is indexed by an Id that is unique in process and
@ -95,10 +97,11 @@ class ThreadLocalPtr {
// | thread 3 | void* | void* | void* | <- ThreadData // | thread 3 | void* | void* | void* | <- ThreadData
// --------------------------------------------------- // ---------------------------------------------------
struct ThreadData { struct ThreadData {
ThreadData() : entries() {} explicit ThreadData(StaticMeta* _inst) : entries(), inst(_inst) {}
std::vector<Entry> entries; std::vector<Entry> entries;
ThreadData* next; ThreadData* next;
ThreadData* prev; ThreadData* prev;
StaticMeta* inst;
}; };
class StaticMeta { class StaticMeta {
@ -139,6 +142,31 @@ class ThreadLocalPtr {
// initialized will be no-op. // initialized will be no-op.
static void InitSingletons(); static void InitSingletons();
// protect inst, next_instance_id_, free_instance_ids_, head_,
// ThreadData.entries
//
// Note that here we prefer function static variable instead of the usual
// global static variable. The reason is that c++ destruction order of
// static variables in the reverse order of their construction order.
// However, C++ does not guarantee any construction order when global
// static variables are defined in different files, while the function
// static variables are initialized when their function are first called.
// As a result, the construction order of the function static variables
// can be controlled by properly invoke their first function calls in
// the right order.
//
// For instance, the following function contains a function static
// variable. We place a dummy function call of this inside
// Env::Default() to ensure the construction order of the construction
// order.
static port::Mutex* Mutex();
// Returns the member mutex of the current StaticMeta. In general,
// Mutex() should be used instead of this one. However, in case where
// the static variable inside Instance() goes out of scope, MemberMutex()
// should be used. One example is OnThreadExit() function.
port::Mutex* MemberMutex() { return &mutex_; }
private: private:
// Get UnrefHandler for id with acquiring mutex // Get UnrefHandler for id with acquiring mutex
// REQUIRES: mutex locked // REQUIRES: mutex locked
@ -169,24 +197,9 @@ class ThreadLocalPtr {
std::unordered_map<uint32_t, UnrefHandler> handler_map_; std::unordered_map<uint32_t, UnrefHandler> handler_map_;
// protect inst, next_instance_id_, free_instance_ids_, head_, // The private mutex. Developers should always use Mutex() instead of
// ThreadData.entries // using this variable directly.
// port::Mutex mutex_;
// Note that here we prefer function static variable instead of the usual
// global static variable. The reason is that c++ destruction order of
// static variables in the reverse order of their construction order.
// However, C++ does not guarantee any construction order when global
// static variables are defined in different files, while the function
// static variables are initialized when their function are first called.
// As a result, the construction order of the function static variables
// can be controlled by properly invoke their first function calls in
// the right order.
//
// For instance, the following function contains a function static
// variable. We place a dummy function call of this inside
// Env::Default() to ensure the construction order of the construction
// order.
static port::Mutex* Mutex();
#if ROCKSDB_SUPPORT_THREAD_LOCAL #if ROCKSDB_SUPPORT_THREAD_LOCAL
// Thread local storage // Thread local storage
static __thread ThreadData* tls_; static __thread ThreadData* tls_;

@ -3,14 +3,17 @@
// LICENSE file in the root directory of this source tree. An additional grant // LICENSE file in the root directory of this source tree. An additional grant
// of patent rights can be found in the PATENTS file in the same directory. // of patent rights can be found in the PATENTS file in the same directory.
#include <pthread.h>
#include <atomic> #include <atomic>
#include <string>
#include "rocksdb/env.h" #include "rocksdb/env.h"
#include "port/port.h" #include "port/port.h"
#include "util/autovector.h" #include "util/autovector.h"
#include "util/thread_local.h" #include "util/sync_point.h"
#include "util/testharness.h" #include "util/testharness.h"
#include "util/testutil.h" #include "util/testutil.h"
#include "util/thread_local.h"
namespace rocksdb { namespace rocksdb {
@ -467,6 +470,37 @@ TEST_F(ThreadLocalTest, CompareAndSwap) {
ASSERT_EQ(tls.Get(), reinterpret_cast<void*>(3)); ASSERT_EQ(tls.Get(), reinterpret_cast<void*>(3));
} }
namespace {
void* AccessThreadLocal(void* arg) {
TEST_SYNC_POINT("AccessThreadLocal:Start");
ThreadLocalPtr tlp;
tlp.Reset(new std::string("hello RocksDB"));
TEST_SYNC_POINT("AccessThreadLocal:End");
return nullptr;
}
} // namespace
// The following test is disabled as it requires manual steps to run it
// correctly.
//
// Currently we have no way to acess SyncPoint w/o ASAN error when the
// child thread dies after the main thread dies. So if you manually enable
// this test and only see an ASAN error on SyncPoint, it means you pass the
// test.
TEST_F(ThreadLocalTest, DISABLED_MainThreadDiesFirst) {
rocksdb::SyncPoint::GetInstance()->LoadDependency(
{{"AccessThreadLocal:Start", "MainThreadDiesFirst:End"},
{"PosixEnv::~PosixEnv():End", "AccessThreadLocal:End"}});
// Triggers the initialization of singletons.
Env::Default();
pthread_t t;
pthread_create(&t, nullptr, &AccessThreadLocal, nullptr);
TEST_SYNC_POINT("MainThreadDiesFirst:End");
}
} // namespace rocksdb } // namespace rocksdb
int main(int argc, char** argv) { int main(int argc, char** argv) {

Loading…
Cancel
Save