Expose usage info for the cache

Summary: This diff will help us to figure out the memory usage for the cache part.

Test Plan: added a new memory usage test for cache

Reviewers: haobo, sdong, dhruba

CC: leveldb

Differential Revision: https://reviews.facebook.net/D14559
main
kailiu 11 years ago
parent 9718c790ec
commit b660e2d468
  1. 3
      include/rocksdb/cache.h
  2. 65
      util/cache.cc
  3. 34
      util/cache_test.cc

@ -104,6 +104,9 @@ class Cache {
// returns the maximum configured capacity of the cache // returns the maximum configured capacity of the cache
virtual size_t GetCapacity() const = 0; virtual size_t GetCapacity() const = 0;
// returns the memory size for the entries residing in the cache.
virtual size_t GetUsage() const = 0;
private: private:
void LRU_Remove(Handle* e); void LRU_Remove(Handle* e);
void LRU_Append(Handle* e); void LRU_Append(Handle* e);

@ -156,6 +156,7 @@ class LRUCache {
Cache::Handle* Lookup(const Slice& key, uint32_t hash); Cache::Handle* Lookup(const Slice& key, uint32_t hash);
void Release(Cache::Handle* handle); void Release(Cache::Handle* handle);
void Erase(const Slice& key, uint32_t hash); void Erase(const Slice& key, uint32_t hash);
size_t GetUsage() const { return usage_.load(std::memory_order_relaxed); }
private: private:
void LRU_Remove(LRUHandle* e); void LRU_Remove(LRUHandle* e);
@ -172,7 +173,7 @@ class LRUCache {
// mutex_ protects the following state. // mutex_ protects the following state.
port::Mutex mutex_; port::Mutex mutex_;
size_t usage_; std::atomic_size_t usage_;
// Dummy head of LRU list. // Dummy head of LRU list.
// lru.prev is newest entry, lru.next is oldest entry. // lru.prev is newest entry, lru.next is oldest entry.
@ -214,7 +215,7 @@ void LRUCache::FreeEntry(LRUHandle* e) {
void LRUCache::LRU_Remove(LRUHandle* e) { void LRUCache::LRU_Remove(LRUHandle* e) {
e->next->prev = e->prev; e->next->prev = e->prev;
e->prev->next = e->next; e->prev->next = e->next;
usage_ -= e->charge; usage_.fetch_sub(e->charge, std::memory_order_relaxed);
} }
void LRUCache::LRU_Append(LRUHandle* e) { void LRUCache::LRU_Append(LRUHandle* e) {
@ -223,7 +224,7 @@ void LRUCache::LRU_Append(LRUHandle* e) {
e->prev = lru_.prev; e->prev = lru_.prev;
e->prev->next = e; e->prev->next = e;
e->next->prev = e; e->next->prev = e;
usage_ += e->charge; usage_.fetch_add(e->charge, std::memory_order_relaxed);
} }
Cache::Handle* LRUCache::Lookup(const Slice& key, uint32_t hash) { Cache::Handle* LRUCache::Lookup(const Slice& key, uint32_t hash) {
@ -282,7 +283,7 @@ Cache::Handle* LRUCache::Insert(
// referenced by the cache first. // referenced by the cache first.
LRUHandle* cur = lru_.next; LRUHandle* cur = lru_.next;
for (unsigned int scanCount = 0; for (unsigned int scanCount = 0;
usage_ > capacity_ && cur != &lru_ GetUsage() > capacity_ && cur != &lru_
&& scanCount < remove_scan_count_limit_; scanCount++) { && scanCount < remove_scan_count_limit_; scanCount++) {
LRUHandle* next = cur->next; LRUHandle* next = cur->next;
if (cur->refs <= 1) { if (cur->refs <= 1) {
@ -298,7 +299,7 @@ Cache::Handle* LRUCache::Insert(
// Free the space following strict LRU policy until enough space // Free the space following strict LRU policy until enough space
// is freed. // is freed.
while (usage_ > capacity_ && lru_.next != &lru_) { while (GetUsage() > capacity_ && lru_.next != &lru_) {
LRUHandle* old = lru_.next; LRUHandle* old = lru_.next;
LRU_Remove(old); LRU_Remove(old);
table_.Remove(old->key(), old->hash); table_.Remove(old->key(), old->hash);
@ -340,10 +341,10 @@ static int kRemoveScanCountLimit = 0; // default values, can be overridden
class ShardedLRUCache : public Cache { class ShardedLRUCache : public Cache {
private: private:
LRUCache* shard_; LRUCache* shards_;
port::Mutex id_mutex_; port::Mutex id_mutex_;
uint64_t last_id_; uint64_t last_id_;
int numShardBits; int num_shard_bits_;
size_t capacity_; size_t capacity_;
static inline uint32_t HashSlice(const Slice& s) { static inline uint32_t HashSlice(const Slice& s) {
@ -352,18 +353,18 @@ class ShardedLRUCache : public Cache {
uint32_t Shard(uint32_t hash) { uint32_t Shard(uint32_t hash) {
// Note, hash >> 32 yields hash in gcc, not the zero we expect! // Note, hash >> 32 yields hash in gcc, not the zero we expect!
return (numShardBits > 0) ? (hash >> (32 - numShardBits)) : 0; return (num_shard_bits_ > 0) ? (hash >> (32 - num_shard_bits_)) : 0;
} }
void init(size_t capacity, int numbits, int removeScanCountLimit) { void init(size_t capacity, int numbits, int removeScanCountLimit) {
numShardBits = numbits; num_shard_bits_ = numbits;
capacity_ = capacity; capacity_ = capacity;
int numShards = 1 << numShardBits; int num_shards = 1 << num_shard_bits_;
shard_ = new LRUCache[numShards]; shards_ = new LRUCache[num_shards];
const size_t per_shard = (capacity + (numShards - 1)) / numShards; const size_t per_shard = (capacity + (num_shards - 1)) / num_shards;
for (int s = 0; s < numShards; s++) { for (int s = 0; s < num_shards; s++) {
shard_[s].SetCapacity(per_shard); shards_[s].SetCapacity(per_shard);
shard_[s].SetRemoveScanCountLimit(removeScanCountLimit); shards_[s].SetRemoveScanCountLimit(removeScanCountLimit);
} }
} }
@ -372,30 +373,30 @@ class ShardedLRUCache : public Cache {
: last_id_(0) { : last_id_(0) {
init(capacity, kNumShardBits, kRemoveScanCountLimit); init(capacity, kNumShardBits, kRemoveScanCountLimit);
} }
ShardedLRUCache(size_t capacity, int numShardBits, ShardedLRUCache(size_t capacity, int num_shard_bits,
int removeScanCountLimit) int removeScanCountLimit)
: last_id_(0) { : last_id_(0) {
init(capacity, numShardBits, removeScanCountLimit); init(capacity, num_shard_bits, removeScanCountLimit);
} }
virtual ~ShardedLRUCache() { virtual ~ShardedLRUCache() {
delete[] shard_; delete[] shards_;
} }
virtual Handle* Insert(const Slice& key, void* value, size_t charge, virtual Handle* Insert(const Slice& key, void* value, size_t charge,
void (*deleter)(const Slice& key, void* value)) { void (*deleter)(const Slice& key, void* value)) {
const uint32_t hash = HashSlice(key); const uint32_t hash = HashSlice(key);
return shard_[Shard(hash)].Insert(key, hash, value, charge, deleter); return shards_[Shard(hash)].Insert(key, hash, value, charge, deleter);
} }
virtual Handle* Lookup(const Slice& key) { virtual Handle* Lookup(const Slice& key) {
const uint32_t hash = HashSlice(key); const uint32_t hash = HashSlice(key);
return shard_[Shard(hash)].Lookup(key, hash); return shards_[Shard(hash)].Lookup(key, hash);
} }
virtual void Release(Handle* handle) { virtual void Release(Handle* handle) {
LRUHandle* h = reinterpret_cast<LRUHandle*>(handle); LRUHandle* h = reinterpret_cast<LRUHandle*>(handle);
shard_[Shard(h->hash)].Release(handle); shards_[Shard(h->hash)].Release(handle);
} }
virtual void Erase(const Slice& key) { virtual void Erase(const Slice& key) {
const uint32_t hash = HashSlice(key); const uint32_t hash = HashSlice(key);
shard_[Shard(hash)].Erase(key, hash); shards_[Shard(hash)].Erase(key, hash);
} }
virtual void* Value(Handle* handle) { virtual void* Value(Handle* handle) {
return reinterpret_cast<LRUHandle*>(handle)->value; return reinterpret_cast<LRUHandle*>(handle)->value;
@ -407,6 +408,16 @@ class ShardedLRUCache : public Cache {
virtual size_t GetCapacity() const { virtual size_t GetCapacity() const {
return capacity_; return capacity_;
} }
virtual size_t GetUsage() const {
// We will not lock the cache when getting the usage from shards.
// for (size_t i = 0; i < num_shard_bits_; ++i)
int num_shards = 1 << num_shard_bits_;
size_t usage = 0;
for (int s = 0; s < num_shards; s++) {
usage += shards_[s].GetUsage();
}
return usage;
}
}; };
} // end anonymous namespace } // end anonymous namespace
@ -415,17 +426,17 @@ shared_ptr<Cache> NewLRUCache(size_t capacity) {
return NewLRUCache(capacity, kNumShardBits); return NewLRUCache(capacity, kNumShardBits);
} }
shared_ptr<Cache> NewLRUCache(size_t capacity, int numShardBits) { shared_ptr<Cache> NewLRUCache(size_t capacity, int num_shard_bits) {
return NewLRUCache(capacity, numShardBits, kRemoveScanCountLimit); return NewLRUCache(capacity, num_shard_bits, kRemoveScanCountLimit);
} }
shared_ptr<Cache> NewLRUCache(size_t capacity, int numShardBits, shared_ptr<Cache> NewLRUCache(size_t capacity, int num_shard_bits,
int removeScanCountLimit) { int removeScanCountLimit) {
if (numShardBits >= 20) { if (num_shard_bits >= 20) {
return nullptr; // the cache cannot be sharded into too many fine pieces return nullptr; // the cache cannot be sharded into too many fine pieces
} }
return std::make_shared<ShardedLRUCache>(capacity, return std::make_shared<ShardedLRUCache>(capacity,
numShardBits, num_shard_bits,
removeScanCountLimit); removeScanCountLimit);
} }

@ -107,6 +107,39 @@ class CacheTest {
}; };
CacheTest* CacheTest::current_; CacheTest* CacheTest::current_;
void dumbDeleter(const Slice& key, void* value) { }
TEST(CacheTest, UsageTest) {
// cache is shared_ptr and will be automatically cleaned up.
const uint64_t kCapacity = 100000;
auto cache = NewLRUCache(kCapacity, 8, 200);
size_t usage = 0;
const char* value = "abcdef";
// make sure everything will be cached
for (int i = 1; i < 100; ++i) {
std::string key(i, 'a');
auto kv_size = key.size() + 5;
cache->Release(
cache->Insert(key, (void*)value, kv_size, dumbDeleter)
);
usage += kv_size;
ASSERT_EQ(usage, cache->GetUsage());
}
// make sure the cache will be overloaded
for (int i = 1; i < kCapacity; ++i) {
auto key = std::to_string(i);
cache->Release(
cache->Insert(key, (void*)value, key.size() + 5, dumbDeleter)
);
}
// the usage should be close to the capacity
ASSERT_GT(kCapacity, cache->GetUsage());
ASSERT_LT(kCapacity * 0.95, cache->GetUsage());
}
TEST(CacheTest, HitAndMiss) { TEST(CacheTest, HitAndMiss) {
ASSERT_EQ(-1, Lookup(100)); ASSERT_EQ(-1, Lookup(100));
@ -353,7 +386,6 @@ void deleter(const Slice& key, void* value) {
delete (Value *)value; delete (Value *)value;
} }
TEST(CacheTest, BadEviction) { TEST(CacheTest, BadEviction) {
int n = 10; int n = 10;

Loading…
Cancel
Save