Support user's compaction filter in TTL logic

Summary: TTL uses compaction filter to purge key-values and required the user to not pass one. This diff makes it accommodating of user's compaciton filter. Added test to ttl_test

Test Plan: make; ./ttl_test

Reviewers: dhruba, haobo, vamsi

Reviewed By: dhruba

CC: leveldb

Differential Revision: https://reviews.facebook.net/D11973
main
Mayank Agarwal 11 years ago
parent 7c9093ab53
commit cacd812fb2
  1. 1
      include/utilities/utility_db.h
  2. 38
      utilities/ttl/db_ttl.cc
  3. 62
      utilities/ttl/db_ttl.h
  4. 201
      utilities/ttl/ttl_test.cc

@ -34,7 +34,6 @@ class UtilityDB {
// triggered(neither manual nor automatic), so no expired entries removed // triggered(neither manual nor automatic), so no expired entries removed
// //
// CONSTRAINTS: // CONSTRAINTS:
// The caller must not specify any compaction-filter in options
// Not specifying/passing or non-positive TTL behaves like TTL = infinity // Not specifying/passing or non-positive TTL behaves like TTL = infinity
// //
// !!!WARNING!!!: // !!!WARNING!!!:

@ -18,13 +18,17 @@ DBWithTTL::DBWithTTL(const int32_t ttl,
Status& st, Status& st,
bool read_only) bool read_only)
: ttl_(ttl) { : ttl_(ttl) {
assert(options.compaction_filter == nullptr);
Options options_to_open = options; Options options_to_open = options;
options_to_open.compaction_filter = this;
ttl_comp_filter_.reset(new TtlCompactionFilter(ttl,
options.compaction_filter));
options_to_open.compaction_filter = ttl_comp_filter_.get();
if (options.merge_operator) { if (options.merge_operator) {
ttl_merge_op_.reset(new TtlMergeOperator(options.merge_operator)); ttl_merge_op_.reset(new TtlMergeOperator(options.merge_operator));
options_to_open.merge_operator = ttl_merge_op_.get(); options_to_open.merge_operator = ttl_merge_op_.get();
} }
if (read_only) { if (read_only) {
st = DB::OpenForReadOnly(options_to_open, dbname, &db_); st = DB::OpenForReadOnly(options_to_open, dbname, &db_);
} else { } else {
@ -50,21 +54,6 @@ Status UtilityDB::OpenTtlDB(
return st; return st;
} }
// returns true(i.e. key-value to be deleted) if its TS has expired based on ttl
bool DBWithTTL::Filter(
int level,
const Slice& key,
const Slice& old_val,
std::string* new_val,
bool* value_changed) const {
return IsStale(old_val, ttl_);
}
const char* DBWithTTL::Name() const {
return "Delete By TTL";
}
// Gives back the current time // Gives back the current time
Status DBWithTTL::GetCurrentTime(int32_t& curtime) { Status DBWithTTL::GetCurrentTime(int32_t& curtime) {
return Env::Default()->GetCurrentTime((int64_t*)&curtime); return Env::Default()->GetCurrentTime((int64_t*)&curtime);
@ -89,7 +78,7 @@ Status DBWithTTL::AppendTS(const Slice& val, std::string& val_with_ts) {
// Returns corruption if the length of the string is lesser than timestamp, or // Returns corruption if the length of the string is lesser than timestamp, or
// timestamp refers to a time lesser than ttl-feature release time // timestamp refers to a time lesser than ttl-feature release time
Status DBWithTTL::SanityCheckTimestamp(const Slice& str) { Status DBWithTTL::SanityCheckTimestamp(const Slice& str) {
if (str.size() < (unsigned)kTSLength) { if (str.size() < kTSLength) {
return Status::Corruption("Error: value's length less than timestamp's\n"); return Status::Corruption("Error: value's length less than timestamp's\n");
} }
// Checks that TS is not lesser than kMinTimestamp // Checks that TS is not lesser than kMinTimestamp
@ -110,19 +99,18 @@ bool DBWithTTL::IsStale(const Slice& value, int32_t ttl) {
int32_t curtime; int32_t curtime;
if (!GetCurrentTime(curtime).ok()) { if (!GetCurrentTime(curtime).ok()) {
return false; // Treat the data as fresh if could not get current time return false; // Treat the data as fresh if could not get current time
} else {
int32_t timestamp_value =
DecodeFixed32(value.data() + value.size() - kTSLength);
if ((timestamp_value + ttl) < curtime) {
return true; // Data is stale
}
} }
return false; int32_t timestamp_value =
DecodeFixed32(value.data() + value.size() - kTSLength);
return (timestamp_value + ttl) < curtime;
} }
// Strips the TS from the end of the string // Strips the TS from the end of the string
Status DBWithTTL::StripTS(std::string* str) { Status DBWithTTL::StripTS(std::string* str) {
Status st; Status st;
if (str->length() < kTSLength) {
return Status::Corruption("Bad timestamp in key-value");
}
// Erasing characters which hold the TS // Erasing characters which hold the TS
str->erase(str->length() - kTSLength, kTSLength); str->erase(str->length() - kTSLength, kTSLength);
return st; return st;

@ -13,7 +13,7 @@
namespace leveldb { namespace leveldb {
class DBWithTTL : public DB, CompactionFilter { class DBWithTTL : public DB {
public: public:
DBWithTTL(const int32_t ttl, DBWithTTL(const int32_t ttl,
const Options& options, const Options& options,
@ -84,15 +84,6 @@ class DBWithTTL : public DB, CompactionFilter {
// Simulate a db crash, no elegant closing of database. // Simulate a db crash, no elegant closing of database.
void TEST_Destroy_DBWithTtl(); void TEST_Destroy_DBWithTtl();
// The following two methods are for CompactionFilter
virtual bool Filter(int level,
const Slice& key,
const Slice& old_val,
std::string* new_val,
bool* value_changed) const override;
virtual const char* Name() const override;
static bool IsStale(const Slice& value, int32_t ttl); static bool IsStale(const Slice& value, int32_t ttl);
static Status AppendTS(const Slice& val, std::string& val_with_ts); static Status AppendTS(const Slice& val, std::string& val_with_ts);
@ -103,7 +94,7 @@ class DBWithTTL : public DB, CompactionFilter {
static Status GetCurrentTime(int32_t& curtime); static Status GetCurrentTime(int32_t& curtime);
static const int32_t kTSLength = sizeof(int32_t); // size of timestamp static const uint32_t kTSLength = sizeof(int32_t); // size of timestamp
static const int32_t kMinTimestamp = 1368146402; // 05/09/2013:5:40PM GMT-8 static const int32_t kMinTimestamp = 1368146402; // 05/09/2013:5:40PM GMT-8
@ -113,6 +104,7 @@ class DBWithTTL : public DB, CompactionFilter {
DB* db_; DB* db_;
int32_t ttl_; int32_t ttl_;
unique_ptr<MergeOperator> ttl_merge_op_; unique_ptr<MergeOperator> ttl_merge_op_;
unique_ptr<CompactionFilter> ttl_comp_filter_;
}; };
class TtlIterator : public Iterator { class TtlIterator : public Iterator {
@ -176,6 +168,50 @@ class TtlIterator : public Iterator {
Iterator* iter_; Iterator* iter_;
}; };
class TtlCompactionFilter : public CompactionFilter {
public:
TtlCompactionFilter(int32_t ttl, const CompactionFilter* comp_filter)
: ttl_(ttl),
user_comp_filter_(comp_filter) {
// Unlike the merge operator, compaction filter is necessary for TTL, hence
// this would be called even if user doesn't specify any compaction-filter
}
virtual bool Filter(int level,
const Slice& key,
const Slice& old_val,
std::string* new_val,
bool* value_changed) const override {
if (DBWithTTL::IsStale(old_val, ttl_)) {
return true;
}
if (user_comp_filter_ == nullptr) {
return false;
}
assert(old_val.size() >= DBWithTTL::kTSLength);
Slice old_val_without_ts(old_val.data(),
old_val.size() - DBWithTTL::kTSLength);
if (user_comp_filter_->Filter(level, key, old_val_without_ts, new_val,
value_changed)) {
return true;
}
if (*value_changed) {
new_val->append(old_val.data() + old_val.size() - DBWithTTL::kTSLength,
DBWithTTL::kTSLength);
}
return false;
}
virtual const char* Name() const override {
return "Delete By TTL";
}
private:
int32_t ttl_;
const CompactionFilter* user_comp_filter_;
};
class TtlMergeOperator : public MergeOperator { class TtlMergeOperator : public MergeOperator {
public: public:
@ -188,7 +224,7 @@ class TtlMergeOperator : public MergeOperator {
const Slice* existing_value, const Slice* existing_value,
const Slice& value, const Slice& value,
std::string* new_value, std::string* new_value,
Logger* logger) const { Logger* logger) const override {
const uint32_t& ts_len = DBWithTTL::kTSLength; const uint32_t& ts_len = DBWithTTL::kTSLength;
if ((existing_value && existing_value->size() < ts_len) || if ((existing_value && existing_value->size() < ts_len) ||
value.size() < ts_len) { value.size() < ts_len) {
@ -219,7 +255,7 @@ class TtlMergeOperator : public MergeOperator {
} }
} }
virtual const char* Name() const { virtual const char* Name() const override {
return "Merge By TTL"; return "Merge By TTL";
} }

@ -2,7 +2,8 @@
// Use of this source code is governed by a BSD-style license that can be // Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors. // found in the LICENSE file. See the AUTHORS file for names of contributors.
#include "include/utilities/utility_db.h" #include "leveldb/compaction_filter.h"
#include "utilities/utility_db.h"
#include "util/testharness.h" #include "util/testharness.h"
#include "util/logging.h" #include "util/logging.h"
#include <map> #include <map>
@ -11,11 +12,14 @@
namespace leveldb { namespace leveldb {
namespace { namespace {
typedef std::map<std::string, std::string> KVMap; typedef std::map<std::string, std::string> KVMap;
enum BatchOperation { enum BatchOperation {
PUT = 0, PUT = 0,
DELETE = 1 DELETE = 1
}; };
} }
class TtlTest { class TtlTest {
@ -48,6 +52,13 @@ class TtlTest {
ASSERT_OK(UtilityDB::OpenTtlDB(options_, dbname_, &db_ttl_, ttl)); ASSERT_OK(UtilityDB::OpenTtlDB(options_, dbname_, &db_ttl_, ttl));
} }
// Open with TestFilter compaction filter
void OpenTtlWithTestCompaction(int32_t ttl) {
test_comp_filter_.reset(new TestFilter(kSampleSize_, kNewValue_));
options_.compaction_filter = test_comp_filter_.get();
OpenTtl(ttl);
}
// Open database with TTL support in read_only mode // Open database with TTL support in read_only mode
void OpenReadOnlyTtl(int32_t ttl) { void OpenReadOnlyTtl(int32_t ttl) {
assert(db_ttl_ == nullptr); assert(db_ttl_ == nullptr);
@ -62,10 +73,19 @@ class TtlTest {
// Populates and returns a kv-map // Populates and returns a kv-map
void MakeKVMap(int64_t num_entries) { void MakeKVMap(int64_t num_entries) {
kvmap_.clear(); kvmap_.clear();
int digits = 1;
for (int dummy = num_entries; dummy /= 10 ; ++digits);
int digits_in_i = 1;
for (int64_t i = 0; i < num_entries; i++) { for (int64_t i = 0; i < num_entries; i++) {
std::string key = "key"; std::string key = "key";
std::string value = "value"; std::string value = "value";
if (i % 10 == 0) {
digits_in_i++;
}
for(int j = digits_in_i; j < digits; j++) {
key.append("0");
value.append("0");
}
AppendNumberTo(&key, i); AppendNumberTo(&key, i);
AppendNumberTo(&value, i); AppendNumberTo(&value, i);
kvmap_[key] = value; kvmap_[key] = value;
@ -120,8 +140,10 @@ class TtlTest {
// Sleeps for slp_tim then runs a manual compaction // Sleeps for slp_tim then runs a manual compaction
// Checks span starting from st_pos from kvmap_ in the db and // Checks span starting from st_pos from kvmap_ in the db and
// Gets should return true if check is true and false otherwise // Gets should return true if check is true and false otherwise
// Also checks that value that we got is the same as inserted // Also checks that value that we got is the same as inserted; and =kNewValue
void SleepCompactCheck(int slp_tim, int st_pos, int span, bool check = true) { // if test_compaction_change is true
void SleepCompactCheck(int slp_tim, int st_pos, int span, bool check = true,
bool test_compaction_change = false) {
assert(db_ttl_); assert(db_ttl_);
sleep(slp_tim); sleep(slp_tim);
ManualCompact(); ManualCompact();
@ -132,19 +154,25 @@ class TtlTest {
for (int i = 0; kv_it_ != kvmap_.end(), i < span; i++, kv_it_++) { for (int i = 0; kv_it_ != kvmap_.end(), i < span; i++, kv_it_++) {
Status s = db_ttl_->Get(ropts, kv_it_->first, &v); Status s = db_ttl_->Get(ropts, kv_it_->first, &v);
if (s.ok() != check) { if (s.ok() != check) {
fprintf(stderr, "key=%s ", fprintf(stderr, "key=%s ", kv_it_->first.c_str());
kv_it_->first.c_str());
if (!s.ok()) { if (!s.ok()) {
fprintf(stderr, "is absent from db but was expected to be present\n"); fprintf(stderr, "is absent from db but was expected to be present\n");
} else { } else {
fprintf(stderr, "is present in db but was expected to be absent\n"); fprintf(stderr, "is present in db but was expected to be absent\n");
} }
assert(false); assert(false);
} else if (s.ok() && (v.compare(kv_it_->second) != 0)) { } else if (s.ok()) {
fprintf(stderr, " value for key=%s present in database is %s but " if (test_compaction_change && v.compare(kNewValue_) != 0) {
" should be %s\n", kv_it_->first.c_str(), v.c_str(), fprintf(stderr, " value for key=%s present in database is %s but "
kv_it_->second.c_str()); " should be %s\n", kv_it_->first.c_str(), v.c_str(),
assert(false); kNewValue_.c_str());
assert(false);
} else if (!test_compaction_change && v.compare(kv_it_->second) !=0) {
fprintf(stderr, " value for key=%s present in database is %s but "
" should be %s\n", kv_it_->first.c_str(), v.c_str(),
kv_it_->second.c_str());
assert(false);
}
} }
} }
} }
@ -176,8 +204,56 @@ class TtlTest {
delete dbiter; delete dbiter;
} }
class TestFilter : public CompactionFilter {
public:
TestFilter(const int64_t kSampleSize, const std::string kNewValue)
: kSampleSize_(kSampleSize),
kNewValue_(kNewValue) {
}
// Works on keys of the form "key<number>"
// Drops key if number at the end of key is in [0, kSampleSize_/3),
// Keeps key if it is in [kSampleSize_/3, 2*kSampleSize_/3),
// Change value if it is in [2*kSampleSize_/3, kSampleSize_)
// Eg. kSampleSize_=6. Drop:key0-1...Keep:key2-3...Change:key4-5...
virtual bool Filter(int level, const Slice& key,
const Slice& value, std::string* new_value,
bool* value_changed) const override {
assert(new_value != nullptr);
std::string search_str = "0123456789";
std::string key_string = key.ToString();
size_t pos = key_string.find_first_of(search_str);
int num_key_end;
if (pos != std::string::npos) {
num_key_end = stoi(key_string.substr(pos, key.size() - pos));
} else {
return false; // Keep keys not matching the format "key<NUMBER>"
}
int partition = kSampleSize_ / 3;
if (num_key_end < partition) {
return true;
} else if (num_key_end < partition * 2) {
return false;
} else {
*new_value = kNewValue_;
*value_changed = true;
return false;
}
}
virtual const char* Name() const override {
return "TestFilter";
}
private:
const int64_t kSampleSize_;
const std::string kNewValue_;
};
// Choose carefully so that Put, Gets & Compaction complete in 1 second buffer // Choose carefully so that Put, Gets & Compaction complete in 1 second buffer
const int64_t kSampleSize = 100; const int64_t kSampleSize_ = 100;
private: private:
std::string dbname_; std::string dbname_;
@ -185,6 +261,8 @@ class TtlTest {
Options options_; Options options_;
KVMap kvmap_; KVMap kvmap_;
KVMap::iterator kv_it_; KVMap::iterator kv_it_;
const std::string kNewValue_ = "new_value";
unique_ptr<CompactionFilter> test_comp_filter_;
}; // class TtlTest }; // class TtlTest
// If TTL is non positive or not provided, the behaviour is TTL = infinity // If TTL is non positive or not provided, the behaviour is TTL = infinity
@ -192,8 +270,8 @@ class TtlTest {
// bunch of kvs each time. All kvs should accummulate in the db till the end // bunch of kvs each time. All kvs should accummulate in the db till the end
// Partitions the sample-size provided into 3 sets over boundary1 and boundary2 // Partitions the sample-size provided into 3 sets over boundary1 and boundary2
TEST(TtlTest, NoEffect) { TEST(TtlTest, NoEffect) {
MakeKVMap(kSampleSize); MakeKVMap(kSampleSize_);
int boundary1 = kSampleSize / 3; int boundary1 = kSampleSize_ / 3;
int boundary2 = 2 * boundary1; int boundary2 = 2 * boundary1;
OpenTtl(); OpenTtl();
@ -207,135 +285,154 @@ TEST(TtlTest, NoEffect) {
CloseTtl(); CloseTtl();
OpenTtl(-1); OpenTtl(-1);
PutValues(boundary2, kSampleSize - boundary2); //T=3: Set3 never deleted PutValues(boundary2, kSampleSize_ - boundary2); //T=3: Set3 never deleted
SleepCompactCheck(1, 0, kSampleSize, true); //T=4: Sets 1,2,3 still there SleepCompactCheck(1, 0, kSampleSize_, true); //T=4: Sets 1,2,3 still there
CloseTtl(); CloseTtl();
} }
// Puts a set of values and checks its presence using Get during ttl // Puts a set of values and checks its presence using Get during ttl
TEST(TtlTest, PresentDuringTTL) { TEST(TtlTest, PresentDuringTTL) {
MakeKVMap(kSampleSize); MakeKVMap(kSampleSize_);
OpenTtl(2); // T=0:Open the db with ttl = 2 OpenTtl(2); // T=0:Open the db with ttl = 2
PutValues(0, kSampleSize); // T=0:Insert Set1. Delete at t=2 PutValues(0, kSampleSize_); // T=0:Insert Set1. Delete at t=2
SleepCompactCheck(1, 0, kSampleSize, true); // T=1:Set1 should still be there SleepCompactCheck(1, 0, kSampleSize_, true); // T=1:Set1 should still be there
CloseTtl(); CloseTtl();
} }
// Puts a set of values and checks its absence using Get after ttl // Puts a set of values and checks its absence using Get after ttl
TEST(TtlTest, AbsentAfterTTL) { TEST(TtlTest, AbsentAfterTTL) {
MakeKVMap(kSampleSize); MakeKVMap(kSampleSize_);
OpenTtl(1); // T=0:Open the db with ttl = 2 OpenTtl(1); // T=0:Open the db with ttl = 2
PutValues(0, kSampleSize); // T=0:Insert Set1. Delete at t=2 PutValues(0, kSampleSize_); // T=0:Insert Set1. Delete at t=2
SleepCompactCheck(2, 0, kSampleSize, false); // T=2:Set1 should not be there SleepCompactCheck(2, 0, kSampleSize_, false); // T=2:Set1 should not be there
CloseTtl(); CloseTtl();
} }
// Resets the timestamp of a set of kvs by updating them and checks that they // Resets the timestamp of a set of kvs by updating them and checks that they
// are not deleted according to the old timestamp // are not deleted according to the old timestamp
TEST(TtlTest, ResetTimestamp) { TEST(TtlTest, ResetTimestamp) {
MakeKVMap(kSampleSize); MakeKVMap(kSampleSize_);
OpenTtl(3); OpenTtl(3);
PutValues(0, kSampleSize); // T=0: Insert Set1. Delete at t=3 PutValues(0, kSampleSize_); // T=0: Insert Set1. Delete at t=3
sleep(2); // T=2 sleep(2); // T=2
PutValues(0, kSampleSize); // T=2: Insert Set1. Delete at t=5 PutValues(0, kSampleSize_); // T=2: Insert Set1. Delete at t=5
SleepCompactCheck(2, 0, kSampleSize); // T=4: Set1 should still be there SleepCompactCheck(2, 0, kSampleSize_); // T=4: Set1 should still be there
CloseTtl(); CloseTtl();
} }
// Similar to PresentDuringTTL but uses Iterator // Similar to PresentDuringTTL but uses Iterator
TEST(TtlTest, IterPresentDuringTTL) { TEST(TtlTest, IterPresentDuringTTL) {
MakeKVMap(kSampleSize); MakeKVMap(kSampleSize_);
OpenTtl(2); OpenTtl(2);
PutValues(0, kSampleSize); // T=0: Insert. Delete at t=2 PutValues(0, kSampleSize_); // T=0: Insert. Delete at t=2
SleepCompactCheckIter(1, 0, kSampleSize); // T=1: Set should be there SleepCompactCheckIter(1, 0, kSampleSize_); // T=1: Set should be there
CloseTtl(); CloseTtl();
} }
// Similar to AbsentAfterTTL but uses Iterator // Similar to AbsentAfterTTL but uses Iterator
TEST(TtlTest, IterAbsentAfterTTL) { TEST(TtlTest, IterAbsentAfterTTL) {
MakeKVMap(kSampleSize); MakeKVMap(kSampleSize_);
OpenTtl(1); OpenTtl(1);
PutValues(0, kSampleSize); // T=0: Insert. Delete at t=1 PutValues(0, kSampleSize_); // T=0: Insert. Delete at t=1
SleepCompactCheckIter(2, 0, kSampleSize, false); // T=2: Should not be there SleepCompactCheckIter(2, 0, kSampleSize_, false); // T=2: Should not be there
CloseTtl(); CloseTtl();
} }
// Checks presence while opening the same db more than once with the same ttl // Checks presence while opening the same db more than once with the same ttl
// Note: The second open will open the same db // Note: The second open will open the same db
TEST(TtlTest, MultiOpenSamePresent) { TEST(TtlTest, MultiOpenSamePresent) {
MakeKVMap(kSampleSize); MakeKVMap(kSampleSize_);
OpenTtl(2); OpenTtl(2);
PutValues(0, kSampleSize); // T=0: Insert. Delete at t=2 PutValues(0, kSampleSize_); // T=0: Insert. Delete at t=2
CloseTtl(); CloseTtl();
OpenTtl(2); // T=0. Delete at t=2 OpenTtl(2); // T=0. Delete at t=2
SleepCompactCheck(1, 0, kSampleSize); // T=1: Set should be there SleepCompactCheck(1, 0, kSampleSize_); // T=1: Set should be there
CloseTtl(); CloseTtl();
} }
// Checks absence while opening the same db more than once with the same ttl // Checks absence while opening the same db more than once with the same ttl
// Note: The second open will open the same db // Note: The second open will open the same db
TEST(TtlTest, MultiOpenSameAbsent) { TEST(TtlTest, MultiOpenSameAbsent) {
MakeKVMap(kSampleSize); MakeKVMap(kSampleSize_);
OpenTtl(1); OpenTtl(1);
PutValues(0, kSampleSize); // T=0: Insert. Delete at t=1 PutValues(0, kSampleSize_); // T=0: Insert. Delete at t=1
CloseTtl(); CloseTtl();
OpenTtl(1); // T=0.Delete at t=1 OpenTtl(1); // T=0.Delete at t=1
SleepCompactCheck(2, 0, kSampleSize, false); // T=2: Set should not be there SleepCompactCheck(2, 0, kSampleSize_, false); // T=2: Set should not be there
CloseTtl(); CloseTtl();
} }
// Checks presence while opening the same db more than once with bigger ttl // Checks presence while opening the same db more than once with bigger ttl
TEST(TtlTest, MultiOpenDifferent) { TEST(TtlTest, MultiOpenDifferent) {
MakeKVMap(kSampleSize); MakeKVMap(kSampleSize_);
OpenTtl(1); OpenTtl(1);
PutValues(0, kSampleSize); // T=0: Insert. Delete at t=1 PutValues(0, kSampleSize_); // T=0: Insert. Delete at t=1
CloseTtl(); CloseTtl();
OpenTtl(3); // T=0: Set deleted at t=3 OpenTtl(3); // T=0: Set deleted at t=3
SleepCompactCheck(2, 0, kSampleSize); // T=2: Set should be there SleepCompactCheck(2, 0, kSampleSize_); // T=2: Set should be there
CloseTtl(); CloseTtl();
} }
// Checks presence during ttl in read_only mode // Checks presence during ttl in read_only mode
TEST(TtlTest, ReadOnlyPresentForever) { TEST(TtlTest, ReadOnlyPresentForever) {
MakeKVMap(kSampleSize); MakeKVMap(kSampleSize_);
OpenTtl(1); // T=0:Open the db normally OpenTtl(1); // T=0:Open the db normally
PutValues(0, kSampleSize); // T=0:Insert Set1. Delete at t=1 PutValues(0, kSampleSize_); // T=0:Insert Set1. Delete at t=1
CloseTtl(); CloseTtl();
OpenReadOnlyTtl(1); OpenReadOnlyTtl(1);
SleepCompactCheck(2, 0, kSampleSize); // T=2:Set1 should still be there SleepCompactCheck(2, 0, kSampleSize_); // T=2:Set1 should still be there
CloseTtl(); CloseTtl();
} }
// Checks whether WriteBatch works well with TTL // Checks whether WriteBatch works well with TTL
// Puts all kvs in kvmap_ in a batch and writes first, then deletes first half // Puts all kvs in kvmap_ in a batch and writes first, then deletes first half
TEST(TtlTest, WriteBatchTest) { TEST(TtlTest, WriteBatchTest) {
MakeKVMap(kSampleSize); MakeKVMap(kSampleSize_);
BatchOperation batch_ops[kSampleSize]; BatchOperation batch_ops[kSampleSize_];
for (int i = 0; i < kSampleSize; i++) { for (int i = 0; i < kSampleSize_; i++) {
batch_ops[i] = PUT; batch_ops[i] = PUT;
} }
OpenTtl(2); OpenTtl(2);
MakePutWriteBatch(batch_ops, kSampleSize); MakePutWriteBatch(batch_ops, kSampleSize_);
for (int i = 0; i < kSampleSize / 2; i++) { for (int i = 0; i < kSampleSize_ / 2; i++) {
batch_ops[i] = DELETE; batch_ops[i] = DELETE;
} }
MakePutWriteBatch(batch_ops, kSampleSize / 2); MakePutWriteBatch(batch_ops, kSampleSize_ / 2);
SleepCompactCheck(0, 0, kSampleSize / 2, false); SleepCompactCheck(0, 0, kSampleSize_ / 2, false);
SleepCompactCheck(0, kSampleSize / 2, kSampleSize - kSampleSize / 2); SleepCompactCheck(0, kSampleSize_ / 2, kSampleSize_ - kSampleSize_ / 2);
CloseTtl();
}
// Checks user's compaction filter for correctness with TTL logic
TEST(TtlTest, CompactionFilter) {
MakeKVMap(kSampleSize_);
OpenTtlWithTestCompaction(1);
PutValues(0, kSampleSize_); // T=0:Insert Set1. Delete at t=1
// T=2: TTL logic takes precedence over TestFilter:-Set1 should not be there
SleepCompactCheck(2, 0, kSampleSize_, false);
CloseTtl();
OpenTtlWithTestCompaction(3);
PutValues(0, kSampleSize_); // T=0:Insert Set1.
int partition = kSampleSize_ / 3;
SleepCompactCheck(1, 0, partition, false); // Part dropped
SleepCompactCheck(0, partition, partition); // Part kept
SleepCompactCheck(0, 2 * partition, partition, true, true); // Part changed
CloseTtl(); CloseTtl();
} }

Loading…
Cancel
Save