Persistent Read Cache (6) Persistent cache tier implentation - File layout

Summary:
Persistent cache tier is the tier abstraction that can work for any block
device based device mounted on a file system. The design/implementation can
handle any generic block device.

Any generic block support is achieved by generalizing the access patten as
{io-size, q-depth, direct-io/buffered}.

We have specifically tested and adapted the IO path for NVM and SSD.

Persistent cache tier consists of there parts :

1) File layout

Provides the implementation for handling IO path for reading and writing data
(key/value pair).

2) Meta-data
Provides the implementation for handling the index for persistent read cache.

3) Implementation
It binds (1) and (2) and flushed out the PersistentCacheTier interface

This patch provides implementation for (1)(2). Follow up patch will provide (3)
and tests.

Test Plan: Compile and run check

Subscribers: andrewkr, dhruba, leveldb

Differential Revision: https://reviews.facebook.net/D57117
main
krad 9 years ago
parent 9430333f84
commit d9cfaa2b16
  1. 2
      src.mk
  2. 14
      util/mutexlock.h
  3. 575
      utilities/persistent_cache/block_cache_tier_file.cc
  4. 288
      utilities/persistent_cache/block_cache_tier_file.h
  5. 117
      utilities/persistent_cache/block_cache_tier_file_buffer.h
  6. 83
      utilities/persistent_cache/block_cache_tier_metadata.cc
  7. 124
      utilities/persistent_cache/block_cache_tier_metadata.h
  8. 67
      utilities/persistent_cache/persistent_cache_util.h

@ -134,6 +134,8 @@ LIB_SOURCES = \
utilities/options/options_util.cc \ utilities/options/options_util.cc \
utilities/persistent_cache/persistent_cache_tier.cc \ utilities/persistent_cache/persistent_cache_tier.cc \
utilities/persistent_cache/volatile_tier_impl.cc \ utilities/persistent_cache/volatile_tier_impl.cc \
utilities/persistent_cache/block_cache_tier_file.cc \
utilities/persistent_cache/block_cache_tier_metadata.cc \
utilities/redis/redis_lists.cc \ utilities/redis/redis_lists.cc \
utilities/simulator_cache/sim_cache.cc \ utilities/simulator_cache/sim_cache.cc \
utilities/spatialdb/spatial_db.cc \ utilities/spatialdb/spatial_db.cc \

@ -59,6 +59,20 @@ class ReadLock {
void operator=(const ReadLock&); void operator=(const ReadLock&);
}; };
//
// Automatically unlock a locked mutex when the object is destroyed
//
class ReadUnlock {
public:
explicit ReadUnlock(port::RWMutex *mu) : mu_(mu) { mu->AssertHeld(); }
~ReadUnlock() { mu_->ReadUnlock(); }
private:
port::RWMutex *const mu_;
// No copying allowed
ReadUnlock(const ReadUnlock &) = delete;
ReadUnlock &operator=(const ReadUnlock &) = delete;
};
// //
// Acquire a WriteLock on the specified RWMutex. // Acquire a WriteLock on the specified RWMutex.

@ -0,0 +1,575 @@
// Copyright (c) 2013, Facebook, Inc. All rights reserved.
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree. An additional grant
// of patent rights can be found in the PATENTS file in the same directory.
#ifndef ROCKSDB_LITE
#include "utilities/persistent_cache/block_cache_tier_file.h"
#include <unistd.h>
#include <memory>
#include <vector>
#include "util/crc32c.h"
namespace rocksdb {
//
// File creation factories
//
Status NewWritableCacheFile(Env* const env, const std::string& filepath,
std::unique_ptr<WritableFile>* file,
const bool use_direct_writes = false) {
EnvOptions opt;
opt.use_direct_writes = use_direct_writes;
Status s = env->NewWritableFile(filepath, file, opt);
return s;
}
Status NewRandomAccessCacheFile(Env* const env, const std::string& filepath,
std::unique_ptr<RandomAccessFile>* file,
const bool use_direct_reads = true) {
EnvOptions opt;
opt.use_direct_reads = use_direct_reads;
Status s = env->NewRandomAccessFile(filepath, file, opt);
return s;
}
//
// BlockCacheFile
//
Status BlockCacheFile::Delete(size_t* size) {
Status status = env_->GetFileSize(Path(), size);
if (!status.ok()) {
return status;
}
return env_->DeleteFile(Path());
}
//
// CacheRecord
//
// Cache record represents the record on disk
//
// +--------+---------+----------+------------+---------------+-------------+
// | magic | crc | key size | value size | key data | value data |
// +--------+---------+----------+------------+---------------+-------------+
// <-- 4 --><-- 4 --><-- 4 --><-- 4 --><-- key size --><-- v-size -->
//
struct CacheRecordHeader {
CacheRecordHeader() {}
CacheRecordHeader(const uint32_t magic, const uint32_t key_size,
const uint32_t val_size)
: magic_(magic), crc_(0), key_size_(key_size), val_size_(val_size) {}
uint32_t magic_;
uint32_t crc_;
uint32_t key_size_;
uint32_t val_size_;
};
struct CacheRecord {
CacheRecord() {}
CacheRecord(const Slice& key, const Slice& val)
: hdr_(MAGIC, static_cast<uint32_t>(key.size()),
static_cast<uint32_t>(val.size())),
key_(key),
val_(val) {
hdr_.crc_ = ComputeCRC();
}
uint32_t ComputeCRC() const;
bool Serialize(std::vector<CacheWriteBuffer*>* bufs, size_t* woff);
bool Deserialize(const Slice& buf);
static uint32_t CalcSize(const Slice& key, const Slice& val) {
return static_cast<uint32_t>(sizeof(CacheRecordHeader) + key.size() +
val.size());
}
static const uint32_t MAGIC = 0xfefa;
bool Append(std::vector<CacheWriteBuffer*>* bufs, size_t* woff,
const char* data, const size_t size);
CacheRecordHeader hdr_;
Slice key_;
Slice val_;
};
static_assert(sizeof(CacheRecordHeader) == 16, "DataHeader is not aligned");
uint32_t CacheRecord::ComputeCRC() const {
uint32_t crc = 0;
CacheRecordHeader tmp = hdr_;
tmp.crc_ = 0;
crc = crc32c::Extend(crc, reinterpret_cast<const char*>(&tmp), sizeof(tmp));
crc = crc32c::Extend(crc, reinterpret_cast<const char*>(key_.data()),
key_.size());
crc = crc32c::Extend(crc, reinterpret_cast<const char*>(val_.data()),
val_.size());
return crc;
}
bool CacheRecord::Serialize(std::vector<CacheWriteBuffer*>* bufs,
size_t* woff) {
assert(bufs->size());
return Append(bufs, woff, reinterpret_cast<const char*>(&hdr_),
sizeof(hdr_)) &&
Append(bufs, woff, reinterpret_cast<const char*>(key_.data()),
key_.size()) &&
Append(bufs, woff, reinterpret_cast<const char*>(val_.data()),
val_.size());
}
bool CacheRecord::Append(std::vector<CacheWriteBuffer*>* bufs, size_t* woff,
const char* data, const size_t data_size) {
assert(*woff < bufs->size());
const char* p = data;
size_t size = data_size;
while (size && *woff < bufs->size()) {
CacheWriteBuffer* buf = (*bufs)[*woff];
const size_t free = buf->Free();
if (size <= free) {
buf->Append(p, size);
size = 0;
} else {
buf->Append(p, free);
p += free;
size -= free;
assert(!buf->Free());
assert(buf->Used() == buf->Capacity());
}
if (!buf->Free()) {
*woff += 1;
}
}
assert(!size);
return !size;
}
bool CacheRecord::Deserialize(const Slice& data) {
assert(data.size() >= sizeof(CacheRecordHeader));
if (data.size() < sizeof(CacheRecordHeader)) {
return false;
}
memcpy(&hdr_, data.data(), sizeof(hdr_));
assert(hdr_.key_size_ + hdr_.val_size_ + sizeof(hdr_) == data.size());
if (hdr_.key_size_ + hdr_.val_size_ + sizeof(hdr_) != data.size()) {
return false;
}
key_ = Slice(data.data_ + sizeof(hdr_), hdr_.key_size_);
val_ = Slice(key_.data_ + hdr_.key_size_, hdr_.val_size_);
if (!(hdr_.magic_ == MAGIC && ComputeCRC() == hdr_.crc_)) {
fprintf(stderr, "** magic %d ** \n", hdr_.magic_);
fprintf(stderr, "** key_size %d ** \n", hdr_.key_size_);
fprintf(stderr, "** val_size %d ** \n", hdr_.val_size_);
fprintf(stderr, "** key %s ** \n", key_.ToString().c_str());
fprintf(stderr, "** val %s ** \n", val_.ToString().c_str());
for (size_t i = 0; i < hdr_.val_size_; ++i) {
fprintf(stderr, "%d.", (uint8_t)val_.data()[i]);
}
fprintf(stderr, "\n** cksum %d != %d **", hdr_.crc_, ComputeCRC());
}
assert(hdr_.magic_ == MAGIC && ComputeCRC() == hdr_.crc_);
return hdr_.magic_ == MAGIC && ComputeCRC() == hdr_.crc_;
}
//
// RandomAccessFile
//
bool RandomAccessCacheFile::Open() {
WriteLock _(&rwlock_);
return OpenImpl();
}
bool RandomAccessCacheFile::OpenImpl() {
rwlock_.AssertHeld();
Debug(log_, "Opening cache file %s", Path().c_str());
Status status = NewRandomAccessCacheFile(env_, Path(), &file_);
if (!status.ok()) {
Error(log_, "Error opening random access file %s. %s", Path().c_str(),
status.ToString().c_str());
return false;
}
return true;
}
bool RandomAccessCacheFile::Read(const LBA& lba, Slice* key, Slice* val,
char* scratch) {
ReadLock _(&rwlock_);
assert(lba.cache_id_ == cache_id_);
assert(file_);
Slice result;
Status s = file_->Read(lba.off_, lba.size_, &result, scratch);
if (!s.ok()) {
Error(log_, "Error reading from file %s. %s", Path().c_str(),
s.ToString().c_str());
return false;
}
assert(result.data() == scratch);
return ParseRec(lba, key, val, scratch);
}
bool RandomAccessCacheFile::ParseRec(const LBA& lba, Slice* key, Slice* val,
char* scratch) {
Slice data(scratch, lba.size_);
CacheRecord rec;
if (!rec.Deserialize(data)) {
assert(!"Error deserializing data");
Error(log_, "Error de-serializing record from file %s off %d",
Path().c_str(), lba.off_);
return false;
}
*key = Slice(rec.key_);
*val = Slice(rec.val_);
return true;
}
//
// WriteableCacheFile
//
WriteableCacheFile::~WriteableCacheFile() {
WriteLock _(&rwlock_);
if (!eof_) {
// This file never flushed. We give priority to shutdown since this is a
// cache
// TODO(krad): Figure a way to flush the pending data
assert(file_);
assert(refs_ == 1);
--refs_;
}
ClearBuffers();
}
bool WriteableCacheFile::Create() {
WriteLock _(&rwlock_);
Debug(log_, "Creating new cache %s (max size is %d B)", Path().c_str(),
max_size_);
Status s = env_->FileExists(Path());
if (s.ok()) {
Warn(log_, "File %s already exists. %s", Path().c_str(),
s.ToString().c_str());
}
s = NewWritableCacheFile(env_, Path(), &file_);
if (!s.ok()) {
Warn(log_, "Unable to create file %s. %s", Path().c_str(),
s.ToString().c_str());
return false;
}
assert(!refs_);
++refs_;
return true;
}
bool WriteableCacheFile::Append(const Slice& key, const Slice& val, LBA* lba) {
WriteLock _(&rwlock_);
if (eof_) {
// We can't append since the file is full
return false;
}
// estimate the space required to store the (key, val)
uint32_t rec_size = CacheRecord::CalcSize(key, val);
if (!ExpandBuffer(rec_size)) {
// unable to expand the buffer
Debug(log_, "Error expanding buffers. size=%d", rec_size);
return false;
}
lba->cache_id_ = cache_id_;
lba->off_ = disk_woff_;
lba->size_ = rec_size;
CacheRecord rec(key, val);
if (!rec.Serialize(&bufs_, &buf_woff_)) {
// unexpected error: unable to serialize the data
assert(!"Error serializing record");
return false;
}
disk_woff_ += rec_size;
eof_ = disk_woff_ >= max_size_;
// dispatch buffer for flush
DispatchBuffer();
return true;
}
bool WriteableCacheFile::ExpandBuffer(const size_t size) {
rwlock_.AssertHeld();
assert(!eof_);
// determine if there is enough space
size_t free = 0; // compute the free space left in buffer
for (size_t i = buf_woff_; i < bufs_.size(); ++i) {
free += bufs_[i]->Free();
if (size <= free) {
// we have enough space in the buffer
return true;
}
}
// expand the buffer until there is enough space to write `size` bytes
assert(free < size);
while (free < size) {
CacheWriteBuffer* const buf = alloc_->Allocate();
if (!buf) {
Debug(log_, "Unable to allocate buffers");
return false;
}
size_ += buf->Free();
free += buf->Free();
bufs_.push_back(buf);
}
assert(free >= size);
return true;
}
void WriteableCacheFile::DispatchBuffer() {
rwlock_.AssertHeld();
assert(bufs_.size());
assert(buf_doff_ <= buf_woff_);
assert(buf_woff_ <= bufs_.size());
if (pending_ios_) {
return;
}
if (!eof_ && buf_doff_ == buf_woff_) {
// dispatch buffer is pointing to write buffer and we haven't hit eof
return;
}
assert(eof_ || buf_doff_ < buf_woff_);
assert(buf_doff_ < bufs_.size());
assert(file_);
auto* buf = bufs_[buf_doff_];
const uint64_t file_off = buf_doff_ * alloc_->BufferSize();
assert(!buf->Free() ||
(eof_ && buf_doff_ == buf_woff_ && buf_woff_ < bufs_.size()));
// we have reached end of file, and there is space in the last buffer
// pad it with zero for direct IO
buf->FillTrailingZeros();
assert(buf->Used() % FILE_ALIGNMENT_SIZE == 0);
writer_->Write(file_.get(), buf, file_off,
std::bind(&WriteableCacheFile::BufferWriteDone, this));
pending_ios_++;
buf_doff_++;
}
void WriteableCacheFile::BufferWriteDone() {
WriteLock _(&rwlock_);
assert(bufs_.size());
pending_ios_--;
if (buf_doff_ < bufs_.size()) {
DispatchBuffer();
}
if (eof_ && buf_doff_ >= bufs_.size() && !pending_ios_) {
// end-of-file reached, move to read mode
CloseAndOpenForReading();
}
}
void WriteableCacheFile::CloseAndOpenForReading() {
// Our env abstraction do not allow reading from a file opened for appending
// We need close the file and re-open it for reading
Close();
RandomAccessCacheFile::OpenImpl();
}
bool WriteableCacheFile::ReadBuffer(const LBA& lba, Slice* key, Slice* block,
char* scratch) {
rwlock_.AssertHeld();
if (!ReadBuffer(lba, scratch)) {
Error(log_, "Error reading from buffer. cache=%d off=%d", cache_id_,
lba.off_);
return false;
}
return ParseRec(lba, key, block, scratch);
}
bool WriteableCacheFile::ReadBuffer(const LBA& lba, char* data) {
rwlock_.AssertHeld();
assert(lba.off_ < disk_woff_);
// we read from the buffers like reading from a flat file. The list of buffers
// are treated as contiguous stream of data
char* tmp = data;
size_t pending_nbytes = lba.size_;
// start buffer
size_t start_idx = lba.off_ / alloc_->BufferSize();
// offset into the start buffer
size_t start_off = lba.off_ % alloc_->BufferSize();
assert(start_idx <= buf_woff_);
for (size_t i = start_idx; pending_nbytes && i < bufs_.size(); ++i) {
assert(i <= buf_woff_);
auto* buf = bufs_[i];
assert(i == buf_woff_ || !buf->Free());
// bytes to write to the buffer
size_t nbytes = pending_nbytes > (buf->Used() - start_off)
? (buf->Used() - start_off)
: pending_nbytes;
memcpy(tmp, buf->Data() + start_off, nbytes);
// left over to be written
pending_nbytes -= nbytes;
start_off = 0;
tmp += nbytes;
}
assert(!pending_nbytes);
if (pending_nbytes) {
return false;
}
assert(tmp == data + lba.size_);
return true;
}
void WriteableCacheFile::Close() {
rwlock_.AssertHeld();
assert(size_ >= max_size_);
assert(disk_woff_ >= max_size_);
assert(buf_doff_ == bufs_.size());
assert(bufs_.size() - buf_woff_ <= 1);
assert(!pending_ios_);
Info(log_, "Closing file %s. size=%d written=%d", Path().c_str(), size_,
disk_woff_);
ClearBuffers();
file_.reset();
assert(refs_);
--refs_;
}
void WriteableCacheFile::ClearBuffers() {
for (size_t i = 0; i < bufs_.size(); ++i) {
alloc_->Deallocate(bufs_[i]);
}
bufs_.clear();
}
//
// ThreadedFileWriter implementation
//
ThreadedWriter::ThreadedWriter(PersistentCacheTier* const cache,
const size_t qdepth, const size_t io_size)
: Writer(cache), io_size_(io_size) {
for (size_t i = 0; i < qdepth; ++i) {
std::thread th(&ThreadedWriter::ThreadMain, this);
threads_.push_back(std::move(th));
}
}
void ThreadedWriter::Stop() {
// notify all threads to exit
for (size_t i = 0; i < threads_.size(); ++i) {
q_.Push(IO(/*signal=*/true));
}
// wait for all threads to exit
for (auto& th : threads_) {
th.join();
}
}
void ThreadedWriter::Write(WritableFile* const file, CacheWriteBuffer* buf,
const uint64_t file_off,
const std::function<void()> callback) {
q_.Push(IO(file, buf, file_off, callback));
}
void ThreadedWriter::ThreadMain() {
while (true) {
// Fetch the IO to process
IO io(q_.Pop());
if (io.signal_) {
// that's secret signal to exit
break;
}
// Reserve space for writing the buffer
while (!cache_->Reserve(io.buf_->Used())) {
// We can fail to reserve space if every file in the system
// is being currently accessed
/* sleep override */ sleep(1);
}
DispatchIO(io);
io.callback_();
}
}
void ThreadedWriter::DispatchIO(const IO& io) {
size_t written = 0;
while (written < io.buf_->Used()) {
Slice data(io.buf_->Data() + written, io_size_);
Status s = io.file_->Append(data);
assert(s.ok());
if (!s.ok()) {
// That is definite IO error to device. There is not much we can
// do but ignore the failure. This can lead to corruption of data on
// disk, but the cache will skip while reading
fprintf(stderr, "Error writing data to file. %s\n", s.ToString().c_str());
}
written += io_size_;
}
}
} // namespace rocksdb
#endif

@ -0,0 +1,288 @@
// Copyright (c) 2013, Facebook, Inc. All rights reserved.
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree. An additional grant
// of patent rights can be found in the PATENTS file in the same directory.
#pragma once
#ifndef ROCKSDB_LITE
#include <list>
#include <memory>
#include <string>
#include <vector>
#include "rocksdb/comparator.h"
#include "rocksdb/env.h"
#include "utilities/persistent_cache/block_cache_tier_file_buffer.h"
#include "utilities/persistent_cache/lrulist.h"
#include "utilities/persistent_cache/persistent_cache_tier.h"
#include "utilities/persistent_cache/persistent_cache_util.h"
#include "port/port_posix.h"
#include "util/crc32c.h"
#include "util/mutexlock.h"
// The io code path of persistent cache uses pipelined architecture
//
// client -> In Queue <-- BlockCacheTier --> Out Queue <-- Writer <--> Kernel
//
// This would enable the system to scale for GB/s of throughput which is
// expected with modern devies like NVM.
//
// The file level operations are encapsulated in the following abstractions
//
// BlockCacheFile
// ^
// |
// |
// RandomAccessCacheFile (For reading)
// ^
// |
// |
// WriteableCacheFile (For writing)
//
// Write IO code path :
//
namespace rocksdb {
class WriteableCacheFile;
struct BlockInfo;
// Represents a logical record on device
//
// (L)ogical (B)lock (Address = { cache-file-id, offset, size }
struct LogicalBlockAddress {
LogicalBlockAddress() {}
explicit LogicalBlockAddress(const uint32_t cache_id, const uint32_t off,
const uint16_t size)
: cache_id_(cache_id), off_(off), size_(size) {}
uint32_t cache_id_ = 0;
uint32_t off_ = 0;
uint32_t size_ = 0;
};
typedef LogicalBlockAddress LBA;
// class Writer
//
// Writer is the abstraction used for writing data to file. The component can be
// multithreaded. It is the last step of write pipeline
class Writer {
public:
explicit Writer(PersistentCacheTier* const cache) : cache_(cache) {}
virtual ~Writer() {}
// write buffer to file at the given offset
virtual void Write(WritableFile* const file, CacheWriteBuffer* buf,
const uint64_t file_off,
const std::function<void()> callback) = 0;
// stop the writer
virtual void Stop() = 0;
PersistentCacheTier* const cache_;
};
// class BlockCacheFile
//
// Generic interface to support building file specialized for read/writing
class BlockCacheFile : public LRUElement<BlockCacheFile> {
public:
explicit BlockCacheFile(const uint32_t cache_id)
: LRUElement<BlockCacheFile>(), cache_id_(cache_id) {}
explicit BlockCacheFile(Env* const env, const std::string& dir,
const uint32_t cache_id)
: LRUElement<BlockCacheFile>(),
env_(env),
dir_(dir),
cache_id_(cache_id) {}
virtual ~BlockCacheFile() {}
// append key/value to file and return LBA locator to user
virtual bool Append(const Slice& key, const Slice& val, LBA* const lba) {
assert(!"not implemented");
return false;
}
// read from the record locator (LBA) and return key, value and status
virtual bool Read(const LBA& lba, Slice* key, Slice* block, char* scratch) {
assert(!"not implemented");
return false;
}
// get file path
std::string Path() const { return dir_ + "/" + std::to_string(cache_id_); }
// get cache ID
uint32_t cacheid() const { return cache_id_; }
// Add block information to file data
// Block information is the list of index reference for this file
virtual void Add(BlockInfo* binfo) {
WriteLock _(&rwlock_);
block_infos_.push_back(binfo);
}
// get block information
std::list<BlockInfo*>& block_infos() { return block_infos_; }
// delete file and return the size of the file
virtual Status Delete(size_t* size);
protected:
port::RWMutex rwlock_; // synchronization mutex
Env* const env_ = nullptr; // Env for IO
const std::string dir_; // Directory name
const uint32_t cache_id_; // Cache id for the file
std::list<BlockInfo*> block_infos_; // List of index entries mapping to the
// file content
};
// class RandomAccessFile
//
// Thread safe implementation for reading random data from file
class RandomAccessCacheFile : public BlockCacheFile {
public:
explicit RandomAccessCacheFile(Env* const env, const std::string& dir,
const uint32_t cache_id,
const shared_ptr<Logger>& log)
: BlockCacheFile(env, dir, cache_id), log_(log) {}
virtual ~RandomAccessCacheFile() {}
// open file for reading
bool Open();
// read data from the disk
bool Read(const LBA& lba, Slice* key, Slice* block, char* scratch) override;
private:
std::unique_ptr<RandomAccessFile> file_;
protected:
bool OpenImpl();
bool ParseRec(const LBA& lba, Slice* key, Slice* val, char* scratch);
std::shared_ptr<Logger> log_; // log file
};
// class WriteableCacheFile
//
// All writes to the files are cached in buffers. The buffers are flushed to
// disk as they get filled up. When file size reaches a certain size, a new file
// will be created provided there is free space
class WriteableCacheFile : public RandomAccessCacheFile {
public:
explicit WriteableCacheFile(Env* const env, CacheWriteBufferAllocator* alloc,
Writer* writer, const std::string& dir,
const uint32_t cache_id, const uint32_t max_size,
const std::shared_ptr<Logger>& log)
: RandomAccessCacheFile(env, dir, cache_id, log),
alloc_(alloc),
writer_(writer),
max_size_(max_size) {}
virtual ~WriteableCacheFile();
// create file on disk
bool Create();
// read data from logical file
bool Read(const LBA& lba, Slice* key, Slice* block, char* scratch) override {
ReadLock _(&rwlock_);
const bool closed = eof_ && bufs_.empty();
if (closed) {
// the file is closed, read from disk
return RandomAccessCacheFile::Read(lba, key, block, scratch);
}
// file is still being written, read from buffers
return ReadBuffer(lba, key, block, scratch);
}
// append data to end of file
bool Append(const Slice&, const Slice&, LBA*) override;
// End-of-file
bool Eof() const { return eof_; }
private:
friend class ThreadedWriter;
static const size_t FILE_ALIGNMENT_SIZE = 4 * 1024; // align file size
bool ReadBuffer(const LBA& lba, Slice* key, Slice* block, char* scratch);
bool ReadBuffer(const LBA& lba, char* data);
bool ExpandBuffer(const size_t size);
void DispatchBuffer();
void BufferWriteDone();
void CloseAndOpenForReading();
void ClearBuffers();
void Close();
// File layout in memory
//
// +------+------+------+------+------+------+
// | b0 | b1 | b2 | b3 | b4 | b5 |
// +------+------+------+------+------+------+
// ^ ^
// | |
// buf_doff_ buf_woff_
// (next buffer to (next buffer to fill)
// flush to disk)
//
// The buffers are flushed to disk serially for a given file
CacheWriteBufferAllocator* const alloc_ = nullptr; // Buffer provider
Writer* const writer_ = nullptr; // File writer thread
std::unique_ptr<WritableFile> file_; // RocksDB Env file abstraction
std::vector<CacheWriteBuffer*> bufs_; // Written buffers
uint32_t size_ = 0; // Size of the file
const uint32_t max_size_; // Max size of the file
bool eof_ = false; // End of file
uint32_t disk_woff_ = 0; // Offset to write on disk
size_t buf_woff_ = 0; // off into bufs_ to write
size_t buf_doff_ = 0; // off into bufs_ to dispatch
size_t pending_ios_ = 0; // Number of ios to disk in-progress
};
//
// Abstraction to do writing to device. It is part of pipelined architecture.
//
class ThreadedWriter : public Writer {
public:
// Representation of IO to device
struct IO {
explicit IO(const bool signal) : signal_(signal) {}
explicit IO(WritableFile* const file, CacheWriteBuffer* const buf,
const uint64_t file_off, const std::function<void()> callback)
: file_(file), buf_(buf), file_off_(file_off), callback_(callback) {}
IO(const IO&) = default;
IO& operator=(const IO&) = default;
size_t Size() const { return sizeof(IO); }
WritableFile* file_ = nullptr; // File to write to
CacheWriteBuffer* const buf_ = nullptr; // buffer to write
uint64_t file_off_ = 0; // file offset
bool signal_ = false; // signal to exit thread loop
std::function<void()> callback_; // Callback on completion
};
explicit ThreadedWriter(PersistentCacheTier* const cache, const size_t qdepth,
const size_t io_size);
virtual ~ThreadedWriter() {}
void Stop() override;
void Write(WritableFile* const file, CacheWriteBuffer* buf,
const uint64_t file_off,
const std::function<void()> callback) override;
private:
void ThreadMain();
void DispatchIO(const IO& io);
const size_t io_size_ = 0;
BoundedQueue<IO> q_;
std::vector<std::thread> threads_;
};
} // namespace rocksdb
#endif

@ -0,0 +1,117 @@
// Copyright (c) 2013, Facebook, Inc. All rights reserved.
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree. An additional grant
// of patent rights can be found in the PATENTS file in the same directory.
#pragma once
#include <list>
#include <memory>
#include <string>
#include "include/rocksdb/comparator.h"
#include "util/arena.h"
#include "util/mutexlock.h"
namespace rocksdb {
//
// CacheWriteBuffer
//
// Buffer abstraction that can be manipulated via append
// (not thread safe)
class CacheWriteBuffer {
public:
explicit CacheWriteBuffer(const size_t size) : size_(size), pos_(0) {
buf_.reset(new char[size_]);
assert(!pos_);
assert(size_);
}
virtual ~CacheWriteBuffer() {}
void Append(const char* buf, const size_t size) {
assert(pos_ + size <= size_);
memcpy(buf_.get() + pos_, buf, size);
pos_ += size;
assert(pos_ <= size_);
}
void FillTrailingZeros() {
assert(pos_ <= size_);
memset(buf_.get() + pos_, '0', size_ - pos_);
pos_ = size_;
}
void Reset() { pos_ = 0; }
size_t Free() const { return size_ - pos_; }
size_t Capacity() const { return size_; }
size_t Used() const { return pos_; }
char* Data() const { return buf_.get(); }
private:
std::unique_ptr<char[]> buf_;
const size_t size_;
size_t pos_;
};
//
// CacheWriteBufferAllocator
//
// Buffer pool abstraction(not thread safe)
//
class CacheWriteBufferAllocator {
public:
explicit CacheWriteBufferAllocator(const uint32_t buffer_size,
const uint32_t buffer_count)
: buffer_size_(buffer_size) {
MutexLock _(&lock_);
buffer_size_ = buffer_size;
for (uint32_t i = 0; i < buffer_count; i++) {
auto* buf = new CacheWriteBuffer(buffer_size_);
assert(buf);
if (buf) {
bufs_.push_back(buf);
}
}
}
virtual ~CacheWriteBufferAllocator() {
MutexLock _(&lock_);
assert(bufs_.size() * buffer_size_ == Capacity());
for (auto* buf : bufs_) {
delete buf;
}
bufs_.clear();
}
CacheWriteBuffer* Allocate() {
MutexLock _(&lock_);
if (bufs_.empty()) {
return nullptr;
}
assert(!bufs_.empty());
CacheWriteBuffer* const buf = bufs_.front();
bufs_.pop_front();
return buf;
}
void Deallocate(CacheWriteBuffer* const buf) {
assert(buf);
MutexLock _(&lock_);
buf->Reset();
bufs_.push_back(buf);
}
size_t Capacity() const { return bufs_.size() * buffer_size_; }
size_t Free() const { return bufs_.size() * buffer_size_; }
size_t BufferSize() const { return buffer_size_; }
private:
port::Mutex lock_; // Sync lock
size_t buffer_size_; // Size of each buffer
std::list<CacheWriteBuffer*> bufs_; // Buffer stash
};
} // namespace rocksdb

@ -0,0 +1,83 @@
// Copyright (c) 2013, Facebook, Inc. All rights reserved.
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree. An additional grant
// of patent rights can be found in the PATENTS file in the same directory.
#ifndef ROCKSDB_LITE
#include "utilities/persistent_cache/block_cache_tier_metadata.h"
#include <functional>
namespace rocksdb {
bool BlockCacheTierMetadata::Insert(BlockCacheFile* file) {
return cache_file_index_.Insert(file);
}
BlockCacheFile* BlockCacheTierMetadata::Lookup(const uint32_t cache_id) {
BlockCacheFile* ret = nullptr;
BlockCacheFile lookup_key(cache_id);
bool ok = cache_file_index_.Find(&lookup_key, &ret);
if (ok) {
assert(ret->refs_);
return ret;
}
return nullptr;
}
BlockCacheFile* BlockCacheTierMetadata::Evict() {
using std::placeholders::_1;
auto fn = std::bind(&BlockCacheTierMetadata::RemoveAllKeys, this, _1);
return cache_file_index_.Evict(fn);
}
void BlockCacheTierMetadata::Clear() {
cache_file_index_.Clear([](BlockCacheFile* arg){ delete arg; });
block_index_.Clear([](BlockInfo* arg){ delete arg; });
}
bool BlockCacheTierMetadata::Insert(BlockInfo* binfo) {
return block_index_.Insert(binfo);
}
bool BlockCacheTierMetadata::Lookup(const Slice& key, LBA* lba) {
BlockInfo lookup_key(key);
BlockInfo* block;
port::RWMutex* rlock = nullptr;
if (!block_index_.Find(&lookup_key, &block, &rlock)) {
return false;
}
ReadUnlock _(rlock);
assert(block->key_ == key.ToString());
if (lba) {
*lba = block->lba_;
}
return true;
}
BlockInfo* BlockCacheTierMetadata::Remove(const Slice& key) {
BlockInfo lookup_key(key);
BlockInfo* binfo = nullptr;
bool status __attribute__((__unused__)) =
block_index_.Erase(&lookup_key, &binfo);
(void)status;
assert(status);
return binfo;
}
void BlockCacheTierMetadata::RemoveAllKeys(BlockCacheFile* f) {
for (BlockInfo* binfo : f->block_infos()) {
BlockInfo* tmp = nullptr;
bool status = block_index_.Erase(binfo, &tmp);
(void)status;
assert(status);
assert(tmp == binfo);
delete binfo;
}
f->block_infos().clear();
}
} // namespace rocksdb
#endif

@ -0,0 +1,124 @@
// Copyright (c) 2013, Facebook, Inc. All rights reserved.
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree. An additional grant
// of patent rights can be found in the PATENTS file in the same directory.
#pragma once
#ifndef ROCKSDB_LITE
#include <functional>
#include <string>
#include <unordered_map>
#include "rocksdb/slice.h"
#include "utilities/persistent_cache/block_cache_tier_file.h"
#include "utilities/persistent_cache/hash_table.h"
#include "utilities/persistent_cache/hash_table_evictable.h"
#include "utilities/persistent_cache/lrulist.h"
namespace rocksdb {
//
// Block Cache Tier Metadata
//
// The BlockCacheTierMetadata holds all the metadata associated with block
// cache. It
// fundamentally contains 2 indexes and an LRU.
//
// Block Cache Index
//
// This is a forward index that maps a given key to a LBA (Logical Block
// Address). LBA is a disk pointer that points to a record on the cache.
//
// LBA = { cache-id, offset, size }
//
// Cache File Index
//
// This is a forward index that maps a given cache-id to a cache file object.
// Typically you would lookup using LBA and use the object to read or write
struct BlockInfo {
explicit BlockInfo(const Slice& key, const LBA& lba = LBA())
: key_(key.ToString()), lba_(lba) {}
std::string key_;
LBA lba_;
};
class BlockCacheTierMetadata {
public:
explicit BlockCacheTierMetadata(const uint32_t blocks_capacity = 1024 * 1024,
const uint32_t cachefile_capacity = 10 * 1024)
: cache_file_index_(cachefile_capacity), block_index_(blocks_capacity) {}
virtual ~BlockCacheTierMetadata() {}
// Insert a given cache file
bool Insert(BlockCacheFile* file);
// Lookup cache file based on cache_id
BlockCacheFile* Lookup(const uint32_t cache_id);
// Insert block information to block index
bool Insert(BlockInfo* binfo);
// Lookup block information from block index
bool Lookup(const Slice& key, LBA* lba);
// Remove a given from the block index
BlockInfo* Remove(const Slice& key);
// Find and evict a cache file using LRU policy
BlockCacheFile* Evict();
// Clear the metadata contents
virtual void Clear();
protected:
// Remove all block information from a given file
virtual void RemoveAllKeys(BlockCacheFile* file);
private:
// Cache file index definition
//
// cache-id => BlockCacheFile
struct BlockCacheFileHash {
uint64_t operator()(const BlockCacheFile* rec) {
return std::hash<uint32_t>()(rec->cacheid());
}
};
struct BlockCacheFileEqual {
uint64_t operator()(const BlockCacheFile* lhs, const BlockCacheFile* rhs) {
return lhs->cacheid() == rhs->cacheid();
}
};
typedef EvictableHashTable<BlockCacheFile, BlockCacheFileHash,
BlockCacheFileEqual>
CacheFileIndexType;
// Block Lookup Index
//
// key => LBA
struct Hash {
size_t operator()(BlockInfo* node) const {
return std::hash<std::string>()(node->key_);
}
};
struct Equal {
size_t operator()(BlockInfo* lhs, BlockInfo* rhs) const {
return lhs->key_ == rhs->key_;
}
};
typedef HashTable<BlockInfo*, Hash, Equal> BlockIndexType;
CacheFileIndexType cache_file_index_;
BlockIndexType block_index_;
};
} // namespace rocksdb
#endif

@ -0,0 +1,67 @@
// Copyright (c) 2013, Facebook, Inc. All rights reserved.
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree. An additional grant
// of patent rights can be found in the PATENTS file in the same directory.
#pragma once
#include <limits>
#include <list>
#include "util/mutexlock.h"
namespace rocksdb {
//
// Simple synchronized queue implementation with the option of
// bounding the queue
//
// On overflow, the elements will be discarded
//
template <class T>
class BoundedQueue {
public:
explicit BoundedQueue(
const size_t max_size = std::numeric_limits<size_t>::max())
: cond_empty_(&lock_), max_size_(max_size) {}
virtual ~BoundedQueue() {}
void Push(T&& t) {
MutexLock _(&lock_);
if (max_size_ != std::numeric_limits<size_t>::max() &&
size_ + t.Size() >= max_size_) {
// overflow
return;
}
size_ += t.Size();
q_.push_back(std::move(t));
cond_empty_.SignalAll();
}
T Pop() {
MutexLock _(&lock_);
while (q_.empty()) {
cond_empty_.Wait();
}
T t = std::move(q_.front());
size_ -= t.Size();
q_.pop_front();
return std::move(t);
}
size_t Size() const {
MutexLock _(&lock_);
return size_;
}
private:
mutable port::Mutex lock_;
port::CondVar cond_empty_;
std::list<T> q_;
size_t size_ = 0;
const size_t max_size_;
};
} // namespace rocksdb
Loading…
Cancel
Save