Tag:
Branch:
Tree:
a7d4eb2f34
main
oxigraph-8.1.1
oxigraph-8.3.2
oxigraph-main
${ noResults }
18 Commits (a7d4eb2f34d3177b9c062474626503a40c530e34)
Author | SHA1 | Message | Date |
---|---|---|---|
Baraa Hamodi | 21e95811d1 |
Updated all copyright headers to the new format.
|
9 years ago |
Andrew Kryczka | e089db40f9 |
Skip bottom-level filter block caching when hit-optimized
Summary: When Get() or NewIterator() trigger file loads, skip caching the filter block if (1) optimize_filters_for_hits is set and (2) the file is on the bottommost level. Also skip checking filters under the same conditions, which means that for a preloaded file or a file that was trivially-moved to the bottom level, its filter block will eventually expire from the cache. - added parameters/instance variables in various places in order to propagate the config ("skip_filters") from version_set to block_based_table_reader - in BlockBasedTable::Rep, this optimization prevents filter from being loaded when the file is opened simply by setting filter_policy = nullptr - in BlockBasedTable::Get/BlockBasedTable::NewIterator, this optimization prevents filter from being used (even if it was loaded already) by setting filter = nullptr Test Plan: updated unit test: $ ./db_test --gtest_filter=DBTest.OptimizeFiltersForHits will also run 'make check' Reviewers: sdong, igor, paultuckfield, anthony, rven, kradhakrishnan, IslamAbdelRahman, yhchiang Reviewed By: yhchiang Subscribers: leveldb Differential Revision: https://reviews.facebook.net/D51633 |
9 years ago |
sdong | 35ad531be3 |
Seperate InternalIterator from Iterator
Summary: Separate a new class InternalIterator from class Iterator, when the look-up is done internally, which also means they operate on key with sequence ID and type. This change will enable potential future optimizations but for now InternalIterator's functions are still the same as Iterator's. At the same time, separate the cleanup function to a separate class and let both of InternalIterator and Iterator inherit from it. Test Plan: Run all existing tests. Reviewers: igor, yhchiang, anthony, kradhakrishnan, IslamAbdelRahman, rven Reviewed By: rven Subscribers: leveldb, dhruba Differential Revision: https://reviews.facebook.net/D48549 |
9 years ago |
sdong | 6e9fbeb27c |
Move rate_limiter, write buffering, most perf context instrumentation and most random kill out of Env
Summary: We want to keep Env a think layer for better portability. Less platform dependent codes should be moved out of Env. In this patch, I create a wrapper of file readers and writers, and put rate limiting, write buffering, as well as most perf context instrumentation and random kill out of Env. It will make it easier to maintain multiple Env in the future. Test Plan: Run all existing unit tests. Reviewers: anthony, kradhakrishnan, IslamAbdelRahman, yhchiang, igor Reviewed By: igor Subscribers: leveldb, dhruba Differential Revision: https://reviews.facebook.net/D42321 |
10 years ago |
Lei Jin | 2faf49d5f1 |
use GetContext to replace callback function pointer
Summary: Intead of passing callback function pointer and its arg on Table::Get() interface, passing GetContext. This makes the interface cleaner and possible better perf. Also adding a fast pass for SaveValue() Test Plan: make all check Reviewers: igor, yhchiang, sdong Reviewed By: sdong Subscribers: leveldb Differential Revision: https://reviews.facebook.net/D24057 |
10 years ago |
Lei Jin | c6275956e2 |
improve memory efficiency of cuckoo reader
Summary: When creating a new iterator, instead of storing mapping from key to bucket id for sorting, store only bucket id and read key from mmap file based on the id. This reduces from 20 bytes per entry to only 4 bytes. Test Plan: db_bench Reviewers: igor, yhchiang, sdong Reviewed By: sdong Subscribers: leveldb Differential Revision: https://reviews.facebook.net/D23757 |
10 years ago |
Lei Jin | 581442d446 |
option to choose module when calculating CuckooTable hash
Summary: Using module to calculate hash makes lookup ~8% slower. But it has its benefit: file size is more predictable, more space enffient Test Plan: db_bench Reviewers: igor, yhchiang, sdong Reviewed By: sdong Subscribers: leveldb Differential Revision: https://reviews.facebook.net/D23691 |
10 years ago |
Lei Jin | 51af7c326c |
CuckooTable: add one option to allow identity function for the first hash function
Summary: MurmurHash becomes expensive when we do millions Get() a second in one thread. Add this option to allow the first hash function to use identity function as hash function. It results in QPS increase from 3.7M/s to ~4.3M/s. I did not observe improvement for end to end RocksDB performance. This may be caused by other bottlenecks that I will address in a separate diff. Test Plan: ``` [ljin@dev1964 rocksdb] ./cuckoo_table_reader_test --enable_perf --file_dir=/dev/shm --write --identity_as_first_hash=0 ==== Test CuckooReaderTest.WhenKeyExists ==== Test CuckooReaderTest.WhenKeyExistsWithUint64Comparator ==== Test CuckooReaderTest.CheckIterator ==== Test CuckooReaderTest.CheckIteratorUint64 ==== Test CuckooReaderTest.WhenKeyNotFound ==== Test CuckooReaderTest.TestReadPerformance With 125829120 items, utilization is 93.75%, number of hash functions: 2. Time taken per op is 0.272us (3.7 Mqps) with batch size of 0, # of found keys 125829120 With 125829120 items, utilization is 93.75%, number of hash functions: 2. Time taken per op is 0.138us (7.2 Mqps) with batch size of 10, # of found keys 125829120 With 125829120 items, utilization is 93.75%, number of hash functions: 2. Time taken per op is 0.142us (7.1 Mqps) with batch size of 25, # of found keys 125829120 With 125829120 items, utilization is 93.75%, number of hash functions: 2. Time taken per op is 0.142us (7.0 Mqps) with batch size of 50, # of found keys 125829120 With 125829120 items, utilization is 93.75%, number of hash functions: 2. Time taken per op is 0.144us (6.9 Mqps) with batch size of 100, # of found keys 125829120 With 104857600 items, utilization is 78.12%, number of hash functions: 2. Time taken per op is 0.201us (5.0 Mqps) with batch size of 0, # of found keys 104857600 With 104857600 items, utilization is 78.12%, number of hash functions: 2. Time taken per op is 0.121us (8.3 Mqps) with batch size of 10, # of found keys 104857600 With 104857600 items, utilization is 78.12%, number of hash functions: 2. Time taken per op is 0.123us (8.1 Mqps) with batch size of 25, # of found keys 104857600 With 104857600 items, utilization is 78.12%, number of hash functions: 2. Time taken per op is 0.121us (8.3 Mqps) with batch size of 50, # of found keys 104857600 With 104857600 items, utilization is 78.12%, number of hash functions: 2. Time taken per op is 0.112us (8.9 Mqps) with batch size of 100, # of found keys 104857600 With 83886080 items, utilization is 62.50%, number of hash functions: 2. Time taken per op is 0.251us (4.0 Mqps) with batch size of 0, # of found keys 83886080 With 83886080 items, utilization is 62.50%, number of hash functions: 2. Time taken per op is 0.107us (9.4 Mqps) with batch size of 10, # of found keys 83886080 With 83886080 items, utilization is 62.50%, number of hash functions: 2. Time taken per op is 0.099us (10.1 Mqps) with batch size of 25, # of found keys 83886080 With 83886080 items, utilization is 62.50%, number of hash functions: 2. Time taken per op is 0.100us (10.0 Mqps) with batch size of 50, # of found keys 83886080 With 83886080 items, utilization is 62.50%, number of hash functions: 2. Time taken per op is 0.116us (8.6 Mqps) with batch size of 100, # of found keys 83886080 With 73400320 items, utilization is 54.69%, number of hash functions: 2. Time taken per op is 0.189us (5.3 Mqps) with batch size of 0, # of found keys 73400320 With 73400320 items, utilization is 54.69%, number of hash functions: 2. Time taken per op is 0.095us (10.5 Mqps) with batch size of 10, # of found keys 73400320 With 73400320 items, utilization is 54.69%, number of hash functions: 2. Time taken per op is 0.096us (10.4 Mqps) with batch size of 25, # of found keys 73400320 With 73400320 items, utilization is 54.69%, number of hash functions: 2. Time taken per op is 0.098us (10.2 Mqps) with batch size of 50, # of found keys 73400320 With 73400320 items, utilization is 54.69%, number of hash functions: 2. Time taken per op is 0.105us (9.5 Mqps) with batch size of 100, # of found keys 73400320 [ljin@dev1964 rocksdb] ./cuckoo_table_reader_test --enable_perf --file_dir=/dev/shm --write --identity_as_first_hash=1 ==== Test CuckooReaderTest.WhenKeyExists ==== Test CuckooReaderTest.WhenKeyExistsWithUint64Comparator ==== Test CuckooReaderTest.CheckIterator ==== Test CuckooReaderTest.CheckIteratorUint64 ==== Test CuckooReaderTest.WhenKeyNotFound ==== Test CuckooReaderTest.TestReadPerformance With 125829120 items, utilization is 93.75%, number of hash functions: 2. Time taken per op is 0.230us (4.3 Mqps) with batch size of 0, # of found keys 125829120 With 125829120 items, utilization is 93.75%, number of hash functions: 2. Time taken per op is 0.086us (11.7 Mqps) with batch size of 10, # of found keys 125829120 With 125829120 items, utilization is 93.75%, number of hash functions: 2. Time taken per op is 0.088us (11.3 Mqps) with batch size of 25, # of found keys 125829120 With 125829120 items, utilization is 93.75%, number of hash functions: 2. Time taken per op is 0.083us (12.1 Mqps) with batch size of 50, # of found keys 125829120 With 125829120 items, utilization is 93.75%, number of hash functions: 2. Time taken per op is 0.083us (12.1 Mqps) with batch size of 100, # of found keys 125829120 With 104857600 items, utilization is 78.12%, number of hash functions: 2. Time taken per op is 0.159us (6.3 Mqps) with batch size of 0, # of found keys 104857600 With 104857600 items, utilization is 78.12%, number of hash functions: 2. Time taken per op is 0.078us (12.8 Mqps) with batch size of 10, # of found keys 104857600 With 104857600 items, utilization is 78.12%, number of hash functions: 2. Time taken per op is 0.080us (12.6 Mqps) with batch size of 25, # of found keys 104857600 With 104857600 items, utilization is 78.12%, number of hash functions: 2. Time taken per op is 0.080us (12.5 Mqps) with batch size of 50, # of found keys 104857600 With 104857600 items, utilization is 78.12%, number of hash functions: 2. Time taken per op is 0.082us (12.2 Mqps) with batch size of 100, # of found keys 104857600 With 83886080 items, utilization is 62.50%, number of hash functions: 2. Time taken per op is 0.154us (6.5 Mqps) with batch size of 0, # of found keys 83886080 With 83886080 items, utilization is 62.50%, number of hash functions: 2. Time taken per op is 0.077us (13.0 Mqps) with batch size of 10, # of found keys 83886080 With 83886080 items, utilization is 62.50%, number of hash functions: 2. Time taken per op is 0.077us (12.9 Mqps) with batch size of 25, # of found keys 83886080 With 83886080 items, utilization is 62.50%, number of hash functions: 2. Time taken per op is 0.078us (12.8 Mqps) with batch size of 50, # of found keys 83886080 With 83886080 items, utilization is 62.50%, number of hash functions: 2. Time taken per op is 0.079us (12.6 Mqps) with batch size of 100, # of found keys 83886080 With 73400320 items, utilization is 54.69%, number of hash functions: 2. Time taken per op is 0.218us (4.6 Mqps) with batch size of 0, # of found keys 73400320 With 73400320 items, utilization is 54.69%, number of hash functions: 2. Time taken per op is 0.083us (12.0 Mqps) with batch size of 10, # of found keys 73400320 With 73400320 items, utilization is 54.69%, number of hash functions: 2. Time taken per op is 0.085us (11.7 Mqps) with batch size of 25, # of found keys 73400320 With 73400320 items, utilization is 54.69%, number of hash functions: 2. Time taken per op is 0.086us (11.6 Mqps) with batch size of 50, # of found keys 73400320 With 73400320 items, utilization is 54.69%, number of hash functions: 2. Time taken per op is 0.078us (12.8 Mqps) with batch size of 100, # of found keys 73400320 ``` Reviewers: sdong, igor, yhchiang Reviewed By: igor Subscribers: leveldb Differential Revision: https://reviews.facebook.net/D23451 |
10 years ago |
Lei Jin | 5665e5e285 |
introduce ImmutableOptions
Summary: As a preparation to support updating some options dynamically, I'd like to first introduce ImmutableOptions, which is a subset of Options that cannot be changed during the course of a DB lifetime without restart. ColumnFamily will keep both Options and ImmutableOptions. Any component below ColumnFamily should only take ImmutableOptions in their constructor. Other options should be taken from APIs, which will be allowed to adjust dynamically. I am yet to make changes to memtable and other related classes to take ImmutableOptions in their ctor. That can be done in a seprate diff as this one is already pretty big. Test Plan: make all check Reviewers: yhchiang, igor, sdong Reviewed By: sdong Subscribers: leveldb, dhruba Differential Revision: https://reviews.facebook.net/D22545 |
10 years ago |
Radheshyam Balasundaram | d20b8cfaa1 |
Improve Cuckoo Table Reader performance. Inlined hash function and number of buckets a power of two.
Summary: Use inlined hash functions instead of function pointer. Make number of buckets a power of two and use bitwise and instead of mod. After these changes, we get almost 50% improvement in performance. Results: With 120000000 items, utilization is 89.41%, number of hash functions: 2. Time taken per op is 0.231us (4.3 Mqps) with batch size of 0 Time taken per op is 0.229us (4.4 Mqps) with batch size of 0 Time taken per op is 0.185us (5.4 Mqps) with batch size of 0 With 120000000 items, utilization is 89.41%, number of hash functions: 2. Time taken per op is 0.108us (9.3 Mqps) with batch size of 10 Time taken per op is 0.100us (10.0 Mqps) with batch size of 10 Time taken per op is 0.103us (9.7 Mqps) with batch size of 10 With 120000000 items, utilization is 89.41%, number of hash functions: 2. Time taken per op is 0.101us (9.9 Mqps) with batch size of 25 Time taken per op is 0.098us (10.2 Mqps) with batch size of 25 Time taken per op is 0.097us (10.3 Mqps) with batch size of 25 With 120000000 items, utilization is 89.41%, number of hash functions: 2. Time taken per op is 0.100us (10.0 Mqps) with batch size of 50 Time taken per op is 0.097us (10.3 Mqps) with batch size of 50 Time taken per op is 0.097us (10.3 Mqps) with batch size of 50 With 120000000 items, utilization is 89.41%, number of hash functions: 2. Time taken per op is 0.102us (9.8 Mqps) with batch size of 100 Time taken per op is 0.098us (10.2 Mqps) with batch size of 100 Time taken per op is 0.115us (8.7 Mqps) with batch size of 100 With 100000000 items, utilization is 74.51%, number of hash functions: 2. Time taken per op is 0.201us (5.0 Mqps) with batch size of 0 Time taken per op is 0.155us (6.5 Mqps) with batch size of 0 Time taken per op is 0.152us (6.6 Mqps) with batch size of 0 With 100000000 items, utilization is 74.51%, number of hash functions: 2. Time taken per op is 0.089us (11.3 Mqps) with batch size of 10 Time taken per op is 0.084us (11.9 Mqps) with batch size of 10 Time taken per op is 0.086us (11.6 Mqps) with batch size of 10 With 100000000 items, utilization is 74.51%, number of hash functions: 2. Time taken per op is 0.087us (11.5 Mqps) with batch size of 25 Time taken per op is 0.085us (11.7 Mqps) with batch size of 25 Time taken per op is 0.093us (10.8 Mqps) with batch size of 25 With 100000000 items, utilization is 74.51%, number of hash functions: 2. Time taken per op is 0.094us (10.6 Mqps) with batch size of 50 Time taken per op is 0.094us (10.7 Mqps) with batch size of 50 Time taken per op is 0.093us (10.8 Mqps) with batch size of 50 With 100000000 items, utilization is 74.51%, number of hash functions: 2. Time taken per op is 0.092us (10.9 Mqps) with batch size of 100 Time taken per op is 0.089us (11.2 Mqps) with batch size of 100 Time taken per op is 0.088us (11.3 Mqps) with batch size of 100 With 80000000 items, utilization is 59.60%, number of hash functions: 2. Time taken per op is 0.154us (6.5 Mqps) with batch size of 0 Time taken per op is 0.168us (6.0 Mqps) with batch size of 0 Time taken per op is 0.190us (5.3 Mqps) with batch size of 0 With 80000000 items, utilization is 59.60%, number of hash functions: 2. Time taken per op is 0.081us (12.4 Mqps) with batch size of 10 Time taken per op is 0.077us (13.0 Mqps) with batch size of 10 Time taken per op is 0.083us (12.1 Mqps) with batch size of 10 With 80000000 items, utilization is 59.60%, number of hash functions: 2. Time taken per op is 0.077us (13.0 Mqps) with batch size of 25 Time taken per op is 0.073us (13.7 Mqps) with batch size of 25 Time taken per op is 0.073us (13.7 Mqps) with batch size of 25 With 80000000 items, utilization is 59.60%, number of hash functions: 2. Time taken per op is 0.076us (13.1 Mqps) with batch size of 50 Time taken per op is 0.072us (13.8 Mqps) with batch size of 50 Time taken per op is 0.072us (13.8 Mqps) with batch size of 50 With 80000000 items, utilization is 59.60%, number of hash functions: 2. Time taken per op is 0.077us (13.0 Mqps) with batch size of 100 Time taken per op is 0.074us (13.6 Mqps) with batch size of 100 Time taken per op is 0.073us (13.6 Mqps) with batch size of 100 With 70000000 items, utilization is 52.15%, number of hash functions: 2. Time taken per op is 0.190us (5.3 Mqps) with batch size of 0 Time taken per op is 0.186us (5.4 Mqps) with batch size of 0 Time taken per op is 0.184us (5.4 Mqps) with batch size of 0 With 70000000 items, utilization is 52.15%, number of hash functions: 2. Time taken per op is 0.079us (12.7 Mqps) with batch size of 10 Time taken per op is 0.070us (14.2 Mqps) with batch size of 10 Time taken per op is 0.072us (14.0 Mqps) with batch size of 10 With 70000000 items, utilization is 52.15%, number of hash functions: 2. Time taken per op is 0.080us (12.5 Mqps) with batch size of 25 Time taken per op is 0.072us (14.0 Mqps) with batch size of 25 Time taken per op is 0.071us (14.1 Mqps) with batch size of 25 With 70000000 items, utilization is 52.15%, number of hash functions: 2. Time taken per op is 0.082us (12.1 Mqps) with batch size of 50 Time taken per op is 0.071us (14.1 Mqps) with batch size of 50 Time taken per op is 0.073us (13.6 Mqps) with batch size of 50 With 70000000 items, utilization is 52.15%, number of hash functions: 2. Time taken per op is 0.080us (12.5 Mqps) with batch size of 100 Time taken per op is 0.077us (13.0 Mqps) with batch size of 100 Time taken per op is 0.078us (12.8 Mqps) with batch size of 100 Test Plan: make check all make valgrind_check make asan_check Reviewers: sdong, ljin Reviewed By: ljin Subscribers: leveldb Differential Revision: https://reviews.facebook.net/D22539 |
10 years ago |
Radheshyam Balasundaram | 7f71448388 |
Implementing a cache friendly version of Cuckoo Hash
Summary: This implements a cache friendly version of Cuckoo Hash in which, in case of collission, we try to insert in next few locations. The size of the neighborhood to check is taken as an input parameter in builder and stored in the table. Test Plan: make check all cuckoo_table_{db,reader,builder}_test Reviewers: sdong, ljin Reviewed By: ljin Subscribers: leveldb Differential Revision: https://reviews.facebook.net/D22455 |
10 years ago |
Radheshyam Balasundaram | 4142a3e783 |
Adding a user comparator for comparing Uint64 slices.
Summary: - New Uint64 comparator - Modify Reader and Builder to take custom user comparators instead of bytewise comparator - Modify logic for choosing unused user key in builder - Modify iterator logic in reader - test changes Test Plan: cuckoo_table_{builder,reader,db}_test make check all Reviewers: ljin, sdong Reviewed By: ljin Subscribers: dhruba, leveldb Differential Revision: https://reviews.facebook.net/D22377 |
10 years ago |
Radheshyam Balasundaram | 08be7f5266 |
Implement Prepare method in CuckooTableReader
Summary: - Implement Prepare method - Rewrite performance tests in cuckoo_table_reader_test to write new file only if one doesn't already exist. - Add performance tests for batch lookup along with prefetching. Test Plan: ./cuckoo_table_reader_test --enable_perf Results (We get better results if we used int64 comparator instead of string comparator (TBD in future diffs)): With 100000000 items and hash table ratio 0.500000, number of hash functions used: 2. Time taken per op is 0.208us (4.8 Mqps) with batch size of 0 With 100000000 items and hash table ratio 0.500000, number of hash functions used: 2. Time taken per op is 0.182us (5.5 Mqps) with batch size of 10 With 100000000 items and hash table ratio 0.500000, number of hash functions used: 2. Time taken per op is 0.161us (6.2 Mqps) with batch size of 25 With 100000000 items and hash table ratio 0.500000, number of hash functions used: 2. Time taken per op is 0.161us (6.2 Mqps) with batch size of 50 With 100000000 items and hash table ratio 0.500000, number of hash functions used: 2. Time taken per op is 0.163us (6.1 Mqps) with batch size of 100 With 100000000 items and hash table ratio 0.600000, number of hash functions used: 3. Time taken per op is 0.252us (4.0 Mqps) with batch size of 0 With 100000000 items and hash table ratio 0.600000, number of hash functions used: 3. Time taken per op is 0.192us (5.2 Mqps) with batch size of 10 With 100000000 items and hash table ratio 0.600000, number of hash functions used: 3. Time taken per op is 0.195us (5.1 Mqps) with batch size of 25 With 100000000 items and hash table ratio 0.600000, number of hash functions used: 3. Time taken per op is 0.191us (5.2 Mqps) with batch size of 50 With 100000000 items and hash table ratio 0.600000, number of hash functions used: 3. Time taken per op is 0.194us (5.1 Mqps) with batch size of 100 With 100000000 items and hash table ratio 0.750000, number of hash functions used: 3. Time taken per op is 0.228us (4.4 Mqps) with batch size of 0 With 100000000 items and hash table ratio 0.750000, number of hash functions used: 3. Time taken per op is 0.185us (5.4 Mqps) with batch size of 10 With 100000000 items and hash table ratio 0.750000, number of hash functions used: 3. Time taken per op is 0.186us (5.4 Mqps) with batch size of 25 With 100000000 items and hash table ratio 0.750000, number of hash functions used: 3. Time taken per op is 0.189us (5.3 Mqps) with batch size of 50 With 100000000 items and hash table ratio 0.750000, number of hash functions used: 3. Time taken per op is 0.188us (5.3 Mqps) with batch size of 100 With 100000000 items and hash table ratio 0.900000, number of hash functions used: 3. Time taken per op is 0.325us (3.1 Mqps) with batch size of 0 With 100000000 items and hash table ratio 0.900000, number of hash functions used: 3. Time taken per op is 0.196us (5.1 Mqps) with batch size of 10 With 100000000 items and hash table ratio 0.900000, number of hash functions used: 3. Time taken per op is 0.199us (5.0 Mqps) with batch size of 25 With 100000000 items and hash table ratio 0.900000, number of hash functions used: 3. Time taken per op is 0.196us (5.1 Mqps) with batch size of 50 With 100000000 items and hash table ratio 0.900000, number of hash functions used: 3. Time taken per op is 0.209us (4.8 Mqps) with batch size of 100 Reviewers: sdong, yhchiang, igor, ljin Reviewed By: ljin Subscribers: leveldb Differential Revision: https://reviews.facebook.net/D22167 |
10 years ago |
sdong | 1242bfcad7 |
Add DB property "rocksdb.estimate-table-readers-mem"
Summary: Add a DB Property "rocksdb.estimate-table-readers-mem" to return estimated memory usage by all loaded table readers, other than allocated from block cache. Refactor the property codes to allow getting property from a version, with DB mutex not acquired. Test Plan: Add several checks of this new property in existing codes for various cases. Reviewers: yhchiang, ljin Reviewed By: ljin Subscribers: xjin, igor, leveldb Differential Revision: https://reviews.facebook.net/D20733 |
11 years ago |
Radheshyam Balasundaram | 606a126703 |
Changing implementaiton of CuckooTableBuilder to not take file_size, key_length, value_length.
Summary: - Maintain a list of key-value pairs as vectors during Add operation. - Start building hash table only when Finish() is called. - This approach takes more time and space but avoids taking file_size, key and value lengths. - Rewrote cuckoo_table_builder_test I did not know about IterKey while writing this diff. I shall change places where IterKey could be used instead of std::string tomorrow. Please review rest of the logic. Test Plan: cuckoo_table_reader_test --enable_perf cuckoo_table_builder_test valgrind_check asan_check Reviewers: sdong, igor, yhchiang, ljin Reviewed By: ljin Subscribers: leveldb Differential Revision: https://reviews.facebook.net/D20907 |
11 years ago |
Radheshyam Balasundaram | 2124c85cc6 |
Implementing CuckooTableReader::NewIterator
Summary: - Reads key-value pairs from file and builds an in-memory index of key-to-bucket id map in sorted order of key. - Assumes bytewise comparator for sorting keys. - Test changes Test Plan: cuckoo_table_reader_test --enable_perf valgrind_check asan_check Reviewers: yhchiang, sdong, ljin Reviewed By: ljin Subscribers: leveldb, igor Differential Revision: https://reviews.facebook.net/D20721 |
11 years ago |
Radheshyam Balasundaram | 0c9d03ba10 |
Fixing broken Mac build
Summary: Made some small changes to fix the broken mac build Test Plan: make check all in both linux and mac. All tests pass. Reviewers: sdong, igor, ljin, yhchiang Reviewed By: ljin, yhchiang Subscribers: leveldb Differential Revision: https://reviews.facebook.net/D20895 |
11 years ago |
Radheshyam Balasundaram | 62f9b071ff |
Implementation of CuckooTableReader
Summary: Contains: - Implementation of TableReader based on Cuckoo Hashing - Unittests for CuckooTableReader - Performance test for TableReader Test Plan: make cuckoo_table_reader_test ./cuckoo_table_reader_test make valgrind_check make asan_check Reviewers: yhchiang, sdong, igor, ljin Reviewed By: ljin Subscribers: leveldb Differential Revision: https://reviews.facebook.net/D20511 |
11 years ago |