Summary:
**Context:**
Sorting L0 files by `largest_seqno` has at least two inconvenience:
- File ingestion and compaction involving ingested files can create files of overlapping seqno range with the existing files. `force_consistency_check=true` will catch such overlap seqno range even those harmless overlap.
- For example, consider the following sequence of events ("key@n" indicates key at seqno "n")
- insert k1@1 to memtable m1
- ingest file s1 with k2@2, ingest file s2 with k3@3
- insert k4@4 to m1
- compact files s1, s2 and result in new file s3 of seqno range [2, 3]
- flush m1 and result in new file s4 of seqno range [1, 4]. And `force_consistency_check=true` will think s4 and s3 has file reordering corruption that might cause retuning an old value of k1
- However such caught corruption is a false positive since s1, s2 will not have overlapped keys with k1 or whatever inserted into m1 before ingest file s1 by the requirement of file ingestion (otherwise the m1 will be flushed first before any of the file ingestion completes). Therefore there in fact isn't any file reordering corruption.
- Single delete can decrease a file's largest seqno and ordering by `largest_seqno` can introduce a wrong ordering hence file reordering corruption
- For example, consider the following sequence of events ("key@n" indicates key at seqno "n", Credit to ajkr for this example)
- an existing SST s1 contains only k1@1
- insert k1@2 to memtable m1
- ingest file s2 with k3@3, ingest file s3 with k4@4
- insert single delete k5@5 in m1
- flush m1 and result in new file s4 of seqno range [2, 5]
- compact s1, s2, s3 and result in new file s5 of seqno range [1, 4]
- compact s4 and result in new file s6 of seqno range [2] due to single delete
- By the last step, we have file ordering by largest seqno (">" means "newer") : s5 > s6 while s6 contains a newer version of the k1's value (i.e, k1@2) than s5, which is a real reordering corruption. While this can be caught by `force_consistency_check=true`, there isn't a good way to prevent this from happening if ordering by `largest_seqno`
Therefore, we are redesigning the sorting criteria of L0 files and avoid above inconvenience. Credit to ajkr , we now introduce `epoch_num` which describes the order of a file being flushed or ingested/imported (compaction output file will has the minimum `epoch_num` among input files'). This will avoid the above inconvenience in the following ways:
- In the first case above, there will no longer be overlap seqno range check in `force_consistency_check=true` but `epoch_number` ordering check. This will result in file ordering s1 < s2 < s4 (pre-compaction) and s3 < s4 (post-compaction) which won't trigger false positive corruption. See test class `DBCompactionTestL0FilesMisorderCorruption*` for more.
- In the second case above, this will result in file ordering s1 < s2 < s3 < s4 (pre-compacting s1, s2, s3), s5 < s4 (post-compacting s1, s2, s3), s5 < s6 (post-compacting s4), which are correct file ordering without causing any corruption.
**Summary:**
- Introduce `epoch_number` stored per `ColumnFamilyData` and sort CF's L0 files by their assigned `epoch_number` instead of `largest_seqno`.
- `epoch_number` is increased and assigned upon `VersionEdit::AddFile()` for flush (or similarly for WriteLevel0TableForRecovery) and file ingestion (except for allow_behind_true, which will always get assigned as the `kReservedEpochNumberForFileIngestedBehind`)
- Compaction output file is assigned with the minimum `epoch_number` among input files'
- Refit level: reuse refitted file's epoch_number
- Other paths needing `epoch_number` treatment:
- Import column families: reuse file's epoch_number if exists. If not, assign one based on `NewestFirstBySeqNo`
- Repair: reuse file's epoch_number if exists. If not, assign one based on `NewestFirstBySeqNo`.
- Assigning new epoch_number to a file and adding this file to LSM tree should be atomic. This is guaranteed by us assigning epoch_number right upon `VersionEdit::AddFile()` where this version edit will be apply to LSM tree shape right after by holding the db mutex (e.g, flush, file ingestion, import column family) or by there is only 1 ongoing edit per CF (e.g, WriteLevel0TableForRecovery, Repair).
- Assigning the minimum input epoch number to compaction output file won't misorder L0 files (even through later `Refit(target_level=0)`). It's due to for every key "k" in the input range, a legit compaction will cover a continuous epoch number range of that key. As long as we assign the key "k" the minimum input epoch number, it won't become newer or older than the versions of this key that aren't included in this compaction hence no misorder.
- Persist `epoch_number` of each file in manifest and recover `epoch_number` on db recovery
- Backward compatibility with old db without `epoch_number` support is guaranteed by assigning `epoch_number` to recovered files by `NewestFirstBySeqno` order. See `VersionStorageInfo::RecoverEpochNumbers()` for more
- Forward compatibility with manifest is guaranteed by flexibility of `NewFileCustomTag`
- Replace `force_consistent_check` on L0 with `epoch_number` and remove false positive check like case 1 with `largest_seqno` above
- Due to backward compatibility issue, we might encounter files with missing epoch number at the beginning of db recovery. We will still use old L0 sorting mechanism (`NewestFirstBySeqno`) to check/sort them till we infer their epoch number. See usages of `EpochNumberRequirement`.
- Remove fix https://github.com/facebook/rocksdb/pull/5958#issue-511150930 and their outdated tests to file reordering corruption because such fix can be replaced by this PR.
- Misc:
- update existing tests with `epoch_number` so make check will pass
- update https://github.com/facebook/rocksdb/pull/5958#issue-511150930 tests to verify corruption is fixed using `epoch_number` and cover universal/fifo compaction/CompactRange/CompactFile cases
- assert db_mutex is held for a few places before calling ColumnFamilyData::NewEpochNumber()
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10922
Test Plan:
- `make check`
- New unit tests under `db/db_compaction_test.cc`, `db/db_test2.cc`, `db/version_builder_test.cc`, `db/repair_test.cc`
- Updated tests (i.e, `DBCompactionTestL0FilesMisorderCorruption*`) under https://github.com/facebook/rocksdb/pull/5958#issue-511150930
- [Ongoing] Compatibility test: manually run 36a5686ec0 (with file ingestion off for running the `.orig` binary to prevent this bug affecting upgrade/downgrade formality checking) for 1 hour on `simple black/white box`, `cf_consistency/txn/enable_ts with whitebox + test_best_efforts_recovery with blackbox`
- [Ongoing] normal db stress test
- [Ongoing] db stress test with aggressive value https://github.com/facebook/rocksdb/pull/10761
Reviewed By: ajkr
Differential Revision: D41063187
Pulled By: hx235
fbshipit-source-id: 826cb23455de7beaabe2d16c57682a82733a32a9
Summary:
**Context/Summary:**
This reverts commit fc74abb436 and related HISTORY record.
The issue with PR 10777 or general approach using earliest_mem_seqno like https://github.com/facebook/rocksdb/pull/5958#issue-511150930 is that the earliest seqno of memtable of each CFs does not get persisted and will always start with 0 upon Recover(). Later when creating a new memtable in certain CF, we use the last seqno of the whole DB (but not of that CF from previous DB session) for this CF. This will lead to false positive overlapping seqno and PR 10777 will throw something like https://github.com/facebook/rocksdb/blob/main/db/compaction/compaction_picker.cc#L1002-L1004
Luckily a more elegant and complete solution to the overlapping seqno problem these PR aim to solve does not have above problem, see https://github.com/facebook/rocksdb/pull/10922. It is already being pursued and in the process of review. So we can just revert this PR and focus on getting PR10922 to land.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10999
Test Plan: make check
Reviewed By: anand1976
Differential Revision: D41572604
Pulled By: hx235
fbshipit-source-id: 9d9bdf594abd235e2137045cef513ca0b14e0a3a
Summary:
**Context:**
Same as https://github.com/facebook/rocksdb/pull/5958#issue-511150930 but apply the fix to FIFO Compaction case
Repro:
```
COERCE_CONTEXT_SWICH=1 make -j56 db_stress
./db_stress --acquire_snapshot_one_in=0 --adaptive_readahead=0 --allow_data_in_errors=True --async_io=1 --avoid_flush_during_recovery=0 --avoid_unnecessary_blocking_io=0 --backup_max_size=104857600 --backup_one_in=0 --batch_protection_bytes_per_key=0 --block_size=16384 --bloom_bits=18 --bottommost_compression_type=disable --bytes_per_sync=262144 --cache_index_and_filter_blocks=0 --cache_size=8388608 --cache_type=lru_cache --charge_compression_dictionary_building_buffer=0 --charge_file_metadata=1 --charge_filter_construction=1 --charge_table_reader=1 --checkpoint_one_in=0 --checksum_type=kCRC32c --clear_column_family_one_in=0 --column_families=1 --compact_files_one_in=0 --compact_range_one_in=1000 --compaction_pri=3 --open_files=-1 --compaction_style=2 --fifo_allow_compaction=1 --compaction_ttl=0 --compression_max_dict_buffer_bytes=8388607 --compression_max_dict_bytes=16384 --compression_parallel_threads=1 --compression_type=zlib --compression_use_zstd_dict_trainer=1 --compression_zstd_max_train_bytes=0 --continuous_verification_interval=0 --data_block_index_type=0 --db=/dev/shm/rocksdb_test0/rocksdb_crashtest_whitebox --db_write_buffer_size=8388608 --delpercent=4 --delrangepercent=1 --destroy_db_initially=1 --detect_filter_construct_corruption=0 --disable_wal=0 --enable_compaction_filter=0 --enable_pipelined_write=1 --fail_if_options_file_error=1 --file_checksum_impl=none --flush_one_in=1000 --format_version=5 --get_current_wal_file_one_in=0 --get_live_files_one_in=0 --get_property_one_in=0 --get_sorted_wal_files_one_in=0 --index_block_restart_interval=15 --index_type=3 --ingest_external_file_one_in=100 --initial_auto_readahead_size=0 --iterpercent=10 --key_len_percent_dist=1,30,69 --level_compaction_dynamic_level_bytes=True --log2_keys_per_lock=10 --long_running_snapshots=0 --mark_for_compaction_one_file_in=10 --max_auto_readahead_size=16384 --max_background_compactions=20 --max_bytes_for_level_base=10485760 --max_key=100000 --max_key_len=3 --max_manifest_file_size=1073741824 --max_write_batch_group_size_bytes=1048576 --max_write_buffer_number=3 --max_write_buffer_size_to_maintain=4194304 --memtable_prefix_bloom_size_ratio=0.5 --memtable_protection_bytes_per_key=1 --memtable_whole_key_filtering=1 --memtablerep=skip_list --mmap_read=1 --mock_direct_io=False --nooverwritepercent=1 --num_file_reads_for_auto_readahead=0 --num_levels=1 --open_metadata_write_fault_one_in=0 --open_read_fault_one_in=32 --open_write_fault_one_in=0 --ops_per_thread=200000 --optimize_filters_for_memory=0 --paranoid_file_checks=1 --partition_filters=0 --partition_pinning=1 --pause_background_one_in=0 --periodic_compaction_seconds=0 --prefix_size=8 --prefixpercent=5 --prepopulate_block_cache=0 --progress_reports=0 --read_fault_one_in=0 --readahead_size=16384 --readpercent=45 --recycle_log_file_num=1 --reopen=20 --ribbon_starting_level=999 --snapshot_hold_ops=1000 --sst_file_manager_bytes_per_sec=0 --sst_file_manager_bytes_per_truncate=0 --subcompactions=2 --sync=0 --sync_fault_injection=0 --target_file_size_base=524288 --target_file_size_multiplier=2 --test_batches_snapshots=0 --top_level_index_pinning=3 --unpartitioned_pinning=0 --use_direct_io_for_flush_and_compaction=0 --use_direct_reads=0 --use_full_merge_v1=1 --use_merge=0 --use_multiget=1 --user_timestamp_size=0 --value_size_mult=32 --verify_checksum=1 --verify_checksum_one_in=0 --verify_db_one_in=1000 --verify_sst_unique_id_in_manifest=1 --wal_bytes_per_sync=0 --wal_compression=zstd --write_buffer_size=524288 --write_dbid_to_manifest=0 --writepercent=35
put or merge error: Corruption: force_consistency_checks(DEBUG): VersionBuilder: L0 file https://github.com/facebook/rocksdb/issues/479 with seqno 23711 29070 vs. file https://github.com/facebook/rocksdb/issues/482 with seqno 27138 29049
```
**Summary:**
FIFO only does intra-L0 compaction in the following four cases. For other cases, FIFO drops data instead of compacting on data, which is irrelevant to the overlapping seqno issue we are solving.
- [FIFOCompactionPicker::PickSizeCompaction](https://github.com/facebook/rocksdb/blob/7.6.fb/db/compaction/compaction_picker_fifo.cc#L155) when `total size < compaction_options_fifo.max_table_files_size` and `compaction_options_fifo.allow_compaction == true`
- For this path, we simply reuse the fix in `FindIntraL0Compaction` https://github.com/facebook/rocksdb/pull/5958/files#diff-c261f77d6dd2134333c4a955c311cf4a196a08d3c2bb6ce24fd6801407877c89R56
- This path was not stress-tested at all. Therefore we covered `fifo.allow_compaction` in stress test to surface the overlapping seqno issue we are fixing here.
- [FIFOCompactionPicker::PickCompactionToWarm](https://github.com/facebook/rocksdb/blob/7.6.fb/db/compaction/compaction_picker_fifo.cc#L313) when `compaction_options_fifo.age_for_warm > 0`
- For this path, we simply replicate the idea in https://github.com/facebook/rocksdb/pull/5958#issue-511150930 and skip files of largest seqno greater than `earliest_mem_seqno`
- This path was not stress-tested at all. However covering `age_for_warm` option worths a separate PR to deal with db stress compatibility. Therefore we manually tested this path for this PR
- [FIFOCompactionPicker::CompactRange](https://github.com/facebook/rocksdb/blob/7.6.fb/db/compaction/compaction_picker_fifo.cc#L365) that ends up picking one of the above two compactions
- [CompactionPicker::CompactFiles](https://github.com/facebook/rocksdb/blob/7.6.fb/db/compaction/compaction_picker.cc#L378)
- Since `SanitizeCompactionInputFiles()` will be called [before](https://github.com/facebook/rocksdb/blob/7.6.fb/db/compaction/compaction_picker.h#L111-L113) `CompactionPicker::CompactFiles` , we simply replicate the idea in https://github.com/facebook/rocksdb/pull/5958#issue-511150930 in `SanitizeCompactionInputFiles()`. To simplify implementation, we return `Stats::Abort()` on encountering seqno-overlapped file when doing compaction to L0 instead of skipping the file and proceed with the compaction.
Some additional clean-up included in this PR:
- Renamed `earliest_memtable_seqno` to `earliest_mem_seqno` for consistent naming
- Added comment about `earliest_memtable_seqno` in related APIs
- Made parameter `earliest_memtable_seqno` constant and required
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10777
Test Plan:
- make check
- New unit test `TEST_P(DBCompactionTestFIFOCheckConsistencyWithParam, FlushAfterIntraL0CompactionWithIngestedFile)`corresponding to the above 4 cases, which will fail accordingly without the fix
- Regular CI stress run on this PR + stress test with aggressive value https://github.com/facebook/rocksdb/pull/10761 and on FIFO compaction only
Reviewed By: ajkr
Differential Revision: D40090485
Pulled By: hx235
fbshipit-source-id: 52624186952ee7109117788741aeeac86b624a4f
Summary:
Allow the last level only compaction able to output result to penultimate level if the penultimate level is empty. Which will also block the other compaction output to the penultimate level.
(it includes the PR https://github.com/facebook/rocksdb/issues/10829)
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10822
Reviewed By: siying
Differential Revision: D40389180
Pulled By: jay-zhuang
fbshipit-source-id: 4e5dcdce307795b5e07b5dd1fa29dd75bb093bad
Summary:
Instead of existing calls to ps from gnu_parallel, call a new wrapper that does ps, looks for unit test like processes, and uses pstack or gdb to print thread stack traces. Also, using `ps -wwf` instead of `ps -wf` ensures output is not cut off.
For security, CircleCI runs with security restrictions on ptrace (/proc/sys/kernel/yama/ptrace_scope = 1), and this change adds a work-around to `InstallStackTraceHandler()` (only used by testing tools) to allow any process from the same user to debug it. (I've also touched >100 files to ensure all the unit tests call this function.)
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10828
Test Plan: local manual + temporary infinite loop in a unit test to observe in CircleCI
Reviewed By: hx235
Differential Revision: D40447634
Pulled By: pdillinger
fbshipit-source-id: 718a4c4a5b54fa0f9af2d01a446162b45e5e84e1
Summary:
Lock the penultimate level for the whole compaction inputs range, so any
key in that compaction is safe to move up from the last level to
penultimate level.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10782
Reviewed By: siying
Differential Revision: D40231540
Pulled By: siying
fbshipit-source-id: ca115cc8b4018b35d797329fa85a19b06cc8c13e
Summary:
Current universal compaction picker may cause extra size amplification
compaction if there're more hot data on penultimate level. Improve the picker
to skip the last level for size amp calculation if tiered compaction is
enabled, which can
1. avoid extra unnecessary size amp compaction;
2. typically cold tier (the last level) is not size constrained, so skip size
amp for cold tier is intended;
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10467
Test Plan: CI and added unittest
Reviewed By: siying
Differential Revision: D38391350
Pulled By: jay-zhuang
fbshipit-source-id: 103c0731c05e0a7e8f267e9e829d022328be25d2
Summary:
FileMetaData::[min|max]_timestamp are not currently being used or
tracked by RocksDB, even when user-defined timestamp is enabled. Each of
them is a std::string which can occupy 32 bytes. Remove them for now.
They may be added back when we have a pressing need for them. When we do
add them back, consider store them in a more compact way, e.g. one
boolean flag and a byte array of size 16.
Per file min/max timestamp bounds are available as table properties.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10443
Test Plan: make check
Reviewed By: pdillinger
Differential Revision: D38292275
Pulled By: riversand963
fbshipit-source-id: 841dc4e855ad8f8481c80cb020603de9607c9c94
Summary:
Earlier implementation of round-robin priority can only pick one file at a time and disallows parallel compactions within the same level. In this PR, round-robin compaction policy will expand towards more input files with respecting some additional constraints, which are summarized as follows:
* Constraint 1: We can only pick consecutive files
- Constraint 1a: When a file is being compacted (or some input files are being compacted after expanding), we cannot choose it and have to stop choosing more files
- Constraint 1b: When we reach the last file (with the largest keys), we cannot choose more files (the next file will be the first one with small keys)
* Constraint 2: We should ensure the total compaction bytes (including the overlapped files from the next level) is no more than `mutable_cf_options_.max_compaction_bytes`
* Constraint 3: We try our best to pick as many files as possible so that the post-compaction level size can be just less than `MaxBytesForLevel(start_level_)`
* Constraint 4: If trivial move is allowed, we reuse the logic of `TryNonL0TrivialMove()` instead of expanding files with Constraint 3
More details can be found in `LevelCompactionBuilder::SetupOtherFilesWithRoundRobinExpansion()`.
The above optimization accelerates the process of moving the compaction cursor, in which the write-amp can be further reduced. While a large compaction may lead to high write stall, we break this large compaction into several subcompactions **regardless of** the `max_subcompactions` limit. The number of subcompactions for round-robin compaction priority is determined through the following steps:
* Step 1: Initialized against `max_output_file_limit`, the number of input files in the start level, and also the range size limit `ranges.size()`
* Step 2: Call `AcquireSubcompactionResources()`when max subcompactions is not sufficient, but we may or may not obtain desired resources, additional number of resources is stored in `extra_num_subcompaction_threads_reserved_`). Subcompaction limit is changed and update `num_planned_subcompactions` with `GetSubcompactionLimit()`
* Step 3: Call `ShrinkSubcompactionResources()` to ensure extra resources can be released (extra resources may exist for round-robin compaction when the number of actual number of subcompactions is less than the number of planned subcompactions)
More details can be found in `CompactionJob::AcquireSubcompactionResources()`,`CompactionJob::ShrinkSubcompactionResources()`, and `CompactionJob::ReleaseSubcompactionResources()`.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10341
Test Plan: Add `CompactionPriMultipleFilesRoundRobin[1-3]` unit test in `compaction_picker_test.cc` and `RoundRobinSubcompactionsAgainstResources.SubcompactionsUsingResources/[0-4]`, `RoundRobinSubcompactionsAgainstPressureToken.PressureTokenTest/[0-1]` in `db_compaction_test.cc`
Reviewed By: ajkr, hx235
Differential Revision: D37792644
Pulled By: littlepig2013
fbshipit-source-id: 7fecb7c4ffd97b34bbf6e3b760b2c35a772a0657
Summary:
Support per_key_placement for last level compaction, which will
be used for tiered compaction.
* compaction iterator reports which level a key should output to;
* compaction get the output level information and check if it's safe to
output the data to penultimate level;
* all compaction output files will be installed.
* extra internal compaction stats added for penultimate level.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/9964
Test Plan:
* Unittest
* db_bench, no significate difference: https://gist.github.com/jay-zhuang/3645f8fb97ec0ab47c10704bb39fd6e4
* microbench manual compaction no significate difference: https://gist.github.com/jay-zhuang/ba679b3e89e24992615ee9eef310e6dd
* run the db_stress multiple times (not covering the new feature) looks good (internal: https://fburl.com/sandcastle/9w84pp2m)
Reviewed By: ajkr
Differential Revision: D36249494
Pulled By: jay-zhuang
fbshipit-source-id: a96da57c8031c1df83e4a7a8567b657a112b80a3
Summary:
In leveled compaction, try to trivial move more than one files if possible, up to 4 files or max_compaction_bytes. This is to allow higher write throughput for some use cases where data is loaded in sequential order, where appying compaction results is the bottleneck.
When pick up a file to compact and it doesn't have overlapping files in the next level, try to expand to the next file if there is still no overlapping.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10190
Test Plan:
Add some unit tests.
For performance, Try to run
./db_bench_multi_move --benchmarks=fillseq --compression_type=lz4 --write_buffer_size=5000000 --num=100000000 --value_size=1000 -level_compaction_dynamic_level_bytes
Together with https://github.com/facebook/rocksdb/pull/10188 , stalling will be eliminated in this benchmark.
Reviewed By: jay-zhuang
Differential Revision: D37230647
fbshipit-source-id: 42b260f545c46abc5d90335ac2bbfcd09602b549
Summary:
In leveled compaction, L0->L1 trivial move will allow more than one file to be moved in one compaction. This would allow L0 files to be moved down faster when data is loaded in sequential order, making slowdown or stop condition harder to hit. Also seek L0->L1 trivial move when only some files qualify.
1. We always try to find L0->L1 trivial move from the oldest files. Keep including newer files, until adding a new file won't trigger a trivial move
2. Modify the trivial move condition so that this compaction would be tagged as trivial move.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10188
Test Plan:
See throughput improvements with db_bench with fast fillseq benchmark and small L0 files:
./db_bench_l0_move --benchmarks=fillseq --compression_type=lz4 --write_buffer_size=5000000 --num=100000000 --value_size=1000 -level_compaction_dynamic_level_bytes
The throughput improved by about 50%. Stalling still happens though.
Reviewed By: jay-zhuang
Differential Revision: D37224743
fbshipit-source-id: 8958d97f22e12bdfc14d2e85930f6fa0070e9659
Summary:
Currently SortFileByOverlappingRatio() is O(nlogn). It is usually OK but When there are a lot of files in an LSM-tree, SortFileByOverlappingRatio() can take non-trivial amount of time. The problem is severe when the user is loading keys in sorted order, where compaction is only trivial move and this operation becomes the bottleneck and limit the total throughput. This commit makes SortFileByOverlappingRatio() only find the top 50 files based on score. 50 files are usually enough for the parallel compactions needed for the level, and in case it is not enough, we would fall back to random, which should be acceptable.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10161
Test Plan:
Run a fillseq that generates a lot of files, and observe throughput improved (although stall is not yet eliminated). The command ran:
TEST_TMPDIR=/dev/shm/ ./db_bench_sort --benchmarks=fillseq --compression_type=lz4 --write_buffer_size=5000000 --num=100000000 --value_size=1000
The throughput improved by 11%.
Reviewed By: jay-zhuang
Differential Revision: D37129469
fbshipit-source-id: 492da2ef5bfc7cdd6daa3986b50d2ff91f88542d
Summary:
Add `kRoundRobin` as a compaction priority. The implementation is as follows.
- Define a cursor as the smallest Internal key in the successor of the selected file. Add `vector<InternalKey> compact_cursor_` into `VersionStorageInfo` where each element (`InternalKey`) in `compact_cursor_` represents a cursor. In round-robin compaction policy, we just need to select the first file (assuming files are sorted) and also has the smallest InternalKey larger than/equal to the cursor. After a file is chosen, we create a new `Fsize` vector which puts the selected file is placed at the first position in `temp`, the next cursor is then updated as the smallest InternalKey in successor of the selected file (the above logic is implemented in `SortFileByRoundRobin`).
- After a compaction succeeds, typically `InstallCompactionResults()`, we choose the next cursor for the input level and save it to `edit`. When calling `LogAndApply`, we save the next cursor with its level into some local variable and finally apply the change to `vstorage` in `SaveTo` function.
- Cursors are persist pair by pair (<level, InternalKey>) in `EncodeTo` so that they can be reconstructed when reopening. An empty cursor will not be encoded to MANIFEST
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10107
Test Plan: add unit test (`CompactionPriRoundRobin`) in `compaction_picker_test`, add `kRoundRobin` priority in `CompactionPriTest` from `db_compaction_test`, and add `PersistRoundRobinCompactCursor` in `db_compaction_test`
Reviewed By: ajkr
Differential Revision: D37316037
Pulled By: littlepig2013
fbshipit-source-id: 9f481748190ace416079139044e00df2968fb1ee
Summary:
Start tracking SST unique id in MANIFEST, which is used to verify with
SST properties to make sure the SST file is not overwritten or
misplaced. A DB option `try_verify_sst_unique_id` is introduced to
enable/disable the verification, if enabled, it opens all SST files
during DB-open to read the unique_id from table properties (default is
false), so it's recommended to use it with `max_open_files = -1` to
pre-open the files.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/9990
Test Plan: unittests, format-compatible test, mini-crash
Reviewed By: anand1976
Differential Revision: D36381863
Pulled By: jay-zhuang
fbshipit-source-id: 89ea2eb6b35ed3e80ead9c724eb096083eaba63f
Summary:
ToString() is created as some platform doesn't support std::to_string(). However, we've already used std::to_string() by mistake for 16 months (in db/db_info_dumper.cc). This commit just remove ToString().
Pull Request resolved: https://github.com/facebook/rocksdb/pull/9955
Test Plan: Watch CI tests
Reviewed By: riversand963
Differential Revision: D36176799
fbshipit-source-id: bdb6dcd0e3a3ab96a1ac810f5d0188f684064471
Summary:
Right now we still don't fully use std::numeric_limits but use a macro, mainly for supporting VS 2013. Right now we only support VS 2017 and up so it is not a problem. The code comment claims that MinGW still needs it. We don't have a CI running MinGW so it's hard to validate. since we now require C++17, it's hard to imagine MinGW would still build RocksDB but doesn't support std::numeric_limits<>.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/9954
Test Plan: See CI Runs.
Reviewed By: riversand963
Differential Revision: D36173954
fbshipit-source-id: a35a73af17cdcae20e258cdef57fcf29a50b49e0
Summary:
As disscussed in (https://github.com/facebook/rocksdb/issues/9223), Here added a new API named DB::OpenAndTrimHistory, this API will open DB and trim data to the timestamp specofied by **trim_ts** (The data with newer timestamp than specified trim bound will be removed). This API should only be used at a timestamp-enabled db instance recovery.
And this PR implemented a new iterator named HistoryTrimmingIterator to support trimming history with a new API named DB::OpenAndTrimHistory. HistoryTrimmingIterator wrapped around the underlying InternalITerator such that keys whose timestamps newer than **trim_ts** should not be returned to the compaction iterator while **trim_ts** is not null.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/9410
Reviewed By: ltamasi
Differential Revision: D34410207
Pulled By: riversand963
fbshipit-source-id: e54049dc234eccd673244c566b15df58df5a6236
Summary:
The patch does some cleanup in and around `VersionStorageInfo`:
* Renames the method `PrepareApply` to `PrepareAppend` in `Version`
to make it clear that it is to be called before appending the `Version` to
`VersionSet` (via `AppendVersion`), not before applying any `VersionEdit`s.
* Introduces a helper method `VersionStorageInfo::PrepareForVersionAppend`
(called by `Version::PrepareAppend`) that encapsulates the population of the
various derived data structures in `VersionStorageInfo`, and turns the
methods computing the derived structures (`UpdateNumNonEmptyLevels`,
`CalculateBaseBytes` etc.) into private helpers.
* Changes `Version::PrepareAppend` so it only calls `UpdateAccumulatedStats`
if the `update_stats` flag is set. (Earlier, this was checked by the callee.)
Related to this, it also moves the call to `ComputeCompensatedSizes` to
`VersionStorageInfo::PrepareForVersionAppend`.
* Updates and cleans up `version_builder_test`, `version_set_test`, and
`compaction_picker_test` so `PrepareForVersionAppend` is called anytime
a new `VersionStorageInfo` is set up or saved. This cleanup also involves
splitting `VersionStorageInfoTest.MaxBytesForLevelDynamic`
into multiple smaller test cases.
* Fixes up a bunch of comments that were outdated or just plain incorrect.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/9494
Test Plan: Ran `make check` and the crash test script for a while.
Reviewed By: riversand963
Differential Revision: D33971666
Pulled By: ltamasi
fbshipit-source-id: fda52faac7783041126e4f8dec0fe01bdcadf65a
Summary:
Fix a bug that causes file temperature not preserved after DB is restarted, or options.max_manifest_file_size is hit.
Also, pass temperature information to NewRandomAccessFile() to allow users to hack a solution where they don't preserve tiering information.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/9242
Test Plan: Add a unit test that would fail without the fix.
Reviewed By: jay-zhuang
Differential Revision: D32818150
fbshipit-source-id: 36aa3f148c60107f7b8e9d65b63b039f9e1a1eec
Summary:
Track per-SST user-defined timestamp information in MANIFEST https://github.com/facebook/rocksdb/issues/8957
Rockdb has supported user-defined timestamp feature. Application can specify a timestamp
when writing each k-v pair. When data flush from memory to disk file called SST files, file
creation activity will commit to MANIFEST. This commit is for tracking timestamp info in the
MANIFEST for each file. The changes involved are as follows:
1) Track max/min timestamp in FileMetaData, and fix invoved codes.
2) Add NewFileCustomTag::kMinTimestamp and NewFileCustomTag::kMinTimestamp in
NewFileCustomTag ( in the kNewFile4 part ), and support invoved codes such as
VersionEdit Encode and Decode etc.
3) Add unit test code for VersionEdit EncodeDecodeNewFile4, and fix invoved test codes.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/9092
Reviewed By: ajkr, akankshamahajan15
Differential Revision: D32252323
Pulled By: riversand963
fbshipit-source-id: d2642898d6e3ad1fef0eb866b98045408bd4e162
Summary:
Right now, when options.ttl is set, compactions are triggered around the time when TTL is reached. This might cause extra compactions which are often bursty. This commit tries to mitigate it by picking those files earlier in normal compaction picking process. This is only implemented using kMinOverlappingRatio with Leveled compaction as it is the default value and it is more complicated to change other styles.
When a file is aged more than ttl/2, RocksDB starts to boost the compaction priority of files in normal compaction picking process, and hope by the time TTL is reached, very few extra compaction is needed.
In order for this to work, another change is made: during a compaction, if an output level file is older than ttl/2, cut output files based on original boundary (if it is not in the last level). This is to make sure that after an old file is moved to the next level, and new data is merged from the upper level, the new data falling into this range isn't reset with old timestamp. Without this change, in many cases, most files from one level will keep having old timestamp, even if they have newer data and we stuck in it.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8749
Test Plan: Add a unit test to test the boosting logic. Will add a unit test to test it end-to-end.
Reviewed By: jay-zhuang
Differential Revision: D30735261
fbshipit-source-id: 503c2d89250b22911eb99e72b379be154de3428e
Summary:
This commit introduces incremental compaction in univeral style for space amplification. This follows the first improvement mentioned in https://rocksdb.org/blog/2021/04/12/universal-improvements.html . The implemention simply picks up files about size of max_compaction_bytes to compact and execute if the penalty is not too big. More optimizations can be done in the future, e.g. prioritizing between this compaction and other types. But for now, the feature is supposed to be functional and can often reduce frequency of full compactions, although it can introduce penalty.
In order to add cut files more efficiently so that more files from upper levels can be included, SST file cutting threshold (for current file + overlapping parent level files) is set to 1.5X of target file size. A 2MB target file size will generate files like this: https://gist.github.com/siying/29d2676fba417404f3c95e6c013c7de8 Number of files indeed increases but it is not out of control.
Two set of write benchmarks are run:
1. For ingestion rate limited scenario, we can see full compaction is mostly eliminated: https://gist.github.com/siying/959bc1186066906831cf4c808d6e0a19 . The write amp increased from 7.7 to 9.4, as expected. After applying file cutting, the number is improved to 8.9. In another benchmark, the write amp is even better with the incremental approach: https://gist.github.com/siying/d1c16c286d7c59c4d7bba718ca198163
2. For ingestion rate unlimited scenario, incremental compaction turns out to be too expensive most of the time and is not executed, as expected.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8655
Test Plan: Add unit tests to the functionality.
Reviewed By: ajkr
Differential Revision: D31787034
fbshipit-source-id: ce813e63b15a61d5a56e97bf8902a1b28e011beb
Summary:
Some FIFO users want to keep the data for longer, but the old data is rarely accessed. This feature allows users to configure FIFO compaction so that data older than a threshold is moved to a warm storage tier.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8310
Test Plan: Add several unit tests.
Reviewed By: ajkr
Differential Revision: D28493792
fbshipit-source-id: c14824ea634814dee5278b449ab5c98b6e0b5501
Summary:
The ImmutableCFOptions contained a bunch of fields that belonged to the ImmutableDBOptions. This change cleans that up by introducing an ImmutableOptions struct. Following the pattern of Options struct, this class inherits from the DB and CFOption structs (of the Immutable form).
Only one structural change (the ImmutableCFOptions::fs was changed to a shared_ptr from a raw one) is in this PR. All of the other changes involve moving the member variables from the ImmutableCFOptions into the ImmutableOptions and changing member variables or function parameters as required for compilation purposes.
Follow-on PRs may do a further clean-up of the code, such as renaming variables (such as "ImmutableOptions cf_options") and potentially eliminating un-needed function parameters (there is no longer a need to pass both an ImmutableDBOptions and an ImmutableOptions to a function).
Pull Request resolved: https://github.com/facebook/rocksdb/pull/8262
Reviewed By: pdillinger
Differential Revision: D28226540
Pulled By: mrambacher
fbshipit-source-id: 18ae71eadc879dedbe38b1eb8e6f9ff5c7147dbf
Summary:
This is a PR generated **semi-automatically** by an internal tool to remove unused includes and `using` statements.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/7604
Test Plan: make check
Reviewed By: ajkr
Differential Revision: D24579392
Pulled By: riversand963
fbshipit-source-id: c4bfa6c6b08da1de186690d37eb73d8fff45aecd
Summary:
Seems it's only causing assert failure during compaction pick, but in production code, the problematic compactions are excluded at a later step.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/7281
Reviewed By: akankshamahajan15
Differential Revision: D23228000
Pulled By: jay-zhuang
fbshipit-source-id: 2e4055aeebe0f5a2b07e299e0a2d51a1ad2e216d
Summary:
Delete triggered compaction (DTC) for universal compaction style with ```num_levels = 1``` has been disabled for sometime due to a data correctness bug. This PR re-enables it with a bug fix. A file marked for compaction can be picked, along with all L0 files after it as the compaction input. We stop adding files to the input once we encounter a file already being compacted (the original bug failed to check the compaction status of the files).
Tests:
Add unit tests to ```compaction_picker_test.cc```
Pull Request resolved: https://github.com/facebook/rocksdb/pull/7224
Reviewed By: ajkr
Differential Revision: D23031845
Pulled By: anand1976
fbshipit-source-id: 9de3cab5f9774cede666c2c48d309a7d9b88a505
Summary:
SST Partitioner interface that allows to split SST files during compactions.
It basically instruct compaction to create a new file when needed. When one is using well defined prefixes and prefixed way of defining tables it is good to define also partitioning so that promotion of some SST file does not cover huge key space on next level (worst case complete space).
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6957
Reviewed By: ajkr
Differential Revision: D22461239
fbshipit-source-id: 9ce07bba08b3ba89c2d45630520368f704d1316e
Summary:
Does what it says on the can: the patch adds a hash map to `VersionStorageInfo`
that maps file numbers to file locations, i.e. (level, position in level) pairs. This
will enable stricter consistency checks in `VersionBuilder`. The patch also fixes
all the unit tests that used duplicate file numbers in a version (which would trigger
an assertion with the new code).
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6862
Test Plan:
`make check`
`make whitebox_crash_test`
Reviewed By: riversand963
Differential Revision: D21670446
Pulled By: ltamasi
fbshipit-source-id: 2eac249945cf33d8fb8597b26bfff5221e1a861a
Summary:
Delete triggered compaction in universal compaction mode was causing a corruption when scheduled in parallel with other compactions.
1. When num_levels = 1, a file marked for compaction may be picked along with all older files in L0, without checking if any of them are already being compaction. This can cause unpredictable results like resurrection of older versions of keys or deleted keys.
2. When num_levels > 1, a delete triggered compaction would not get scheduled if it overlaps with a running regular compaction. However, the reverse is not true. This is due to the fact that in ```UniversalCompactionBuilder::CalculateSortedRuns```, it assumes that entire sorted runs are picked for compaction and only checks the first file in a sorted run to determine conflicts. This is violated by a delete triggered compaction as it works on a subset of a sorted run.
Fix the bug for num_levels > 1, and disable the feature for now when num_levels = 1. After disabling this feature, files would still get marked for compaction, but no compaction would get scheduled.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6799
Reviewed By: pdillinger
Differential Revision: D21431286
Pulled By: anand1976
fbshipit-source-id: ae9f0bdb1d6ae2f10284847db731c23f43af164a
Summary:
When dynamically linking two binaries together, different builds of RocksDB from two sources might cause errors. To provide a tool for user to solve the problem, the RocksDB namespace is changed to a flag which can be overridden in build time.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6433
Test Plan: Build release, all and jtest. Try to build with ROCKSDB_NAMESPACE with another flag.
Differential Revision: D19977691
fbshipit-source-id: aa7f2d0972e1c31d75339ac48478f34f6cfcfb3e
Summary:
In the current code base, RocksDB generate the checksum for each block and verify the checksum at usage. Current PR enable SST file checksum. After a SST file is generated by Flush or Compaction, RocksDB generate the SST file checksum and store the checksum value and checksum method name in the vs_info and MANIFEST as part for the FileMetadata.
Added the enable_sst_file_checksum to Options to enable or disable file checksum. Added sst_file_checksum to Options such that user can plugin their own SST file checksum calculate method via overriding the SstFileChecksum class. The checksum information inlcuding uint32_t checksum value and a checksum name (string). A new tool is added to LDB such that user can dump out a list of file checksum information from MANIFEST. If user enables the file checksum but does not provide the sst_file_checksum instance, RocksDB will use the default crc32checksum implemented in table/sst_file_checksum_crc32c.h
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6216
Test Plan: Added the testing case in table_test and ldb_cmd_test to verify checksum is correct in different level. Pass make asan_check.
Differential Revision: D19171461
Pulled By: zhichao-cao
fbshipit-source-id: b2e53479eefc5bb0437189eaa1941670e5ba8b87
Summary:
options.periodic_compaction_seconds isn't supported when options.max_open_files != -1. It's because that the information of file creation time is stored in table properties and are not guaranteed to be loaded unless options.max_open_files = -1. Relax this constraint by storing the information in manifest.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6090
Test Plan: Pass all existing tests; Modify an existing test to force the manifest value to take 0 to simulate backward compatibility case; manually open the DB generated with the change by release 4.2.
Differential Revision: D18702268
fbshipit-source-id: 13e0bd94f546498a04f3dc5fc0d9dff5125ec9eb
Summary:
By default options.ttl is disabled. We believe a better default will be 30 days, which means deleted data the database will be removed from SST files slightly after 30 days, for most of the cases.
Make the default UINT64_MAX - 1 to indicate that it is not overridden by users.
Change periodic_compaction_seconds to be UINT64_MAX - 1 to UINT64_MAX too to be consistent. Also fix a small bug in the previous periodic_compaction_seconds default code.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6073
Test Plan: Add unit tests for it.
Differential Revision: D18669626
fbshipit-source-id: 957cd4374cafc1557d45a0ba002010552a378cc8
Summary:
Previously, options.ttl cannot be set with options.max_open_files = -1, because it makes use of creation_time field in table properties, which is not available unless max_open_files = -1. With this commit, the information will be stored in manifest and when it is available, will be used instead.
Note that, this change will break forward compatibility for release 5.1 and older.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6060
Test Plan: Extend existing test case to options.max_open_files != -1, and simulate backward compatility in one test case by forcing the value to be 0.
Differential Revision: D18631623
fbshipit-source-id: 30c232a8672de5432ce9608bb2488ecc19138830
Summary:
## Problem Description
Our process was abort when it call `CheckConsistency`. And the information in `stderr` show that "`L0 files seqno 3001491972 3004797440 vs. 3002875611 3004524421` ". Here are the causes of the accident I investigated.
* RocksDB will call `CheckConsistency` whenever `MANIFEST` file is update. It will check sequence number interval of every file, except files which were ingested.
* When one file is ingested into RocksDB, it will be assigned the value of global sequence number, and the minimum and maximum seqno of this file are equal, which are both equal to global sequence number.
* `CheckConsistency` determines whether the file is ingested by whether the smallest and largest seqno of an sstable file are equal.
* If IntraL0Compaction picks one sst which was ingested just now and compacted it into another sst, the `smallest_seqno` of this new file will be smaller than his `largest_seqno`.
* If more than one ingested file was ingested before memtable schedule flush, and they all compact into one new sstable file by `IntraL0Compaction`. The sequence interval of this new file will be included in the interval of the memtable. So `CheckConsistency` will return a `Corruption`.
* If a sstable was ingested after the memtable was schedule to flush, which would assign a larger seqno to it than memtable. Then the file was compacted with other files (these files were all flushed before the memtable) in L0 into one file. This compaction start before the flush job of memtable start, but completed after the flush job finish. So this new file produced by the compaction (we call it s1) would have a larger interval of sequence number than the file produced by flush (we call it s2). **But there was still some data in s1 written into RocksDB before the s2, so it's possible that some data in s2 was cover by old data in s1.** Of course, it would also make a `Corruption` because of overlap of seqno. There is the relationship of the files:
> s1.smallest_seqno < s2.smallest_seqno < s2.largest_seqno < s1.largest_seqno
So I skip pick sst file which was ingested in function `FindIntraL0Compaction `
## Reason
Here is my bug report: https://github.com/facebook/rocksdb/issues/5913
There are two situations that can cause the check to fail.
### First situation:
- First we ingest five external sst into Rocksdb, and they happened to be ingested in L0. and there had been some data in memtable, which make the smallest sequence number of memtable is less than which of sst that we ingest.
- If there had been one compaction job which compacted sst from L0 to L1, `LevelCompactionPicker` would trigger a `IntraL0Compaction` which would compact this five sst from L0 to L0. We call this sst A, which was merged from five ingested sst.
- Then some data was put into memtable, and memtable was flushed to L0. We called this sst B.
- RocksDB check consistency , and find the `smallest_seqno` of B is less than that of A and crash. Because A was merged from five sst, the smallest sequence number of it was less than the biggest sequece number of itself, so RocksDB could not tell if A was produce by ingested.
### Secondary situaion
- First we have flushed many sst in L0, we call them [s1, s2, s3].
- There is an immutable memtable request to be flushed, but because flush thread is busy, so it has not been picked. we call it m1. And at the moment, one sst is ingested into L0. We call it s4. Because s4 is ingested after m1 became immutable memtable, so it has a larger log sequence number than m1.
- m1 is flushed in L0. because it is small, this flush job finish quickly. we call it s5.
- [s1, s2, s3, s4] are compacted into one sst to L0, by IntraL0Compaction. We call it s6.
- compacted 4@0 files to L0
- When s6 is added into manifest, the corruption happened. because the largest sequence number of s6 is equal to s4, and they are both larger than that of s5. But because s1 is older than m1, so the smallest sequence number of s6 is smaller than that of s5.
- s6.smallest_seqno < s5.smallest_seqno < s5.largest_seqno < s6.largest_seqno
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5958
Differential Revision: D18601316
fbshipit-source-id: 5fe54b3c9af52a2e1400728f565e895cde1c7267
Summary:
It's useful to add test coverage for universal compaction's periodic compaction. Add two tests.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6002
Test Plan: Run the two tests
Differential Revision: D18363544
fbshipit-source-id: bbd04b54057315f64f959709006412db1f76d170
Summary:
Previously, periodic compaction is not supported in universal compaction. Add the support using following approach: if any file is marked as qualified for periodid compaction, trigger a full compaction. If a full compaction is prevented by files being compacted, try to compact the higher levels than files currently being compacted. If in this way we can only compact the last sorted run and none of the file to be compacted qualifies for periodic compaction, skip the compact. This is to prevent the same single level compaction from being executed again and again.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5970
Test Plan: Add several test cases.
Differential Revision: D18147097
fbshipit-source-id: 8ecc308154d9aca96fb192c51fbceba3947550c1
Summary:
This is groundwork for adding garbage collection support to BlobDB. The
patch adds logic that keeps track of the oldest blob file referred to by
each SST file. The oldest blob file is identified during flush/
compaction (similarly to how the range of keys covered by the SST is
identified), and persisted in the manifest as a custom field of the new
file edit record. Blob indexes with TTL are ignored for the purposes of
identifying the oldest blob file (since such blob files are cleaned up by the
TTL logic in BlobDB).
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5903
Test Plan:
Added new unit tests; also ran db_bench in BlobDB mode, inspected the
manifest using ldb, and confirmed (by scanning the SST files using
sst_dump) that the value of the oldest blob file number field matches
the contents of the file for each SST.
Differential Revision: D17859997
Pulled By: ltamasi
fbshipit-source-id: 21662c137c6259a6af70446faaf3a9912c550e90
Summary:
Many logging related source files are under util/. It will be more structured if they are together.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5387
Differential Revision: D15579036
Pulled By: siying
fbshipit-source-id: 3850134ed50b8c0bb40a0c8ae1f184fa4081303f