You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
rocksdb/include/rocksdb/memtablerep.h

420 lines
17 KiB

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// This file contains the interface that must be implemented by any collection
// to be used as the backing store for a MemTable. Such a collection must
// satisfy the following properties:
// (1) It does not store duplicate items.
// (2) It uses MemTableRep::KeyComparator to compare items for iteration and
// equality.
// (3) It can be accessed concurrently by multiple readers and can support
// during reads. However, it needn't support multiple concurrent writes.
// (4) Items are never deleted.
// The liberal use of assertions is encouraged to enforce (1).
//
// The factory will be passed an MemTableAllocator object when a new MemTableRep
// is requested.
//
// Users can implement their own memtable representations. We include three
// types built in:
// - SkipListRep: This is the default; it is backed by a skip list.
// - HashSkipListRep: The memtable rep that is best used for keys that are
// structured like "prefix:suffix" where iteration within a prefix is
// common and iteration across different prefixes is rare. It is backed by
// a hash map where each bucket is a skip list.
// - VectorRep: This is backed by an unordered std::vector. On iteration, the
// vector is sorted. It is intelligent about sorting; once the MarkReadOnly()
// has been called, the vector will only be sorted once. It is optimized for
// random-write-heavy workloads.
//
// The last four implementations are designed for situations in which
// iteration over the entire collection is rare since doing so requires all the
// keys to be copied into a sorted data structure.
#pragma once
#include <stdint.h>
#include <stdlib.h>
#include <memory>
#include <stdexcept>
#include <unordered_set>
#include "rocksdb/customizable.h"
#include "rocksdb/slice.h"
namespace ROCKSDB_NAMESPACE {
class Arena;
class Allocator;
class LookupKey;
class SliceTransform;
class Logger;
struct DBOptions;
using KeyHandle = void*;
extern Slice GetLengthPrefixedSlice(const char* data);
class MemTableRep {
public:
// KeyComparator provides a means to compare keys, which are internal keys
// concatenated with values.
class KeyComparator {
public:
using DecodedType = ROCKSDB_NAMESPACE::Slice;
virtual DecodedType decode_key(const char* key) const {
// The format of key is frozen and can be treated as a part of the API
// contract. Refer to MemTable::Add for details.
return GetLengthPrefixedSlice(key);
}
// Compare a and b. Return a negative value if a is less than b, 0 if they
// are equal, and a positive value if a is greater than b
virtual int operator()(const char* prefix_len_key1,
const char* prefix_len_key2) const = 0;
virtual int operator()(const char* prefix_len_key,
const Slice& key) const = 0;
virtual ~KeyComparator() {}
};
explicit MemTableRep(Allocator* allocator) : allocator_(allocator) {}
// Allocate a buf of len size for storing key. The idea is that a
// specific memtable representation knows its underlying data structure
// better. By allowing it to allocate memory, it can possibly put
// correlated stuff in consecutive memory area to make processor
// prefetching more efficient.
virtual KeyHandle Allocate(const size_t len, char** buf);
// Insert key into the collection. (The caller will pack key and value into a
// single buffer and pass that in as the parameter to Insert).
// REQUIRES: nothing that compares equal to key is currently in the
// collection, and no concurrent modifications to the table in progress
virtual void Insert(KeyHandle handle) = 0;
// Same as ::Insert
// Returns false if MemTableRepFactory::CanHandleDuplicatedKey() is true and
// the <key, seq> already exists.
virtual bool InsertKey(KeyHandle handle) {
Insert(handle);
return true;
}
// Same as Insert(), but in additional pass a hint to insert location for
// the key. If hint points to nullptr, a new hint will be populated.
// otherwise the hint will be updated to reflect the last insert location.
//
// Currently only skip-list based memtable implement the interface. Other
// implementations will fallback to Insert() by default.
virtual void InsertWithHint(KeyHandle handle, void** /*hint*/) {
// Ignore the hint by default.
Insert(handle);
}
// Same as ::InsertWithHint
// Returns false if MemTableRepFactory::CanHandleDuplicatedKey() is true and
// the <key, seq> already exists.
virtual bool InsertKeyWithHint(KeyHandle handle, void** hint) {
InsertWithHint(handle, hint);
return true;
}
// Same as ::InsertWithHint, but allow concurrent write
//
// If hint points to nullptr, a new hint will be allocated on heap, otherwise
// the hint will be updated to reflect the last insert location. The hint is
// owned by the caller and it is the caller's responsibility to delete the
// hint later.
//
// Currently only skip-list based memtable implement the interface. Other
// implementations will fallback to InsertConcurrently() by default.
virtual void InsertWithHintConcurrently(KeyHandle handle, void** /*hint*/) {
// Ignore the hint by default.
InsertConcurrently(handle);
}
// Same as ::InsertWithHintConcurrently
// Returns false if MemTableRepFactory::CanHandleDuplicatedKey() is true and
// the <key, seq> already exists.
virtual bool InsertKeyWithHintConcurrently(KeyHandle handle, void** hint) {
InsertWithHintConcurrently(handle, hint);
return true;
}
// Like Insert(handle), but may be called concurrent with other calls
// to InsertConcurrently for other handles.
//
// Returns false if MemTableRepFactory::CanHandleDuplicatedKey() is true and
// the <key, seq> already exists.
virtual void InsertConcurrently(KeyHandle handle);
// Same as ::InsertConcurrently
// Returns false if MemTableRepFactory::CanHandleDuplicatedKey() is true and
// the <key, seq> already exists.
virtual bool InsertKeyConcurrently(KeyHandle handle) {
InsertConcurrently(handle);
return true;
}
// Returns true iff an entry that compares equal to key is in the collection.
virtual bool Contains(const char* key) const = 0;
// Notify this table rep that it will no longer be added to. By default,
// does nothing. After MarkReadOnly() is called, this table rep will
// not be written to (ie No more calls to Allocate(), Insert(),
// or any writes done directly to entries accessed through the iterator.)
virtual void MarkReadOnly() {}
// Notify this table rep that it has been flushed to stable storage.
// By default, does nothing.
//
// Invariant: MarkReadOnly() is called, before MarkFlushed().
// Note that this method if overridden, should not run for an extended period
// of time. Otherwise, RocksDB may be blocked.
virtual void MarkFlushed() {}
// Look up key from the mem table, since the first key in the mem table whose
// user_key matches the one given k, call the function callback_func(), with
// callback_args directly forwarded as the first parameter, and the mem table
// key as the second parameter. If the return value is false, then terminates.
// Otherwise, go through the next key.
//
// It's safe for Get() to terminate after having finished all the potential
// key for the k.user_key(), or not.
//
// Default:
// Get() function with a default value of dynamically construct an iterator,
// seek and call the call back function.
virtual void Get(const LookupKey& k, void* callback_args,
bool (*callback_func)(void* arg, const char* entry));
virtual uint64_t ApproximateNumEntries(const Slice& /*start_ikey*/,
const Slice& /*end_key*/) {
return 0;
}
// Returns a vector of unique random memtable entries of approximate
// size 'target_sample_size' (this size is not strictly enforced).
virtual void UniqueRandomSample(const uint64_t num_entries,
const uint64_t target_sample_size,
std::unordered_set<const char*>* entries) {
(void)num_entries;
(void)target_sample_size;
(void)entries;
assert(false);
}
// Report an approximation of how much memory has been used other than memory
// that was allocated through the allocator. Safe to call from any thread.
virtual size_t ApproximateMemoryUsage() = 0;
virtual ~MemTableRep() {}
// Iteration over the contents of a skip collection
class Iterator {
public:
// Initialize an iterator over the specified collection.
// The returned iterator is not valid.
// explicit Iterator(const MemTableRep* collection);
virtual ~Iterator() {}
// Returns true iff the iterator is positioned at a valid node.
virtual bool Valid() const = 0;
// Returns the key at the current position.
// REQUIRES: Valid()
virtual const char* key() const = 0;
// Advances to the next position.
// REQUIRES: Valid()
virtual void Next() = 0;
// Advances to the previous position.
// REQUIRES: Valid()
virtual void Prev() = 0;
// Advance to the first entry with a key >= target
virtual void Seek(const Slice& internal_key, const char* memtable_key) = 0;
// retreat to the first entry with a key <= target
virtual void SeekForPrev(const Slice& internal_key,
const char* memtable_key) = 0;
virtual void RandomSeek() {}
// Position at the first entry in collection.
// Final state of iterator is Valid() iff collection is not empty.
virtual void SeekToFirst() = 0;
// Position at the last entry in collection.
// Final state of iterator is Valid() iff collection is not empty.
virtual void SeekToLast() = 0;
};
// Return an iterator over the keys in this representation.
// arena: If not null, the arena needs to be used to allocate the Iterator.
// When destroying the iterator, the caller will not call "delete"
// but Iterator::~Iterator() directly. The destructor needs to destroy
// all the states but those allocated in arena.
virtual Iterator* GetIterator(Arena* arena = nullptr) = 0;
// Return an iterator that has a special Seek semantics. The result of
// a Seek might only include keys with the same prefix as the target key.
// arena: If not null, the arena is used to allocate the Iterator.
// When destroying the iterator, the caller will not call "delete"
// but Iterator::~Iterator() directly. The destructor needs to destroy
// all the states but those allocated in arena.
virtual Iterator* GetDynamicPrefixIterator(Arena* arena = nullptr) {
return GetIterator(arena);
}
// Return true if the current MemTableRep supports merge operator.
// Default: true
virtual bool IsMergeOperatorSupported() const { return true; }
// Return true if the current MemTableRep supports snapshot
// Default: true
virtual bool IsSnapshotSupported() const { return true; }
protected:
// When *key is an internal key concatenated with the value, returns the
// user key.
virtual Slice UserKey(const char* key) const;
Allocator* allocator_;
};
// This is the base class for all factories that are used by RocksDB to create
// new MemTableRep objects
class MemTableRepFactory : public Customizable {
public:
virtual ~MemTableRepFactory() {}
static const char* Type() { return "MemTableRepFactory"; }
static Status CreateFromString(const ConfigOptions& config_options,
const std::string& id,
std::unique_ptr<MemTableRepFactory>* factory);
virtual MemTableRep* CreateMemTableRep(const MemTableRep::KeyComparator&,
Allocator*, const SliceTransform*,
Logger* logger) = 0;
virtual MemTableRep* CreateMemTableRep(
const MemTableRep::KeyComparator& key_cmp, Allocator* allocator,
const SliceTransform* slice_transform, Logger* logger,
uint32_t /* column_family_id */) {
return CreateMemTableRep(key_cmp, allocator, slice_transform, logger);
}
virtual const char* Name() const override = 0;
// Return true if the current MemTableRep supports concurrent inserts
// Default: false
virtual bool IsInsertConcurrentlySupported() const { return false; }
// Return true if the current MemTableRep supports detecting duplicate
// <key,seq> at insertion time. If true, then MemTableRep::Insert* returns
// false when if the <key,seq> already exists.
// Default: false
virtual bool CanHandleDuplicatedKey() const { return false; }
};
// This uses a skip list to store keys. It is the default.
//
// Parameters:
// lookahead: If non-zero, each iterator's seek operation will start the
// search from the previously visited record (doing at most 'lookahead'
// steps). This is an optimization for the access pattern including many
// seeks with consecutive keys.
class SkipListFactory : public MemTableRepFactory {
public:
explicit SkipListFactory(size_t lookahead = 0);
// Methods for Configurable/Customizable class overrides
static const char* kClassName() { return "SkipListFactory"; }
static const char* kNickName() { return "skip_list"; }
virtual const char* Name() const override { return kClassName(); }
virtual const char* NickName() const override { return kNickName(); }
std::string GetId() const override;
// Methods for MemTableRepFactory class overrides
using MemTableRepFactory::CreateMemTableRep;
virtual MemTableRep* CreateMemTableRep(const MemTableRep::KeyComparator&,
Allocator*, const SliceTransform*,
Logger* logger) override;
bool IsInsertConcurrentlySupported() const override { return true; }
bool CanHandleDuplicatedKey() const override { return true; }
private:
size_t lookahead_;
};
#ifndef ROCKSDB_LITE
// This creates MemTableReps that are backed by an std::vector. On iteration,
// the vector is sorted. This is useful for workloads where iteration is very
// rare and writes are generally not issued after reads begin.
//
// Parameters:
// count: Passed to the constructor of the underlying std::vector of each
// VectorRep. On initialization, the underlying array will be at least count
// bytes reserved for usage.
class VectorRepFactory : public MemTableRepFactory {
size_t count_;
public:
explicit VectorRepFactory(size_t count = 0);
// Methods for Configurable/Customizable class overrides
static const char* kClassName() { return "VectorRepFactory"; }
static const char* kNickName() { return "vector"; }
const char* Name() const override { return kClassName(); }
const char* NickName() const override { return kNickName(); }
// Methods for MemTableRepFactory class overrides
using MemTableRepFactory::CreateMemTableRep;
virtual MemTableRep* CreateMemTableRep(const MemTableRep::KeyComparator&,
Allocator*, const SliceTransform*,
Logger* logger) override;
};
// This class contains a fixed array of buckets, each
// pointing to a skiplist (null if the bucket is empty).
// bucket_count: number of fixed array buckets
// skiplist_height: the max height of the skiplist
// skiplist_branching_factor: probabilistic size ratio between adjacent
// link lists in the skiplist
extern MemTableRepFactory* NewHashSkipListRepFactory(
size_t bucket_count = 1000000, int32_t skiplist_height = 4,
int32_t skiplist_branching_factor = 4);
// The factory is to create memtables based on a hash table:
// it contains a fixed array of buckets, each pointing to either a linked list
// or a skip list if number of entries inside the bucket exceeds
// threshold_use_skiplist.
// @bucket_count: number of fixed array buckets
// @huge_page_tlb_size: if <=0, allocate the hash table bytes from malloc.
// Otherwise from huge page TLB. The user needs to reserve
// huge pages for it to be allocated, like:
// sysctl -w vm.nr_hugepages=20
// See linux doc Documentation/vm/hugetlbpage.txt
// @bucket_entries_logging_threshold: if number of entries in one bucket
// exceeds this number, log about it.
// @if_log_bucket_dist_when_flash: if true, log distribution of number of
// entries when flushing.
// @threshold_use_skiplist: a bucket switches to skip list if number of
// entries exceed this parameter.
extern MemTableRepFactory* NewHashLinkListRepFactory(
size_t bucket_count = 50000, size_t huge_page_tlb_size = 0,
int bucket_entries_logging_threshold = 4096,
bool if_log_bucket_dist_when_flash = true,
uint32_t threshold_use_skiplist = 256);
#endif // ROCKSDB_LITE
} // namespace ROCKSDB_NAMESPACE