You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
rocksdb/include/rocksdb/memtablerep.h

421 lines
17 KiB

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// This file contains the interface that must be implemented by any collection
// to be used as the backing store for a MemTable. Such a collection must
// satisfy the following properties:
// (1) It does not store duplicate items.
// (2) It uses MemTableRep::KeyComparator to compare items for iteration and
// equality.
// (3) It can be accessed concurrently by multiple readers and can support
// during reads. However, it needn't support multiple concurrent writes.
// (4) Items are never deleted.
// The liberal use of assertions is encouraged to enforce (1).
//
// The factory will be passed an MemTableAllocator object when a new MemTableRep
// is requested.
//
// Users can implement their own memtable representations. We include three
// types built in:
// - SkipListRep: This is the default; it is backed by a skip list.
// - HashSkipListRep: The memtable rep that is best used for keys that are
// structured like "prefix:suffix" where iteration within a prefix is
// common and iteration across different prefixes is rare. It is backed by
// a hash map where each bucket is a skip list.
// - VectorRep: This is backed by an unordered std::vector. On iteration, the
// vector is sorted. It is intelligent about sorting; once the MarkReadOnly()
// has been called, the vector will only be sorted once. It is optimized for
// random-write-heavy workloads.
//
// The last four implementations are designed for situations in which
// iteration over the entire collection is rare since doing so requires all the
// keys to be copied into a sorted data structure.
#pragma once
#include <stdint.h>
support for concurrent adds to memtable Summary: This diff adds support for concurrent adds to the skiplist memtable implementations. Memory allocation is made thread-safe by the addition of a spinlock, with small per-core buffers to avoid contention. Concurrent memtable writes are made via an additional method and don't impose a performance overhead on the non-concurrent case, so parallelism can be selected on a per-batch basis. Write thread synchronization is an increasing bottleneck for higher levels of concurrency, so this diff adds --enable_write_thread_adaptive_yield (default off). This feature causes threads joining a write batch group to spin for a short time (default 100 usec) using sched_yield, rather than going to sleep on a mutex. If the timing of the yield calls indicates that another thread has actually run during the yield then spinning is avoided. This option improves performance for concurrent situations even without parallel adds, although it has the potential to increase CPU usage (and the heuristic adaptation is not yet mature). Parallel writes are not currently compatible with inplace updates, update callbacks, or delete filtering. Enable it with --allow_concurrent_memtable_write (and --enable_write_thread_adaptive_yield). Parallel memtable writes are performance neutral when there is no actual parallelism, and in my experiments (SSD server-class Linux and varying contention and key sizes for fillrandom) they are always a performance win when there is more than one thread. Statistics are updated earlier in the write path, dropping the number of DB mutex acquisitions from 2 to 1 for almost all cases. This diff was motivated and inspired by Yahoo's cLSM work. It is more conservative than cLSM: RocksDB's write batch group leader role is preserved (along with all of the existing flush and write throttling logic) and concurrent writers are blocked until all memtable insertions have completed and the sequence number has been advanced, to preserve linearizability. My test config is "db_bench -benchmarks=fillrandom -threads=$T -batch_size=1 -memtablerep=skip_list -value_size=100 --num=1000000/$T -level0_slowdown_writes_trigger=9999 -level0_stop_writes_trigger=9999 -disable_auto_compactions --max_write_buffer_number=8 -max_background_flushes=8 --disable_wal --write_buffer_size=160000000 --block_size=16384 --allow_concurrent_memtable_write" on a two-socket Xeon E5-2660 @ 2.2Ghz with lots of memory and an SSD hard drive. With 1 thread I get ~440Kops/sec. Peak performance for 1 socket (numactl -N1) is slightly more than 1Mops/sec, at 16 threads. Peak performance across both sockets happens at 30 threads, and is ~900Kops/sec, although with fewer threads there is less performance loss when the system has background work. Test Plan: 1. concurrent stress tests for InlineSkipList and DynamicBloom 2. make clean; make check 3. make clean; DISABLE_JEMALLOC=1 make valgrind_check; valgrind db_bench 4. make clean; COMPILE_WITH_TSAN=1 make all check; db_bench 5. make clean; COMPILE_WITH_ASAN=1 make all check; db_bench 6. make clean; OPT=-DROCKSDB_LITE make check 7. verify no perf regressions when disabled Reviewers: igor, sdong Reviewed By: sdong Subscribers: MarkCallaghan, IslamAbdelRahman, anthony, yhchiang, rven, sdong, guyg8, kradhakrishnan, dhruba Differential Revision: https://reviews.facebook.net/D50589
10 years ago
#include <stdlib.h>
Memtable sampling for mempurge heuristic. (#8628) Summary: Changes the API of the MemPurge process: the `bool experimental_allow_mempurge` and `experimental_mempurge_policy` flags have been replaced by a `double experimental_mempurge_threshold` option. This change of API reflects another major change introduced in this PR: the MemPurgeDecider() function now works by sampling the memtables being flushed to estimate the overall amount of useful payload (payload minus the garbage), and then compare this useful payload estimate with the `double experimental_mempurge_threshold` value. Therefore, when the value of this flag is `0.0` (default value), mempurge is simply deactivated. On the other hand, a value of `DBL_MAX` would be equivalent to always going through a mempurge regardless of the garbage ratio estimate. At the moment, a `double experimental_mempurge_threshold` value else than 0.0 or `DBL_MAX` is opnly supported`with the `SkipList` memtable representation. Regarding the sampling, this PR includes the introduction of a `MemTable::UniqueRandomSample` function that collects (approximately) random entries from the memtable by using the new `SkipList::Iterator::RandomSeek()` under the hood, or by iterating through each memtable entry, depending on the target sample size and the total number of entries. The unit tests have been readapted to support this new API. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8628 Reviewed By: pdillinger Differential Revision: D30149315 Pulled By: bjlemaire fbshipit-source-id: 1feef5390c95db6f4480ab4434716533d3947f27
3 years ago
#include <memory>
#include <stdexcept>
Memtable sampling for mempurge heuristic. (#8628) Summary: Changes the API of the MemPurge process: the `bool experimental_allow_mempurge` and `experimental_mempurge_policy` flags have been replaced by a `double experimental_mempurge_threshold` option. This change of API reflects another major change introduced in this PR: the MemPurgeDecider() function now works by sampling the memtables being flushed to estimate the overall amount of useful payload (payload minus the garbage), and then compare this useful payload estimate with the `double experimental_mempurge_threshold` value. Therefore, when the value of this flag is `0.0` (default value), mempurge is simply deactivated. On the other hand, a value of `DBL_MAX` would be equivalent to always going through a mempurge regardless of the garbage ratio estimate. At the moment, a `double experimental_mempurge_threshold` value else than 0.0 or `DBL_MAX` is opnly supported`with the `SkipList` memtable representation. Regarding the sampling, this PR includes the introduction of a `MemTable::UniqueRandomSample` function that collects (approximately) random entries from the memtable by using the new `SkipList::Iterator::RandomSeek()` under the hood, or by iterating through each memtable entry, depending on the target sample size and the total number of entries. The unit tests have been readapted to support this new API. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8628 Reviewed By: pdillinger Differential Revision: D30149315 Pulled By: bjlemaire fbshipit-source-id: 1feef5390c95db6f4480ab4434716533d3947f27
3 years ago
#include <unordered_set>
#include "rocksdb/customizable.h"
#include "rocksdb/slice.h"
namespace ROCKSDB_NAMESPACE {
class Arena;
class Allocator;
class LookupKey;
class SliceTransform;
class Logger;
struct DBOptions;
using KeyHandle = void*;
extern Slice GetLengthPrefixedSlice(const char* data);
class MemTableRep {
public:
// KeyComparator provides a means to compare keys, which are internal keys
// concatenated with values.
class KeyComparator {
public:
using DecodedType = ROCKSDB_NAMESPACE::Slice;
virtual DecodedType decode_key(const char* key) const {
// The format of key is frozen and can be treated as a part of the API
// contract. Refer to MemTable::Add for details.
return GetLengthPrefixedSlice(key);
}
// Compare a and b. Return a negative value if a is less than b, 0 if they
// are equal, and a positive value if a is greater than b
virtual int operator()(const char* prefix_len_key1,
const char* prefix_len_key2) const = 0;
virtual int operator()(const char* prefix_len_key,
const Slice& key) const = 0;
virtual ~KeyComparator() {}
};
explicit MemTableRep(Allocator* allocator) : allocator_(allocator) {}
support for concurrent adds to memtable Summary: This diff adds support for concurrent adds to the skiplist memtable implementations. Memory allocation is made thread-safe by the addition of a spinlock, with small per-core buffers to avoid contention. Concurrent memtable writes are made via an additional method and don't impose a performance overhead on the non-concurrent case, so parallelism can be selected on a per-batch basis. Write thread synchronization is an increasing bottleneck for higher levels of concurrency, so this diff adds --enable_write_thread_adaptive_yield (default off). This feature causes threads joining a write batch group to spin for a short time (default 100 usec) using sched_yield, rather than going to sleep on a mutex. If the timing of the yield calls indicates that another thread has actually run during the yield then spinning is avoided. This option improves performance for concurrent situations even without parallel adds, although it has the potential to increase CPU usage (and the heuristic adaptation is not yet mature). Parallel writes are not currently compatible with inplace updates, update callbacks, or delete filtering. Enable it with --allow_concurrent_memtable_write (and --enable_write_thread_adaptive_yield). Parallel memtable writes are performance neutral when there is no actual parallelism, and in my experiments (SSD server-class Linux and varying contention and key sizes for fillrandom) they are always a performance win when there is more than one thread. Statistics are updated earlier in the write path, dropping the number of DB mutex acquisitions from 2 to 1 for almost all cases. This diff was motivated and inspired by Yahoo's cLSM work. It is more conservative than cLSM: RocksDB's write batch group leader role is preserved (along with all of the existing flush and write throttling logic) and concurrent writers are blocked until all memtable insertions have completed and the sequence number has been advanced, to preserve linearizability. My test config is "db_bench -benchmarks=fillrandom -threads=$T -batch_size=1 -memtablerep=skip_list -value_size=100 --num=1000000/$T -level0_slowdown_writes_trigger=9999 -level0_stop_writes_trigger=9999 -disable_auto_compactions --max_write_buffer_number=8 -max_background_flushes=8 --disable_wal --write_buffer_size=160000000 --block_size=16384 --allow_concurrent_memtable_write" on a two-socket Xeon E5-2660 @ 2.2Ghz with lots of memory and an SSD hard drive. With 1 thread I get ~440Kops/sec. Peak performance for 1 socket (numactl -N1) is slightly more than 1Mops/sec, at 16 threads. Peak performance across both sockets happens at 30 threads, and is ~900Kops/sec, although with fewer threads there is less performance loss when the system has background work. Test Plan: 1. concurrent stress tests for InlineSkipList and DynamicBloom 2. make clean; make check 3. make clean; DISABLE_JEMALLOC=1 make valgrind_check; valgrind db_bench 4. make clean; COMPILE_WITH_TSAN=1 make all check; db_bench 5. make clean; COMPILE_WITH_ASAN=1 make all check; db_bench 6. make clean; OPT=-DROCKSDB_LITE make check 7. verify no perf regressions when disabled Reviewers: igor, sdong Reviewed By: sdong Subscribers: MarkCallaghan, IslamAbdelRahman, anthony, yhchiang, rven, sdong, guyg8, kradhakrishnan, dhruba Differential Revision: https://reviews.facebook.net/D50589
10 years ago
// Allocate a buf of len size for storing key. The idea is that a
// specific memtable representation knows its underlying data structure
// better. By allowing it to allocate memory, it can possibly put
// correlated stuff in consecutive memory area to make processor
// prefetching more efficient.
virtual KeyHandle Allocate(const size_t len, char** buf);
// Insert key into the collection. (The caller will pack key and value into a
// single buffer and pass that in as the parameter to Insert).
// REQUIRES: nothing that compares equal to key is currently in the
support for concurrent adds to memtable Summary: This diff adds support for concurrent adds to the skiplist memtable implementations. Memory allocation is made thread-safe by the addition of a spinlock, with small per-core buffers to avoid contention. Concurrent memtable writes are made via an additional method and don't impose a performance overhead on the non-concurrent case, so parallelism can be selected on a per-batch basis. Write thread synchronization is an increasing bottleneck for higher levels of concurrency, so this diff adds --enable_write_thread_adaptive_yield (default off). This feature causes threads joining a write batch group to spin for a short time (default 100 usec) using sched_yield, rather than going to sleep on a mutex. If the timing of the yield calls indicates that another thread has actually run during the yield then spinning is avoided. This option improves performance for concurrent situations even without parallel adds, although it has the potential to increase CPU usage (and the heuristic adaptation is not yet mature). Parallel writes are not currently compatible with inplace updates, update callbacks, or delete filtering. Enable it with --allow_concurrent_memtable_write (and --enable_write_thread_adaptive_yield). Parallel memtable writes are performance neutral when there is no actual parallelism, and in my experiments (SSD server-class Linux and varying contention and key sizes for fillrandom) they are always a performance win when there is more than one thread. Statistics are updated earlier in the write path, dropping the number of DB mutex acquisitions from 2 to 1 for almost all cases. This diff was motivated and inspired by Yahoo's cLSM work. It is more conservative than cLSM: RocksDB's write batch group leader role is preserved (along with all of the existing flush and write throttling logic) and concurrent writers are blocked until all memtable insertions have completed and the sequence number has been advanced, to preserve linearizability. My test config is "db_bench -benchmarks=fillrandom -threads=$T -batch_size=1 -memtablerep=skip_list -value_size=100 --num=1000000/$T -level0_slowdown_writes_trigger=9999 -level0_stop_writes_trigger=9999 -disable_auto_compactions --max_write_buffer_number=8 -max_background_flushes=8 --disable_wal --write_buffer_size=160000000 --block_size=16384 --allow_concurrent_memtable_write" on a two-socket Xeon E5-2660 @ 2.2Ghz with lots of memory and an SSD hard drive. With 1 thread I get ~440Kops/sec. Peak performance for 1 socket (numactl -N1) is slightly more than 1Mops/sec, at 16 threads. Peak performance across both sockets happens at 30 threads, and is ~900Kops/sec, although with fewer threads there is less performance loss when the system has background work. Test Plan: 1. concurrent stress tests for InlineSkipList and DynamicBloom 2. make clean; make check 3. make clean; DISABLE_JEMALLOC=1 make valgrind_check; valgrind db_bench 4. make clean; COMPILE_WITH_TSAN=1 make all check; db_bench 5. make clean; COMPILE_WITH_ASAN=1 make all check; db_bench 6. make clean; OPT=-DROCKSDB_LITE make check 7. verify no perf regressions when disabled Reviewers: igor, sdong Reviewed By: sdong Subscribers: MarkCallaghan, IslamAbdelRahman, anthony, yhchiang, rven, sdong, guyg8, kradhakrishnan, dhruba Differential Revision: https://reviews.facebook.net/D50589
10 years ago
// collection, and no concurrent modifications to the table in progress
virtual void Insert(KeyHandle handle) = 0;
// Same as ::Insert
// Returns false if MemTableRepFactory::CanHandleDuplicatedKey() is true and
// the <key, seq> already exists.
virtual bool InsertKey(KeyHandle handle) {
Insert(handle);
return true;
}
// Same as Insert(), but in additional pass a hint to insert location for
// the key. If hint points to nullptr, a new hint will be populated.
// otherwise the hint will be updated to reflect the last insert location.
//
// Currently only skip-list based memtable implement the interface. Other
// implementations will fallback to Insert() by default.
virtual void InsertWithHint(KeyHandle handle, void** /*hint*/) {
// Ignore the hint by default.
Insert(handle);
}
// Same as ::InsertWithHint
// Returns false if MemTableRepFactory::CanHandleDuplicatedKey() is true and
// the <key, seq> already exists.
virtual bool InsertKeyWithHint(KeyHandle handle, void** hint) {
InsertWithHint(handle, hint);
return true;
}
// Same as ::InsertWithHint, but allow concurrent write
//
// If hint points to nullptr, a new hint will be allocated on heap, otherwise
// the hint will be updated to reflect the last insert location. The hint is
// owned by the caller and it is the caller's responsibility to delete the
// hint later.
//
// Currently only skip-list based memtable implement the interface. Other
// implementations will fallback to InsertConcurrently() by default.
virtual void InsertWithHintConcurrently(KeyHandle handle, void** /*hint*/) {
// Ignore the hint by default.
InsertConcurrently(handle);
}
// Same as ::InsertWithHintConcurrently
// Returns false if MemTableRepFactory::CanHandleDuplicatedKey() is true and
// the <key, seq> already exists.
virtual bool InsertKeyWithHintConcurrently(KeyHandle handle, void** hint) {
InsertWithHintConcurrently(handle, hint);
return true;
}
support for concurrent adds to memtable Summary: This diff adds support for concurrent adds to the skiplist memtable implementations. Memory allocation is made thread-safe by the addition of a spinlock, with small per-core buffers to avoid contention. Concurrent memtable writes are made via an additional method and don't impose a performance overhead on the non-concurrent case, so parallelism can be selected on a per-batch basis. Write thread synchronization is an increasing bottleneck for higher levels of concurrency, so this diff adds --enable_write_thread_adaptive_yield (default off). This feature causes threads joining a write batch group to spin for a short time (default 100 usec) using sched_yield, rather than going to sleep on a mutex. If the timing of the yield calls indicates that another thread has actually run during the yield then spinning is avoided. This option improves performance for concurrent situations even without parallel adds, although it has the potential to increase CPU usage (and the heuristic adaptation is not yet mature). Parallel writes are not currently compatible with inplace updates, update callbacks, or delete filtering. Enable it with --allow_concurrent_memtable_write (and --enable_write_thread_adaptive_yield). Parallel memtable writes are performance neutral when there is no actual parallelism, and in my experiments (SSD server-class Linux and varying contention and key sizes for fillrandom) they are always a performance win when there is more than one thread. Statistics are updated earlier in the write path, dropping the number of DB mutex acquisitions from 2 to 1 for almost all cases. This diff was motivated and inspired by Yahoo's cLSM work. It is more conservative than cLSM: RocksDB's write batch group leader role is preserved (along with all of the existing flush and write throttling logic) and concurrent writers are blocked until all memtable insertions have completed and the sequence number has been advanced, to preserve linearizability. My test config is "db_bench -benchmarks=fillrandom -threads=$T -batch_size=1 -memtablerep=skip_list -value_size=100 --num=1000000/$T -level0_slowdown_writes_trigger=9999 -level0_stop_writes_trigger=9999 -disable_auto_compactions --max_write_buffer_number=8 -max_background_flushes=8 --disable_wal --write_buffer_size=160000000 --block_size=16384 --allow_concurrent_memtable_write" on a two-socket Xeon E5-2660 @ 2.2Ghz with lots of memory and an SSD hard drive. With 1 thread I get ~440Kops/sec. Peak performance for 1 socket (numactl -N1) is slightly more than 1Mops/sec, at 16 threads. Peak performance across both sockets happens at 30 threads, and is ~900Kops/sec, although with fewer threads there is less performance loss when the system has background work. Test Plan: 1. concurrent stress tests for InlineSkipList and DynamicBloom 2. make clean; make check 3. make clean; DISABLE_JEMALLOC=1 make valgrind_check; valgrind db_bench 4. make clean; COMPILE_WITH_TSAN=1 make all check; db_bench 5. make clean; COMPILE_WITH_ASAN=1 make all check; db_bench 6. make clean; OPT=-DROCKSDB_LITE make check 7. verify no perf regressions when disabled Reviewers: igor, sdong Reviewed By: sdong Subscribers: MarkCallaghan, IslamAbdelRahman, anthony, yhchiang, rven, sdong, guyg8, kradhakrishnan, dhruba Differential Revision: https://reviews.facebook.net/D50589
10 years ago
// Like Insert(handle), but may be called concurrent with other calls
// to InsertConcurrently for other handles.
//
// Returns false if MemTableRepFactory::CanHandleDuplicatedKey() is true and
// the <key, seq> already exists.
virtual void InsertConcurrently(KeyHandle handle);
// Same as ::InsertConcurrently
// Returns false if MemTableRepFactory::CanHandleDuplicatedKey() is true and
// the <key, seq> already exists.
virtual bool InsertKeyConcurrently(KeyHandle handle) {
InsertConcurrently(handle);
return true;
}
support for concurrent adds to memtable Summary: This diff adds support for concurrent adds to the skiplist memtable implementations. Memory allocation is made thread-safe by the addition of a spinlock, with small per-core buffers to avoid contention. Concurrent memtable writes are made via an additional method and don't impose a performance overhead on the non-concurrent case, so parallelism can be selected on a per-batch basis. Write thread synchronization is an increasing bottleneck for higher levels of concurrency, so this diff adds --enable_write_thread_adaptive_yield (default off). This feature causes threads joining a write batch group to spin for a short time (default 100 usec) using sched_yield, rather than going to sleep on a mutex. If the timing of the yield calls indicates that another thread has actually run during the yield then spinning is avoided. This option improves performance for concurrent situations even without parallel adds, although it has the potential to increase CPU usage (and the heuristic adaptation is not yet mature). Parallel writes are not currently compatible with inplace updates, update callbacks, or delete filtering. Enable it with --allow_concurrent_memtable_write (and --enable_write_thread_adaptive_yield). Parallel memtable writes are performance neutral when there is no actual parallelism, and in my experiments (SSD server-class Linux and varying contention and key sizes for fillrandom) they are always a performance win when there is more than one thread. Statistics are updated earlier in the write path, dropping the number of DB mutex acquisitions from 2 to 1 for almost all cases. This diff was motivated and inspired by Yahoo's cLSM work. It is more conservative than cLSM: RocksDB's write batch group leader role is preserved (along with all of the existing flush and write throttling logic) and concurrent writers are blocked until all memtable insertions have completed and the sequence number has been advanced, to preserve linearizability. My test config is "db_bench -benchmarks=fillrandom -threads=$T -batch_size=1 -memtablerep=skip_list -value_size=100 --num=1000000/$T -level0_slowdown_writes_trigger=9999 -level0_stop_writes_trigger=9999 -disable_auto_compactions --max_write_buffer_number=8 -max_background_flushes=8 --disable_wal --write_buffer_size=160000000 --block_size=16384 --allow_concurrent_memtable_write" on a two-socket Xeon E5-2660 @ 2.2Ghz with lots of memory and an SSD hard drive. With 1 thread I get ~440Kops/sec. Peak performance for 1 socket (numactl -N1) is slightly more than 1Mops/sec, at 16 threads. Peak performance across both sockets happens at 30 threads, and is ~900Kops/sec, although with fewer threads there is less performance loss when the system has background work. Test Plan: 1. concurrent stress tests for InlineSkipList and DynamicBloom 2. make clean; make check 3. make clean; DISABLE_JEMALLOC=1 make valgrind_check; valgrind db_bench 4. make clean; COMPILE_WITH_TSAN=1 make all check; db_bench 5. make clean; COMPILE_WITH_ASAN=1 make all check; db_bench 6. make clean; OPT=-DROCKSDB_LITE make check 7. verify no perf regressions when disabled Reviewers: igor, sdong Reviewed By: sdong Subscribers: MarkCallaghan, IslamAbdelRahman, anthony, yhchiang, rven, sdong, guyg8, kradhakrishnan, dhruba Differential Revision: https://reviews.facebook.net/D50589
10 years ago
// Returns true iff an entry that compares equal to key is in the collection.
virtual bool Contains(const char* key) const = 0;
support for concurrent adds to memtable Summary: This diff adds support for concurrent adds to the skiplist memtable implementations. Memory allocation is made thread-safe by the addition of a spinlock, with small per-core buffers to avoid contention. Concurrent memtable writes are made via an additional method and don't impose a performance overhead on the non-concurrent case, so parallelism can be selected on a per-batch basis. Write thread synchronization is an increasing bottleneck for higher levels of concurrency, so this diff adds --enable_write_thread_adaptive_yield (default off). This feature causes threads joining a write batch group to spin for a short time (default 100 usec) using sched_yield, rather than going to sleep on a mutex. If the timing of the yield calls indicates that another thread has actually run during the yield then spinning is avoided. This option improves performance for concurrent situations even without parallel adds, although it has the potential to increase CPU usage (and the heuristic adaptation is not yet mature). Parallel writes are not currently compatible with inplace updates, update callbacks, or delete filtering. Enable it with --allow_concurrent_memtable_write (and --enable_write_thread_adaptive_yield). Parallel memtable writes are performance neutral when there is no actual parallelism, and in my experiments (SSD server-class Linux and varying contention and key sizes for fillrandom) they are always a performance win when there is more than one thread. Statistics are updated earlier in the write path, dropping the number of DB mutex acquisitions from 2 to 1 for almost all cases. This diff was motivated and inspired by Yahoo's cLSM work. It is more conservative than cLSM: RocksDB's write batch group leader role is preserved (along with all of the existing flush and write throttling logic) and concurrent writers are blocked until all memtable insertions have completed and the sequence number has been advanced, to preserve linearizability. My test config is "db_bench -benchmarks=fillrandom -threads=$T -batch_size=1 -memtablerep=skip_list -value_size=100 --num=1000000/$T -level0_slowdown_writes_trigger=9999 -level0_stop_writes_trigger=9999 -disable_auto_compactions --max_write_buffer_number=8 -max_background_flushes=8 --disable_wal --write_buffer_size=160000000 --block_size=16384 --allow_concurrent_memtable_write" on a two-socket Xeon E5-2660 @ 2.2Ghz with lots of memory and an SSD hard drive. With 1 thread I get ~440Kops/sec. Peak performance for 1 socket (numactl -N1) is slightly more than 1Mops/sec, at 16 threads. Peak performance across both sockets happens at 30 threads, and is ~900Kops/sec, although with fewer threads there is less performance loss when the system has background work. Test Plan: 1. concurrent stress tests for InlineSkipList and DynamicBloom 2. make clean; make check 3. make clean; DISABLE_JEMALLOC=1 make valgrind_check; valgrind db_bench 4. make clean; COMPILE_WITH_TSAN=1 make all check; db_bench 5. make clean; COMPILE_WITH_ASAN=1 make all check; db_bench 6. make clean; OPT=-DROCKSDB_LITE make check 7. verify no perf regressions when disabled Reviewers: igor, sdong Reviewed By: sdong Subscribers: MarkCallaghan, IslamAbdelRahman, anthony, yhchiang, rven, sdong, guyg8, kradhakrishnan, dhruba Differential Revision: https://reviews.facebook.net/D50589
10 years ago
// Notify this table rep that it will no longer be added to. By default,
// does nothing. After MarkReadOnly() is called, this table rep will
// not be written to (ie No more calls to Allocate(), Insert(),
// or any writes done directly to entries accessed through the iterator.)
virtual void MarkReadOnly() {}
// Notify this table rep that it has been flushed to stable storage.
// By default, does nothing.
//
// Invariant: MarkReadOnly() is called, before MarkFlushed().
// Note that this method if overridden, should not run for an extended period
// of time. Otherwise, RocksDB may be blocked.
virtual void MarkFlushed() {}
// Look up key from the mem table, since the first key in the mem table whose
// user_key matches the one given k, call the function callback_func(), with
// callback_args directly forwarded as the first parameter, and the mem table
// key as the second parameter. If the return value is false, then terminates.
// Otherwise, go through the next key.
support for concurrent adds to memtable Summary: This diff adds support for concurrent adds to the skiplist memtable implementations. Memory allocation is made thread-safe by the addition of a spinlock, with small per-core buffers to avoid contention. Concurrent memtable writes are made via an additional method and don't impose a performance overhead on the non-concurrent case, so parallelism can be selected on a per-batch basis. Write thread synchronization is an increasing bottleneck for higher levels of concurrency, so this diff adds --enable_write_thread_adaptive_yield (default off). This feature causes threads joining a write batch group to spin for a short time (default 100 usec) using sched_yield, rather than going to sleep on a mutex. If the timing of the yield calls indicates that another thread has actually run during the yield then spinning is avoided. This option improves performance for concurrent situations even without parallel adds, although it has the potential to increase CPU usage (and the heuristic adaptation is not yet mature). Parallel writes are not currently compatible with inplace updates, update callbacks, or delete filtering. Enable it with --allow_concurrent_memtable_write (and --enable_write_thread_adaptive_yield). Parallel memtable writes are performance neutral when there is no actual parallelism, and in my experiments (SSD server-class Linux and varying contention and key sizes for fillrandom) they are always a performance win when there is more than one thread. Statistics are updated earlier in the write path, dropping the number of DB mutex acquisitions from 2 to 1 for almost all cases. This diff was motivated and inspired by Yahoo's cLSM work. It is more conservative than cLSM: RocksDB's write batch group leader role is preserved (along with all of the existing flush and write throttling logic) and concurrent writers are blocked until all memtable insertions have completed and the sequence number has been advanced, to preserve linearizability. My test config is "db_bench -benchmarks=fillrandom -threads=$T -batch_size=1 -memtablerep=skip_list -value_size=100 --num=1000000/$T -level0_slowdown_writes_trigger=9999 -level0_stop_writes_trigger=9999 -disable_auto_compactions --max_write_buffer_number=8 -max_background_flushes=8 --disable_wal --write_buffer_size=160000000 --block_size=16384 --allow_concurrent_memtable_write" on a two-socket Xeon E5-2660 @ 2.2Ghz with lots of memory and an SSD hard drive. With 1 thread I get ~440Kops/sec. Peak performance for 1 socket (numactl -N1) is slightly more than 1Mops/sec, at 16 threads. Peak performance across both sockets happens at 30 threads, and is ~900Kops/sec, although with fewer threads there is less performance loss when the system has background work. Test Plan: 1. concurrent stress tests for InlineSkipList and DynamicBloom 2. make clean; make check 3. make clean; DISABLE_JEMALLOC=1 make valgrind_check; valgrind db_bench 4. make clean; COMPILE_WITH_TSAN=1 make all check; db_bench 5. make clean; COMPILE_WITH_ASAN=1 make all check; db_bench 6. make clean; OPT=-DROCKSDB_LITE make check 7. verify no perf regressions when disabled Reviewers: igor, sdong Reviewed By: sdong Subscribers: MarkCallaghan, IslamAbdelRahman, anthony, yhchiang, rven, sdong, guyg8, kradhakrishnan, dhruba Differential Revision: https://reviews.facebook.net/D50589
10 years ago
//
// It's safe for Get() to terminate after having finished all the potential
// key for the k.user_key(), or not.
//
// Default:
// Get() function with a default value of dynamically construct an iterator,
// seek and call the call back function.
virtual void Get(const LookupKey& k, void* callback_args,
bool (*callback_func)(void* arg, const char* entry));
virtual uint64_t ApproximateNumEntries(const Slice& /*start_ikey*/,
const Slice& /*end_key*/) {
return 0;
}
Memtable sampling for mempurge heuristic. (#8628) Summary: Changes the API of the MemPurge process: the `bool experimental_allow_mempurge` and `experimental_mempurge_policy` flags have been replaced by a `double experimental_mempurge_threshold` option. This change of API reflects another major change introduced in this PR: the MemPurgeDecider() function now works by sampling the memtables being flushed to estimate the overall amount of useful payload (payload minus the garbage), and then compare this useful payload estimate with the `double experimental_mempurge_threshold` value. Therefore, when the value of this flag is `0.0` (default value), mempurge is simply deactivated. On the other hand, a value of `DBL_MAX` would be equivalent to always going through a mempurge regardless of the garbage ratio estimate. At the moment, a `double experimental_mempurge_threshold` value else than 0.0 or `DBL_MAX` is opnly supported`with the `SkipList` memtable representation. Regarding the sampling, this PR includes the introduction of a `MemTable::UniqueRandomSample` function that collects (approximately) random entries from the memtable by using the new `SkipList::Iterator::RandomSeek()` under the hood, or by iterating through each memtable entry, depending on the target sample size and the total number of entries. The unit tests have been readapted to support this new API. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8628 Reviewed By: pdillinger Differential Revision: D30149315 Pulled By: bjlemaire fbshipit-source-id: 1feef5390c95db6f4480ab4434716533d3947f27
3 years ago
// Returns a vector of unique random memtable entries of approximate
// size 'target_sample_size' (this size is not strictly enforced).
virtual void UniqueRandomSample(const uint64_t num_entries,
const uint64_t target_sample_size,
Memtable sampling for mempurge heuristic. (#8628) Summary: Changes the API of the MemPurge process: the `bool experimental_allow_mempurge` and `experimental_mempurge_policy` flags have been replaced by a `double experimental_mempurge_threshold` option. This change of API reflects another major change introduced in this PR: the MemPurgeDecider() function now works by sampling the memtables being flushed to estimate the overall amount of useful payload (payload minus the garbage), and then compare this useful payload estimate with the `double experimental_mempurge_threshold` value. Therefore, when the value of this flag is `0.0` (default value), mempurge is simply deactivated. On the other hand, a value of `DBL_MAX` would be equivalent to always going through a mempurge regardless of the garbage ratio estimate. At the moment, a `double experimental_mempurge_threshold` value else than 0.0 or `DBL_MAX` is opnly supported`with the `SkipList` memtable representation. Regarding the sampling, this PR includes the introduction of a `MemTable::UniqueRandomSample` function that collects (approximately) random entries from the memtable by using the new `SkipList::Iterator::RandomSeek()` under the hood, or by iterating through each memtable entry, depending on the target sample size and the total number of entries. The unit tests have been readapted to support this new API. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8628 Reviewed By: pdillinger Differential Revision: D30149315 Pulled By: bjlemaire fbshipit-source-id: 1feef5390c95db6f4480ab4434716533d3947f27
3 years ago
std::unordered_set<const char*>* entries) {
(void)num_entries;
(void)target_sample_size;
(void)entries;
assert(false);
}
// Report an approximation of how much memory has been used other than memory
support for concurrent adds to memtable Summary: This diff adds support for concurrent adds to the skiplist memtable implementations. Memory allocation is made thread-safe by the addition of a spinlock, with small per-core buffers to avoid contention. Concurrent memtable writes are made via an additional method and don't impose a performance overhead on the non-concurrent case, so parallelism can be selected on a per-batch basis. Write thread synchronization is an increasing bottleneck for higher levels of concurrency, so this diff adds --enable_write_thread_adaptive_yield (default off). This feature causes threads joining a write batch group to spin for a short time (default 100 usec) using sched_yield, rather than going to sleep on a mutex. If the timing of the yield calls indicates that another thread has actually run during the yield then spinning is avoided. This option improves performance for concurrent situations even without parallel adds, although it has the potential to increase CPU usage (and the heuristic adaptation is not yet mature). Parallel writes are not currently compatible with inplace updates, update callbacks, or delete filtering. Enable it with --allow_concurrent_memtable_write (and --enable_write_thread_adaptive_yield). Parallel memtable writes are performance neutral when there is no actual parallelism, and in my experiments (SSD server-class Linux and varying contention and key sizes for fillrandom) they are always a performance win when there is more than one thread. Statistics are updated earlier in the write path, dropping the number of DB mutex acquisitions from 2 to 1 for almost all cases. This diff was motivated and inspired by Yahoo's cLSM work. It is more conservative than cLSM: RocksDB's write batch group leader role is preserved (along with all of the existing flush and write throttling logic) and concurrent writers are blocked until all memtable insertions have completed and the sequence number has been advanced, to preserve linearizability. My test config is "db_bench -benchmarks=fillrandom -threads=$T -batch_size=1 -memtablerep=skip_list -value_size=100 --num=1000000/$T -level0_slowdown_writes_trigger=9999 -level0_stop_writes_trigger=9999 -disable_auto_compactions --max_write_buffer_number=8 -max_background_flushes=8 --disable_wal --write_buffer_size=160000000 --block_size=16384 --allow_concurrent_memtable_write" on a two-socket Xeon E5-2660 @ 2.2Ghz with lots of memory and an SSD hard drive. With 1 thread I get ~440Kops/sec. Peak performance for 1 socket (numactl -N1) is slightly more than 1Mops/sec, at 16 threads. Peak performance across both sockets happens at 30 threads, and is ~900Kops/sec, although with fewer threads there is less performance loss when the system has background work. Test Plan: 1. concurrent stress tests for InlineSkipList and DynamicBloom 2. make clean; make check 3. make clean; DISABLE_JEMALLOC=1 make valgrind_check; valgrind db_bench 4. make clean; COMPILE_WITH_TSAN=1 make all check; db_bench 5. make clean; COMPILE_WITH_ASAN=1 make all check; db_bench 6. make clean; OPT=-DROCKSDB_LITE make check 7. verify no perf regressions when disabled Reviewers: igor, sdong Reviewed By: sdong Subscribers: MarkCallaghan, IslamAbdelRahman, anthony, yhchiang, rven, sdong, guyg8, kradhakrishnan, dhruba Differential Revision: https://reviews.facebook.net/D50589
10 years ago
// that was allocated through the allocator. Safe to call from any thread.
virtual size_t ApproximateMemoryUsage() = 0;
virtual ~MemTableRep() {}
// Iteration over the contents of a skip collection
class Iterator {
public:
// Initialize an iterator over the specified collection.
// The returned iterator is not valid.
// explicit Iterator(const MemTableRep* collection);
virtual ~Iterator() {}
// Returns true iff the iterator is positioned at a valid node.
virtual bool Valid() const = 0;
// Returns the key at the current position.
// REQUIRES: Valid()
virtual const char* key() const = 0;
// Advances to the next position.
// REQUIRES: Valid()
virtual void Next() = 0;
// Advances to the previous position.
// REQUIRES: Valid()
virtual void Prev() = 0;
// Advance to the first entry with a key >= target
virtual void Seek(const Slice& internal_key, const char* memtable_key) = 0;
// retreat to the first entry with a key <= target
virtual void SeekForPrev(const Slice& internal_key,
const char* memtable_key) = 0;
Memtable sampling for mempurge heuristic. (#8628) Summary: Changes the API of the MemPurge process: the `bool experimental_allow_mempurge` and `experimental_mempurge_policy` flags have been replaced by a `double experimental_mempurge_threshold` option. This change of API reflects another major change introduced in this PR: the MemPurgeDecider() function now works by sampling the memtables being flushed to estimate the overall amount of useful payload (payload minus the garbage), and then compare this useful payload estimate with the `double experimental_mempurge_threshold` value. Therefore, when the value of this flag is `0.0` (default value), mempurge is simply deactivated. On the other hand, a value of `DBL_MAX` would be equivalent to always going through a mempurge regardless of the garbage ratio estimate. At the moment, a `double experimental_mempurge_threshold` value else than 0.0 or `DBL_MAX` is opnly supported`with the `SkipList` memtable representation. Regarding the sampling, this PR includes the introduction of a `MemTable::UniqueRandomSample` function that collects (approximately) random entries from the memtable by using the new `SkipList::Iterator::RandomSeek()` under the hood, or by iterating through each memtable entry, depending on the target sample size and the total number of entries. The unit tests have been readapted to support this new API. Pull Request resolved: https://github.com/facebook/rocksdb/pull/8628 Reviewed By: pdillinger Differential Revision: D30149315 Pulled By: bjlemaire fbshipit-source-id: 1feef5390c95db6f4480ab4434716533d3947f27
3 years ago
virtual void RandomSeek() {}
// Position at the first entry in collection.
// Final state of iterator is Valid() iff collection is not empty.
virtual void SeekToFirst() = 0;
// Position at the last entry in collection.
// Final state of iterator is Valid() iff collection is not empty.
virtual void SeekToLast() = 0;
};
// Return an iterator over the keys in this representation.
// arena: If not null, the arena needs to be used to allocate the Iterator.
// When destroying the iterator, the caller will not call "delete"
// but Iterator::~Iterator() directly. The destructor needs to destroy
// all the states but those allocated in arena.
virtual Iterator* GetIterator(Arena* arena = nullptr) = 0;
// Return an iterator that has a special Seek semantics. The result of
// a Seek might only include keys with the same prefix as the target key.
// arena: If not null, the arena is used to allocate the Iterator.
// When destroying the iterator, the caller will not call "delete"
// but Iterator::~Iterator() directly. The destructor needs to destroy
// all the states but those allocated in arena.
virtual Iterator* GetDynamicPrefixIterator(Arena* arena = nullptr) {
return GetIterator(arena);
}
Add a new mem-table representation based on cuckoo hash. Summary: = Major Changes = * Add a new mem-table representation, HashCuckooRep, which is based cuckoo hash. Cuckoo hash uses multiple hash functions. This allows each key to have multiple possible locations in the mem-table. - Put: When insert a key, it will try to find whether one of its possible locations is vacant and store the key. If none of its possible locations are available, then it will kick out a victim key and store at that location. The kicked-out victim key will then be stored at a vacant space of its possible locations or kick-out another victim. In this diff, the kick-out path (known as cuckoo-path) is found using BFS, which guarantees to be the shortest. - Get: Simply tries all possible locations of a key --- this guarantees worst-case constant time complexity. - Time complexity: O(1) for Get, and average O(1) for Put if the fullness of the mem-table is below 80%. - Default using two hash functions, the number of hash functions used by the cuckoo-hash may dynamically increase if it fails to find a short-enough kick-out path. - Currently, HashCuckooRep does not support iteration and snapshots, as our current main purpose of this is to optimize point access. = Minor Changes = * Add IsSnapshotSupported() to DB to indicate whether the current DB supports snapshots. If it returns false, then DB::GetSnapshot() will always return nullptr. Test Plan: Run existing tests. Will develop a test specifically for cuckoo hash in the next diff. Reviewers: sdong, haobo Reviewed By: sdong CC: leveldb, dhruba, igor Differential Revision: https://reviews.facebook.net/D16155
11 years ago
// Return true if the current MemTableRep supports merge operator.
// Default: true
virtual bool IsMergeOperatorSupported() const { return true; }
// Return true if the current MemTableRep supports snapshot
// Default: true
virtual bool IsSnapshotSupported() const { return true; }
protected:
// When *key is an internal key concatenated with the value, returns the
// user key.
virtual Slice UserKey(const char* key) const;
Allocator* allocator_;
};
// This is the base class for all factories that are used by RocksDB to create
// new MemTableRep objects
class MemTableRepFactory : public Customizable {
public:
virtual ~MemTableRepFactory() {}
static const char* Type() { return "MemTableRepFactory"; }
static Status CreateFromString(const ConfigOptions& config_options,
const std::string& id,
std::unique_ptr<MemTableRepFactory>* factory);
virtual MemTableRep* CreateMemTableRep(const MemTableRep::KeyComparator&,
Allocator*, const SliceTransform*,
Logger* logger) = 0;
virtual MemTableRep* CreateMemTableRep(
const MemTableRep::KeyComparator& key_cmp, Allocator* allocator,
const SliceTransform* slice_transform, Logger* logger,
uint32_t /* column_family_id */) {
return CreateMemTableRep(key_cmp, allocator, slice_transform, logger);
}
virtual const char* Name() const override = 0;
// Return true if the current MemTableRep supports concurrent inserts
// Default: false
virtual bool IsInsertConcurrentlySupported() const { return false; }
// Return true if the current MemTableRep supports detecting duplicate
// <key,seq> at insertion time. If true, then MemTableRep::Insert* returns
// false when if the <key,seq> already exists.
// Default: false
virtual bool CanHandleDuplicatedKey() const { return false; }
};
// This uses a skip list to store keys. It is the default.
SkipListRep::LookaheadIterator Summary: This diff introduces the `lookahead` argument to `SkipListFactory()`. This is an optimization for the tailing use case which includes many seeks. E.g. consider the following operations on a skip list iterator: Seek(x), Next(), Next(), Seek(x+2), Next(), Seek(x+3), Next(), Next(), ... If `lookahead` is positive, `SkipListRep` will return an iterator which also keeps track of the previously visited node. Seek() then first does a linear search starting from that node (up to `lookahead` steps). As in the tailing example above, this may require fewer than ~log(n) comparisons as with regular skip list search. Test Plan: Added a new benchmark (`fillseekseq`) which simulates the usage pattern. It first writes N records (with consecutive keys), then measures how much time it takes to read them by calling `Seek()` and `Next()`. $ time ./db_bench -num 10000000 -benchmarks fillseekseq -prefix_size 1 \ -key_size 8 -write_buffer_size $[1024*1024*1024] -value_size 50 \ -seekseq_next 2 -skip_list_lookahead=0 [...] DB path: [/dev/shm/rocksdbtest/dbbench] fillseekseq : 0.389 micros/op 2569047 ops/sec; real 0m21.806s user 0m12.106s sys 0m9.672s $ time ./db_bench [...] -skip_list_lookahead=2 [...] DB path: [/dev/shm/rocksdbtest/dbbench] fillseekseq : 0.153 micros/op 6540684 ops/sec; real 0m19.469s user 0m10.192s sys 0m9.252s Reviewers: ljin, sdong, igor Reviewed By: igor Subscribers: dhruba, leveldb, march, lovro Differential Revision: https://reviews.facebook.net/D23997
10 years ago
//
// Parameters:
// lookahead: If non-zero, each iterator's seek operation will start the
// search from the previously visited record (doing at most 'lookahead'
// steps). This is an optimization for the access pattern including many
// seeks with consecutive keys.
class SkipListFactory : public MemTableRepFactory {
public:
explicit SkipListFactory(size_t lookahead = 0);
// Methods for Configurable/Customizable class overrides
static const char* kClassName() { return "SkipListFactory"; }
static const char* kNickName() { return "skip_list"; }
virtual const char* Name() const override { return kClassName(); }
virtual const char* NickName() const override { return kNickName(); }
std::string GetId() const override;
SkipListRep::LookaheadIterator Summary: This diff introduces the `lookahead` argument to `SkipListFactory()`. This is an optimization for the tailing use case which includes many seeks. E.g. consider the following operations on a skip list iterator: Seek(x), Next(), Next(), Seek(x+2), Next(), Seek(x+3), Next(), Next(), ... If `lookahead` is positive, `SkipListRep` will return an iterator which also keeps track of the previously visited node. Seek() then first does a linear search starting from that node (up to `lookahead` steps). As in the tailing example above, this may require fewer than ~log(n) comparisons as with regular skip list search. Test Plan: Added a new benchmark (`fillseekseq`) which simulates the usage pattern. It first writes N records (with consecutive keys), then measures how much time it takes to read them by calling `Seek()` and `Next()`. $ time ./db_bench -num 10000000 -benchmarks fillseekseq -prefix_size 1 \ -key_size 8 -write_buffer_size $[1024*1024*1024] -value_size 50 \ -seekseq_next 2 -skip_list_lookahead=0 [...] DB path: [/dev/shm/rocksdbtest/dbbench] fillseekseq : 0.389 micros/op 2569047 ops/sec; real 0m21.806s user 0m12.106s sys 0m9.672s $ time ./db_bench [...] -skip_list_lookahead=2 [...] DB path: [/dev/shm/rocksdbtest/dbbench] fillseekseq : 0.153 micros/op 6540684 ops/sec; real 0m19.469s user 0m10.192s sys 0m9.252s Reviewers: ljin, sdong, igor Reviewed By: igor Subscribers: dhruba, leveldb, march, lovro Differential Revision: https://reviews.facebook.net/D23997
10 years ago
// Methods for MemTableRepFactory class overrides
using MemTableRepFactory::CreateMemTableRep;
virtual MemTableRep* CreateMemTableRep(const MemTableRep::KeyComparator&,
Allocator*, const SliceTransform*,
Logger* logger) override;
SkipListRep::LookaheadIterator Summary: This diff introduces the `lookahead` argument to `SkipListFactory()`. This is an optimization for the tailing use case which includes many seeks. E.g. consider the following operations on a skip list iterator: Seek(x), Next(), Next(), Seek(x+2), Next(), Seek(x+3), Next(), Next(), ... If `lookahead` is positive, `SkipListRep` will return an iterator which also keeps track of the previously visited node. Seek() then first does a linear search starting from that node (up to `lookahead` steps). As in the tailing example above, this may require fewer than ~log(n) comparisons as with regular skip list search. Test Plan: Added a new benchmark (`fillseekseq`) which simulates the usage pattern. It first writes N records (with consecutive keys), then measures how much time it takes to read them by calling `Seek()` and `Next()`. $ time ./db_bench -num 10000000 -benchmarks fillseekseq -prefix_size 1 \ -key_size 8 -write_buffer_size $[1024*1024*1024] -value_size 50 \ -seekseq_next 2 -skip_list_lookahead=0 [...] DB path: [/dev/shm/rocksdbtest/dbbench] fillseekseq : 0.389 micros/op 2569047 ops/sec; real 0m21.806s user 0m12.106s sys 0m9.672s $ time ./db_bench [...] -skip_list_lookahead=2 [...] DB path: [/dev/shm/rocksdbtest/dbbench] fillseekseq : 0.153 micros/op 6540684 ops/sec; real 0m19.469s user 0m10.192s sys 0m9.252s Reviewers: ljin, sdong, igor Reviewed By: igor Subscribers: dhruba, leveldb, march, lovro Differential Revision: https://reviews.facebook.net/D23997
10 years ago
bool IsInsertConcurrentlySupported() const override { return true; }
bool CanHandleDuplicatedKey() const override { return true; }
SkipListRep::LookaheadIterator Summary: This diff introduces the `lookahead` argument to `SkipListFactory()`. This is an optimization for the tailing use case which includes many seeks. E.g. consider the following operations on a skip list iterator: Seek(x), Next(), Next(), Seek(x+2), Next(), Seek(x+3), Next(), Next(), ... If `lookahead` is positive, `SkipListRep` will return an iterator which also keeps track of the previously visited node. Seek() then first does a linear search starting from that node (up to `lookahead` steps). As in the tailing example above, this may require fewer than ~log(n) comparisons as with regular skip list search. Test Plan: Added a new benchmark (`fillseekseq`) which simulates the usage pattern. It first writes N records (with consecutive keys), then measures how much time it takes to read them by calling `Seek()` and `Next()`. $ time ./db_bench -num 10000000 -benchmarks fillseekseq -prefix_size 1 \ -key_size 8 -write_buffer_size $[1024*1024*1024] -value_size 50 \ -seekseq_next 2 -skip_list_lookahead=0 [...] DB path: [/dev/shm/rocksdbtest/dbbench] fillseekseq : 0.389 micros/op 2569047 ops/sec; real 0m21.806s user 0m12.106s sys 0m9.672s $ time ./db_bench [...] -skip_list_lookahead=2 [...] DB path: [/dev/shm/rocksdbtest/dbbench] fillseekseq : 0.153 micros/op 6540684 ops/sec; real 0m19.469s user 0m10.192s sys 0m9.252s Reviewers: ljin, sdong, igor Reviewed By: igor Subscribers: dhruba, leveldb, march, lovro Differential Revision: https://reviews.facebook.net/D23997
10 years ago
private:
size_t lookahead_;
};
#ifndef ROCKSDB_LITE
// This creates MemTableReps that are backed by an std::vector. On iteration,
// the vector is sorted. This is useful for workloads where iteration is very
// rare and writes are generally not issued after reads begin.
//
// Parameters:
// count: Passed to the constructor of the underlying std::vector of each
// VectorRep. On initialization, the underlying array will be at least count
// bytes reserved for usage.
class VectorRepFactory : public MemTableRepFactory {
size_t count_;
public:
explicit VectorRepFactory(size_t count = 0);
// Methods for Configurable/Customizable class overrides
static const char* kClassName() { return "VectorRepFactory"; }
static const char* kNickName() { return "vector"; }
const char* Name() const override { return kClassName(); }
const char* NickName() const override { return kNickName(); }
// Methods for MemTableRepFactory class overrides
using MemTableRepFactory::CreateMemTableRep;
virtual MemTableRep* CreateMemTableRep(const MemTableRep::KeyComparator&,
Allocator*, const SliceTransform*,
Logger* logger) override;
};
// This class contains a fixed array of buckets, each
// pointing to a skiplist (null if the bucket is empty).
// bucket_count: number of fixed array buckets
// skiplist_height: the max height of the skiplist
// skiplist_branching_factor: probabilistic size ratio between adjacent
// link lists in the skiplist
extern MemTableRepFactory* NewHashSkipListRepFactory(
size_t bucket_count = 1000000, int32_t skiplist_height = 4,
int32_t skiplist_branching_factor = 4);
// The factory is to create memtables based on a hash table:
// it contains a fixed array of buckets, each pointing to either a linked list
// or a skip list if number of entries inside the bucket exceeds
// threshold_use_skiplist.
// @bucket_count: number of fixed array buckets
// @huge_page_tlb_size: if <=0, allocate the hash table bytes from malloc.
// Otherwise from huge page TLB. The user needs to reserve
// huge pages for it to be allocated, like:
// sysctl -w vm.nr_hugepages=20
// See linux doc Documentation/vm/hugetlbpage.txt
// @bucket_entries_logging_threshold: if number of entries in one bucket
// exceeds this number, log about it.
// @if_log_bucket_dist_when_flash: if true, log distribution of number of
// entries when flushing.
// @threshold_use_skiplist: a bucket switches to skip list if number of
// entries exceed this parameter.
extern MemTableRepFactory* NewHashLinkListRepFactory(
size_t bucket_count = 50000, size_t huge_page_tlb_size = 0,
int bucket_entries_logging_threshold = 4096,
bool if_log_bucket_dist_when_flash = true,
uint32_t threshold_use_skiplist = 256);
#endif // ROCKSDB_LITE
} // namespace ROCKSDB_NAMESPACE