fork of https://github.com/rust-rocksdb/rust-rocksdb for nextgraph
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
935 lines
33 KiB
935 lines
33 KiB
1 year ago
|
// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
|
||
|
// This source code is licensed under both the GPLv2 (found in the
|
||
|
// COPYING file in the root directory) and Apache 2.0 License
|
||
|
// (found in the LICENSE.Apache file in the root directory).
|
||
|
//
|
||
|
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
|
||
|
// Use of this source code is governed by a BSD-style license that can be
|
||
|
// found in the LICENSE file. See the AUTHORS file for names of contributors.
|
||
|
|
||
|
#include "db/log_reader.h"
|
||
|
|
||
|
#include <stdio.h>
|
||
|
|
||
|
#include "file/sequence_file_reader.h"
|
||
|
#include "port/lang.h"
|
||
|
#include "rocksdb/env.h"
|
||
|
#include "test_util/sync_point.h"
|
||
|
#include "util/coding.h"
|
||
|
#include "util/crc32c.h"
|
||
|
|
||
|
namespace ROCKSDB_NAMESPACE {
|
||
|
namespace log {
|
||
|
|
||
|
Reader::Reporter::~Reporter() {}
|
||
|
|
||
|
Reader::Reader(std::shared_ptr<Logger> info_log,
|
||
|
std::unique_ptr<SequentialFileReader>&& _file,
|
||
|
Reporter* reporter, bool checksum, uint64_t log_num)
|
||
|
: info_log_(info_log),
|
||
|
file_(std::move(_file)),
|
||
|
reporter_(reporter),
|
||
|
checksum_(checksum),
|
||
|
backing_store_(new char[kBlockSize]),
|
||
|
buffer_(),
|
||
|
eof_(false),
|
||
|
read_error_(false),
|
||
|
eof_offset_(0),
|
||
|
last_record_offset_(0),
|
||
|
end_of_buffer_offset_(0),
|
||
|
log_number_(log_num),
|
||
|
recycled_(false),
|
||
|
first_record_read_(false),
|
||
|
compression_type_(kNoCompression),
|
||
|
compression_type_record_read_(false),
|
||
|
uncompress_(nullptr),
|
||
|
hash_state_(nullptr),
|
||
|
uncompress_hash_state_(nullptr){};
|
||
|
|
||
|
Reader::~Reader() {
|
||
|
delete[] backing_store_;
|
||
|
if (uncompress_) {
|
||
|
delete uncompress_;
|
||
|
}
|
||
|
if (hash_state_) {
|
||
|
XXH3_freeState(hash_state_);
|
||
|
}
|
||
|
if (uncompress_hash_state_) {
|
||
|
XXH3_freeState(uncompress_hash_state_);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// For kAbsoluteConsistency, on clean shutdown we don't expect any error
|
||
|
// in the log files. For other modes, we can ignore only incomplete records
|
||
|
// in the last log file, which are presumably due to a write in progress
|
||
|
// during restart (or from log recycling).
|
||
|
//
|
||
|
// TODO krad: Evaluate if we need to move to a more strict mode where we
|
||
|
// restrict the inconsistency to only the last log
|
||
|
bool Reader::ReadRecord(Slice* record, std::string* scratch,
|
||
|
WALRecoveryMode wal_recovery_mode,
|
||
|
uint64_t* record_checksum) {
|
||
|
scratch->clear();
|
||
|
record->clear();
|
||
|
if (record_checksum != nullptr) {
|
||
|
if (hash_state_ == nullptr) {
|
||
|
hash_state_ = XXH3_createState();
|
||
|
}
|
||
|
XXH3_64bits_reset(hash_state_);
|
||
|
}
|
||
|
if (uncompress_) {
|
||
|
uncompress_->Reset();
|
||
|
}
|
||
|
bool in_fragmented_record = false;
|
||
|
// Record offset of the logical record that we're reading
|
||
|
// 0 is a dummy value to make compilers happy
|
||
|
uint64_t prospective_record_offset = 0;
|
||
|
|
||
|
Slice fragment;
|
||
|
while (true) {
|
||
|
uint64_t physical_record_offset = end_of_buffer_offset_ - buffer_.size();
|
||
|
size_t drop_size = 0;
|
||
|
const unsigned int record_type =
|
||
|
ReadPhysicalRecord(&fragment, &drop_size, record_checksum);
|
||
|
switch (record_type) {
|
||
|
case kFullType:
|
||
|
case kRecyclableFullType:
|
||
|
if (in_fragmented_record && !scratch->empty()) {
|
||
|
// Handle bug in earlier versions of log::Writer where
|
||
|
// it could emit an empty kFirstType record at the tail end
|
||
|
// of a block followed by a kFullType or kFirstType record
|
||
|
// at the beginning of the next block.
|
||
|
ReportCorruption(scratch->size(), "partial record without end(1)");
|
||
|
}
|
||
|
// No need to compute record_checksum since the record
|
||
|
// consists of a single fragment and the checksum is computed
|
||
|
// in ReadPhysicalRecord() if WAL compression is enabled
|
||
|
if (record_checksum != nullptr && uncompress_ == nullptr) {
|
||
|
// No need to stream since the record is a single fragment
|
||
|
*record_checksum = XXH3_64bits(fragment.data(), fragment.size());
|
||
|
}
|
||
|
prospective_record_offset = physical_record_offset;
|
||
|
scratch->clear();
|
||
|
*record = fragment;
|
||
|
last_record_offset_ = prospective_record_offset;
|
||
|
first_record_read_ = true;
|
||
|
return true;
|
||
|
|
||
|
case kFirstType:
|
||
|
case kRecyclableFirstType:
|
||
|
if (in_fragmented_record && !scratch->empty()) {
|
||
|
// Handle bug in earlier versions of log::Writer where
|
||
|
// it could emit an empty kFirstType record at the tail end
|
||
|
// of a block followed by a kFullType or kFirstType record
|
||
|
// at the beginning of the next block.
|
||
|
ReportCorruption(scratch->size(), "partial record without end(2)");
|
||
|
XXH3_64bits_reset(hash_state_);
|
||
|
}
|
||
|
if (record_checksum != nullptr) {
|
||
|
XXH3_64bits_update(hash_state_, fragment.data(), fragment.size());
|
||
|
}
|
||
|
prospective_record_offset = physical_record_offset;
|
||
|
scratch->assign(fragment.data(), fragment.size());
|
||
|
in_fragmented_record = true;
|
||
|
break;
|
||
|
|
||
|
case kMiddleType:
|
||
|
case kRecyclableMiddleType:
|
||
|
if (!in_fragmented_record) {
|
||
|
ReportCorruption(fragment.size(),
|
||
|
"missing start of fragmented record(1)");
|
||
|
} else {
|
||
|
if (record_checksum != nullptr) {
|
||
|
XXH3_64bits_update(hash_state_, fragment.data(), fragment.size());
|
||
|
}
|
||
|
scratch->append(fragment.data(), fragment.size());
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
case kLastType:
|
||
|
case kRecyclableLastType:
|
||
|
if (!in_fragmented_record) {
|
||
|
ReportCorruption(fragment.size(),
|
||
|
"missing start of fragmented record(2)");
|
||
|
} else {
|
||
|
if (record_checksum != nullptr) {
|
||
|
XXH3_64bits_update(hash_state_, fragment.data(), fragment.size());
|
||
|
*record_checksum = XXH3_64bits_digest(hash_state_);
|
||
|
}
|
||
|
scratch->append(fragment.data(), fragment.size());
|
||
|
*record = Slice(*scratch);
|
||
|
last_record_offset_ = prospective_record_offset;
|
||
|
first_record_read_ = true;
|
||
|
return true;
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
case kSetCompressionType: {
|
||
|
if (compression_type_record_read_) {
|
||
|
ReportCorruption(fragment.size(),
|
||
|
"read multiple SetCompressionType records");
|
||
|
}
|
||
|
if (first_record_read_) {
|
||
|
ReportCorruption(fragment.size(),
|
||
|
"SetCompressionType not the first record");
|
||
|
}
|
||
|
prospective_record_offset = physical_record_offset;
|
||
|
scratch->clear();
|
||
|
last_record_offset_ = prospective_record_offset;
|
||
|
CompressionTypeRecord compression_record(kNoCompression);
|
||
|
Status s = compression_record.DecodeFrom(&fragment);
|
||
|
if (!s.ok()) {
|
||
|
ReportCorruption(fragment.size(),
|
||
|
"could not decode SetCompressionType record");
|
||
|
} else {
|
||
|
InitCompression(compression_record);
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
case kUserDefinedTimestampSizeType:
|
||
|
case kRecyclableUserDefinedTimestampSizeType: {
|
||
|
if (in_fragmented_record && !scratch->empty()) {
|
||
|
ReportCorruption(
|
||
|
scratch->size(),
|
||
|
"user-defined timestamp size record interspersed partial record");
|
||
|
}
|
||
|
prospective_record_offset = physical_record_offset;
|
||
|
scratch->clear();
|
||
|
last_record_offset_ = prospective_record_offset;
|
||
|
UserDefinedTimestampSizeRecord ts_record;
|
||
|
Status s = ts_record.DecodeFrom(&fragment);
|
||
|
if (!s.ok()) {
|
||
|
ReportCorruption(
|
||
|
fragment.size(),
|
||
|
"could not decode user-defined timestamp size record");
|
||
|
} else {
|
||
|
s = UpdateRecordedTimestampSize(
|
||
|
ts_record.GetUserDefinedTimestampSize());
|
||
|
if (!s.ok()) {
|
||
|
ReportCorruption(fragment.size(), s.getState());
|
||
|
}
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
case kBadHeader:
|
||
|
if (wal_recovery_mode == WALRecoveryMode::kAbsoluteConsistency ||
|
||
|
wal_recovery_mode == WALRecoveryMode::kPointInTimeRecovery) {
|
||
|
// In clean shutdown we don't expect any error in the log files.
|
||
|
// In point-in-time recovery an incomplete record at the end could
|
||
|
// produce a hole in the recovered data. Report an error here, which
|
||
|
// higher layers can choose to ignore when it's provable there is no
|
||
|
// hole.
|
||
|
ReportCorruption(drop_size, "truncated header");
|
||
|
}
|
||
|
FALLTHROUGH_INTENDED;
|
||
|
|
||
|
case kEof:
|
||
|
if (in_fragmented_record) {
|
||
|
if (wal_recovery_mode == WALRecoveryMode::kAbsoluteConsistency ||
|
||
|
wal_recovery_mode == WALRecoveryMode::kPointInTimeRecovery) {
|
||
|
// In clean shutdown we don't expect any error in the log files.
|
||
|
// In point-in-time recovery an incomplete record at the end could
|
||
|
// produce a hole in the recovered data. Report an error here, which
|
||
|
// higher layers can choose to ignore when it's provable there is no
|
||
|
// hole.
|
||
|
ReportCorruption(scratch->size(), "error reading trailing data");
|
||
|
}
|
||
|
// This can be caused by the writer dying immediately after
|
||
|
// writing a physical record but before completing the next; don't
|
||
|
// treat it as a corruption, just ignore the entire logical record.
|
||
|
scratch->clear();
|
||
|
}
|
||
|
return false;
|
||
|
|
||
|
case kOldRecord:
|
||
|
if (wal_recovery_mode != WALRecoveryMode::kSkipAnyCorruptedRecords) {
|
||
|
// Treat a record from a previous instance of the log as EOF.
|
||
|
if (in_fragmented_record) {
|
||
|
if (wal_recovery_mode == WALRecoveryMode::kAbsoluteConsistency ||
|
||
|
wal_recovery_mode == WALRecoveryMode::kPointInTimeRecovery) {
|
||
|
// In clean shutdown we don't expect any error in the log files.
|
||
|
// In point-in-time recovery an incomplete record at the end could
|
||
|
// produce a hole in the recovered data. Report an error here,
|
||
|
// which higher layers can choose to ignore when it's provable
|
||
|
// there is no hole.
|
||
|
ReportCorruption(scratch->size(), "error reading trailing data");
|
||
|
}
|
||
|
// This can be caused by the writer dying immediately after
|
||
|
// writing a physical record but before completing the next; don't
|
||
|
// treat it as a corruption, just ignore the entire logical record.
|
||
|
scratch->clear();
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
FALLTHROUGH_INTENDED;
|
||
|
|
||
|
case kBadRecord:
|
||
|
if (in_fragmented_record) {
|
||
|
ReportCorruption(scratch->size(), "error in middle of record");
|
||
|
in_fragmented_record = false;
|
||
|
scratch->clear();
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
case kBadRecordLen:
|
||
|
if (eof_) {
|
||
|
if (wal_recovery_mode == WALRecoveryMode::kAbsoluteConsistency ||
|
||
|
wal_recovery_mode == WALRecoveryMode::kPointInTimeRecovery) {
|
||
|
// In clean shutdown we don't expect any error in the log files.
|
||
|
// In point-in-time recovery an incomplete record at the end could
|
||
|
// produce a hole in the recovered data. Report an error here, which
|
||
|
// higher layers can choose to ignore when it's provable there is no
|
||
|
// hole.
|
||
|
ReportCorruption(drop_size, "truncated record body");
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
FALLTHROUGH_INTENDED;
|
||
|
|
||
|
case kBadRecordChecksum:
|
||
|
if (recycled_ && wal_recovery_mode ==
|
||
|
WALRecoveryMode::kTolerateCorruptedTailRecords) {
|
||
|
scratch->clear();
|
||
|
return false;
|
||
|
}
|
||
|
if (record_type == kBadRecordLen) {
|
||
|
ReportCorruption(drop_size, "bad record length");
|
||
|
} else {
|
||
|
ReportCorruption(drop_size, "checksum mismatch");
|
||
|
}
|
||
|
if (in_fragmented_record) {
|
||
|
ReportCorruption(scratch->size(), "error in middle of record");
|
||
|
in_fragmented_record = false;
|
||
|
scratch->clear();
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
default: {
|
||
|
char buf[40];
|
||
|
snprintf(buf, sizeof(buf), "unknown record type %u", record_type);
|
||
|
ReportCorruption(
|
||
|
(fragment.size() + (in_fragmented_record ? scratch->size() : 0)),
|
||
|
buf);
|
||
|
in_fragmented_record = false;
|
||
|
scratch->clear();
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
uint64_t Reader::LastRecordOffset() { return last_record_offset_; }
|
||
|
|
||
|
uint64_t Reader::LastRecordEnd() {
|
||
|
return end_of_buffer_offset_ - buffer_.size();
|
||
|
}
|
||
|
|
||
|
void Reader::UnmarkEOF() {
|
||
|
if (read_error_) {
|
||
|
return;
|
||
|
}
|
||
|
eof_ = false;
|
||
|
if (eof_offset_ == 0) {
|
||
|
return;
|
||
|
}
|
||
|
UnmarkEOFInternal();
|
||
|
}
|
||
|
|
||
|
void Reader::UnmarkEOFInternal() {
|
||
|
// If the EOF was in the middle of a block (a partial block was read) we have
|
||
|
// to read the rest of the block as ReadPhysicalRecord can only read full
|
||
|
// blocks and expects the file position indicator to be aligned to the start
|
||
|
// of a block.
|
||
|
//
|
||
|
// consumed_bytes + buffer_size() + remaining == kBlockSize
|
||
|
|
||
|
size_t consumed_bytes = eof_offset_ - buffer_.size();
|
||
|
size_t remaining = kBlockSize - eof_offset_;
|
||
|
|
||
|
// backing_store_ is used to concatenate what is left in buffer_ and
|
||
|
// the remainder of the block. If buffer_ already uses backing_store_,
|
||
|
// we just append the new data.
|
||
|
if (buffer_.data() != backing_store_ + consumed_bytes) {
|
||
|
// Buffer_ does not use backing_store_ for storage.
|
||
|
// Copy what is left in buffer_ to backing_store.
|
||
|
memmove(backing_store_ + consumed_bytes, buffer_.data(), buffer_.size());
|
||
|
}
|
||
|
|
||
|
Slice read_buffer;
|
||
|
// TODO: rate limit log reader with approriate priority.
|
||
|
// TODO: avoid overcharging rate limiter:
|
||
|
// Note that the Read here might overcharge SequentialFileReader's internal
|
||
|
// rate limiter if priority is not IO_TOTAL, e.g., when there is not enough
|
||
|
// content left until EOF to read.
|
||
|
Status status =
|
||
|
file_->Read(remaining, &read_buffer, backing_store_ + eof_offset_,
|
||
|
Env::IO_TOTAL /* rate_limiter_priority */);
|
||
|
|
||
|
size_t added = read_buffer.size();
|
||
|
end_of_buffer_offset_ += added;
|
||
|
|
||
|
if (!status.ok()) {
|
||
|
if (added > 0) {
|
||
|
ReportDrop(added, status);
|
||
|
}
|
||
|
|
||
|
read_error_ = true;
|
||
|
return;
|
||
|
}
|
||
|
|
||
|
if (read_buffer.data() != backing_store_ + eof_offset_) {
|
||
|
// Read did not write to backing_store_
|
||
|
memmove(backing_store_ + eof_offset_, read_buffer.data(),
|
||
|
read_buffer.size());
|
||
|
}
|
||
|
|
||
|
buffer_ = Slice(backing_store_ + consumed_bytes,
|
||
|
eof_offset_ + added - consumed_bytes);
|
||
|
|
||
|
if (added < remaining) {
|
||
|
eof_ = true;
|
||
|
eof_offset_ += added;
|
||
|
} else {
|
||
|
eof_offset_ = 0;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
void Reader::ReportCorruption(size_t bytes, const char* reason) {
|
||
|
ReportDrop(bytes, Status::Corruption(reason));
|
||
|
}
|
||
|
|
||
|
void Reader::ReportDrop(size_t bytes, const Status& reason) {
|
||
|
if (reporter_ != nullptr) {
|
||
|
reporter_->Corruption(bytes, reason);
|
||
|
}
|
||
|
}
|
||
|
|
||
|
bool Reader::ReadMore(size_t* drop_size, int* error) {
|
||
|
if (!eof_ && !read_error_) {
|
||
|
// Last read was a full read, so this is a trailer to skip
|
||
|
buffer_.clear();
|
||
|
// TODO: rate limit log reader with approriate priority.
|
||
|
// TODO: avoid overcharging rate limiter:
|
||
|
// Note that the Read here might overcharge SequentialFileReader's internal
|
||
|
// rate limiter if priority is not IO_TOTAL, e.g., when there is not enough
|
||
|
// content left until EOF to read.
|
||
|
Status status = file_->Read(kBlockSize, &buffer_, backing_store_,
|
||
|
Env::IO_TOTAL /* rate_limiter_priority */);
|
||
|
TEST_SYNC_POINT_CALLBACK("LogReader::ReadMore:AfterReadFile", &status);
|
||
|
end_of_buffer_offset_ += buffer_.size();
|
||
|
if (!status.ok()) {
|
||
|
buffer_.clear();
|
||
|
ReportDrop(kBlockSize, status);
|
||
|
read_error_ = true;
|
||
|
*error = kEof;
|
||
|
return false;
|
||
|
} else if (buffer_.size() < static_cast<size_t>(kBlockSize)) {
|
||
|
eof_ = true;
|
||
|
eof_offset_ = buffer_.size();
|
||
|
}
|
||
|
return true;
|
||
|
} else {
|
||
|
// Note that if buffer_ is non-empty, we have a truncated header at the
|
||
|
// end of the file, which can be caused by the writer crashing in the
|
||
|
// middle of writing the header. Unless explicitly requested we don't
|
||
|
// considering this an error, just report EOF.
|
||
|
if (buffer_.size()) {
|
||
|
*drop_size = buffer_.size();
|
||
|
buffer_.clear();
|
||
|
*error = kBadHeader;
|
||
|
return false;
|
||
|
}
|
||
|
buffer_.clear();
|
||
|
*error = kEof;
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
unsigned int Reader::ReadPhysicalRecord(Slice* result, size_t* drop_size,
|
||
|
uint64_t* fragment_checksum) {
|
||
|
while (true) {
|
||
|
// We need at least the minimum header size
|
||
|
if (buffer_.size() < static_cast<size_t>(kHeaderSize)) {
|
||
|
// the default value of r is meaningless because ReadMore will overwrite
|
||
|
// it if it returns false; in case it returns true, the return value will
|
||
|
// not be used anyway
|
||
|
int r = kEof;
|
||
|
if (!ReadMore(drop_size, &r)) {
|
||
|
return r;
|
||
|
}
|
||
|
continue;
|
||
|
}
|
||
|
|
||
|
// Parse the header
|
||
|
const char* header = buffer_.data();
|
||
|
const uint32_t a = static_cast<uint32_t>(header[4]) & 0xff;
|
||
|
const uint32_t b = static_cast<uint32_t>(header[5]) & 0xff;
|
||
|
const unsigned int type = header[6];
|
||
|
const uint32_t length = a | (b << 8);
|
||
|
int header_size = kHeaderSize;
|
||
|
if ((type >= kRecyclableFullType && type <= kRecyclableLastType) ||
|
||
|
type == kRecyclableUserDefinedTimestampSizeType) {
|
||
|
if (end_of_buffer_offset_ - buffer_.size() == 0) {
|
||
|
recycled_ = true;
|
||
|
}
|
||
|
header_size = kRecyclableHeaderSize;
|
||
|
// We need enough for the larger header
|
||
|
if (buffer_.size() < static_cast<size_t>(kRecyclableHeaderSize)) {
|
||
|
int r = kEof;
|
||
|
if (!ReadMore(drop_size, &r)) {
|
||
|
return r;
|
||
|
}
|
||
|
continue;
|
||
|
}
|
||
|
const uint32_t log_num = DecodeFixed32(header + 7);
|
||
|
if (log_num != log_number_) {
|
||
|
return kOldRecord;
|
||
|
}
|
||
|
}
|
||
|
if (header_size + length > buffer_.size()) {
|
||
|
assert(buffer_.size() >= static_cast<size_t>(header_size));
|
||
|
*drop_size = buffer_.size();
|
||
|
buffer_.clear();
|
||
|
// If the end of the read has been reached without seeing
|
||
|
// `header_size + length` bytes of payload, report a corruption. The
|
||
|
// higher layers can decide how to handle it based on the recovery mode,
|
||
|
// whether this occurred at EOF, whether this is the final WAL, etc.
|
||
|
return kBadRecordLen;
|
||
|
}
|
||
|
|
||
|
if (type == kZeroType && length == 0) {
|
||
|
// Skip zero length record without reporting any drops since
|
||
|
// such records are produced by the mmap based writing code in
|
||
|
// env_posix.cc that preallocates file regions.
|
||
|
// NOTE: this should never happen in DB written by new RocksDB versions,
|
||
|
// since we turn off mmap writes to manifest and log files
|
||
|
buffer_.clear();
|
||
|
return kBadRecord;
|
||
|
}
|
||
|
|
||
|
// Check crc
|
||
|
if (checksum_) {
|
||
|
uint32_t expected_crc = crc32c::Unmask(DecodeFixed32(header));
|
||
|
uint32_t actual_crc = crc32c::Value(header + 6, length + header_size - 6);
|
||
|
if (actual_crc != expected_crc) {
|
||
|
// Drop the rest of the buffer since "length" itself may have
|
||
|
// been corrupted and if we trust it, we could find some
|
||
|
// fragment of a real log record that just happens to look
|
||
|
// like a valid log record.
|
||
|
*drop_size = buffer_.size();
|
||
|
buffer_.clear();
|
||
|
return kBadRecordChecksum;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
buffer_.remove_prefix(header_size + length);
|
||
|
|
||
|
if (!uncompress_ || type == kSetCompressionType ||
|
||
|
type == kUserDefinedTimestampSizeType ||
|
||
|
type == kRecyclableUserDefinedTimestampSizeType) {
|
||
|
*result = Slice(header + header_size, length);
|
||
|
return type;
|
||
|
} else {
|
||
|
// Uncompress compressed records
|
||
|
uncompressed_record_.clear();
|
||
|
if (fragment_checksum != nullptr) {
|
||
|
if (uncompress_hash_state_ == nullptr) {
|
||
|
uncompress_hash_state_ = XXH3_createState();
|
||
|
}
|
||
|
XXH3_64bits_reset(uncompress_hash_state_);
|
||
|
}
|
||
|
|
||
|
size_t uncompressed_size = 0;
|
||
|
int remaining = 0;
|
||
|
const char* input = header + header_size;
|
||
|
do {
|
||
|
remaining = uncompress_->Uncompress(
|
||
|
input, length, uncompressed_buffer_.get(), &uncompressed_size);
|
||
|
input = nullptr;
|
||
|
if (remaining < 0) {
|
||
|
buffer_.clear();
|
||
|
return kBadRecord;
|
||
|
}
|
||
|
if (uncompressed_size > 0) {
|
||
|
if (fragment_checksum != nullptr) {
|
||
|
XXH3_64bits_update(uncompress_hash_state_,
|
||
|
uncompressed_buffer_.get(), uncompressed_size);
|
||
|
}
|
||
|
uncompressed_record_.append(uncompressed_buffer_.get(),
|
||
|
uncompressed_size);
|
||
|
}
|
||
|
} while (remaining > 0 || uncompressed_size == kBlockSize);
|
||
|
|
||
|
if (fragment_checksum != nullptr) {
|
||
|
// We can remove this check by updating hash_state_ directly,
|
||
|
// but that requires resetting hash_state_ for full and first types
|
||
|
// for edge cases like consecutive fist type records.
|
||
|
// Leaving the check as is since it is cleaner and can revert to the
|
||
|
// above approach if it causes performance impact.
|
||
|
*fragment_checksum = XXH3_64bits_digest(uncompress_hash_state_);
|
||
|
uint64_t actual_checksum = XXH3_64bits(uncompressed_record_.data(),
|
||
|
uncompressed_record_.size());
|
||
|
if (*fragment_checksum != actual_checksum) {
|
||
|
// uncompressed_record_ contains bad content that does not match
|
||
|
// actual decompressed content
|
||
|
return kBadRecord;
|
||
|
}
|
||
|
}
|
||
|
*result = Slice(uncompressed_record_);
|
||
|
return type;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// Initialize uncompress related fields
|
||
|
void Reader::InitCompression(const CompressionTypeRecord& compression_record) {
|
||
|
compression_type_ = compression_record.GetCompressionType();
|
||
|
compression_type_record_read_ = true;
|
||
|
constexpr uint32_t compression_format_version = 2;
|
||
|
uncompress_ = StreamingUncompress::Create(
|
||
|
compression_type_, compression_format_version, kBlockSize);
|
||
|
assert(uncompress_ != nullptr);
|
||
|
uncompressed_buffer_ = std::unique_ptr<char[]>(new char[kBlockSize]);
|
||
|
assert(uncompressed_buffer_);
|
||
|
}
|
||
|
|
||
|
Status Reader::UpdateRecordedTimestampSize(
|
||
|
const std::vector<std::pair<uint32_t, size_t>>& cf_to_ts_sz) {
|
||
|
for (const auto& [cf, ts_sz] : cf_to_ts_sz) {
|
||
|
// Zero user-defined timestamp size are not recorded.
|
||
|
if (ts_sz == 0) {
|
||
|
return Status::Corruption(
|
||
|
"User-defined timestamp size record contains zero timestamp size.");
|
||
|
}
|
||
|
// The user-defined timestamp size record for a column family should not be
|
||
|
// updated in the same log file.
|
||
|
if (recorded_cf_to_ts_sz_.count(cf) != 0) {
|
||
|
return Status::Corruption(
|
||
|
"User-defined timestamp size record contains update to "
|
||
|
"recorded column family.");
|
||
|
}
|
||
|
recorded_cf_to_ts_sz_.insert(std::make_pair(cf, ts_sz));
|
||
|
}
|
||
|
return Status::OK();
|
||
|
}
|
||
|
|
||
|
bool FragmentBufferedReader::ReadRecord(Slice* record, std::string* scratch,
|
||
|
WALRecoveryMode /*unused*/,
|
||
|
uint64_t* /* checksum */) {
|
||
|
assert(record != nullptr);
|
||
|
assert(scratch != nullptr);
|
||
|
record->clear();
|
||
|
scratch->clear();
|
||
|
if (uncompress_) {
|
||
|
uncompress_->Reset();
|
||
|
}
|
||
|
|
||
|
uint64_t prospective_record_offset = 0;
|
||
|
uint64_t physical_record_offset = end_of_buffer_offset_ - buffer_.size();
|
||
|
size_t drop_size = 0;
|
||
|
unsigned int fragment_type_or_err = 0; // Initialize to make compiler happy
|
||
|
Slice fragment;
|
||
|
while (TryReadFragment(&fragment, &drop_size, &fragment_type_or_err)) {
|
||
|
switch (fragment_type_or_err) {
|
||
|
case kFullType:
|
||
|
case kRecyclableFullType:
|
||
|
if (in_fragmented_record_ && !fragments_.empty()) {
|
||
|
ReportCorruption(fragments_.size(), "partial record without end(1)");
|
||
|
}
|
||
|
fragments_.clear();
|
||
|
*record = fragment;
|
||
|
prospective_record_offset = physical_record_offset;
|
||
|
last_record_offset_ = prospective_record_offset;
|
||
|
first_record_read_ = true;
|
||
|
in_fragmented_record_ = false;
|
||
|
return true;
|
||
|
|
||
|
case kFirstType:
|
||
|
case kRecyclableFirstType:
|
||
|
if (in_fragmented_record_ || !fragments_.empty()) {
|
||
|
ReportCorruption(fragments_.size(), "partial record without end(2)");
|
||
|
}
|
||
|
prospective_record_offset = physical_record_offset;
|
||
|
fragments_.assign(fragment.data(), fragment.size());
|
||
|
in_fragmented_record_ = true;
|
||
|
break;
|
||
|
|
||
|
case kMiddleType:
|
||
|
case kRecyclableMiddleType:
|
||
|
if (!in_fragmented_record_) {
|
||
|
ReportCorruption(fragment.size(),
|
||
|
"missing start of fragmented record(1)");
|
||
|
} else {
|
||
|
fragments_.append(fragment.data(), fragment.size());
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
case kLastType:
|
||
|
case kRecyclableLastType:
|
||
|
if (!in_fragmented_record_) {
|
||
|
ReportCorruption(fragment.size(),
|
||
|
"missing start of fragmented record(2)");
|
||
|
} else {
|
||
|
fragments_.append(fragment.data(), fragment.size());
|
||
|
scratch->assign(fragments_.data(), fragments_.size());
|
||
|
fragments_.clear();
|
||
|
*record = Slice(*scratch);
|
||
|
last_record_offset_ = prospective_record_offset;
|
||
|
first_record_read_ = true;
|
||
|
in_fragmented_record_ = false;
|
||
|
return true;
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
case kSetCompressionType: {
|
||
|
if (compression_type_record_read_) {
|
||
|
ReportCorruption(fragment.size(),
|
||
|
"read multiple SetCompressionType records");
|
||
|
}
|
||
|
if (first_record_read_) {
|
||
|
ReportCorruption(fragment.size(),
|
||
|
"SetCompressionType not the first record");
|
||
|
}
|
||
|
fragments_.clear();
|
||
|
prospective_record_offset = physical_record_offset;
|
||
|
last_record_offset_ = prospective_record_offset;
|
||
|
in_fragmented_record_ = false;
|
||
|
CompressionTypeRecord compression_record(kNoCompression);
|
||
|
Status s = compression_record.DecodeFrom(&fragment);
|
||
|
if (!s.ok()) {
|
||
|
ReportCorruption(fragment.size(),
|
||
|
"could not decode SetCompressionType record");
|
||
|
} else {
|
||
|
InitCompression(compression_record);
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
case kUserDefinedTimestampSizeType:
|
||
|
case kRecyclableUserDefinedTimestampSizeType: {
|
||
|
if (in_fragmented_record_ && !scratch->empty()) {
|
||
|
ReportCorruption(
|
||
|
scratch->size(),
|
||
|
"user-defined timestamp size record interspersed partial record");
|
||
|
}
|
||
|
fragments_.clear();
|
||
|
prospective_record_offset = physical_record_offset;
|
||
|
last_record_offset_ = prospective_record_offset;
|
||
|
in_fragmented_record_ = false;
|
||
|
UserDefinedTimestampSizeRecord ts_record;
|
||
|
Status s = ts_record.DecodeFrom(&fragment);
|
||
|
if (!s.ok()) {
|
||
|
ReportCorruption(
|
||
|
fragment.size(),
|
||
|
"could not decode user-defined timestamp size record");
|
||
|
} else {
|
||
|
s = UpdateRecordedTimestampSize(
|
||
|
ts_record.GetUserDefinedTimestampSize());
|
||
|
if (!s.ok()) {
|
||
|
ReportCorruption(fragment.size(), s.getState());
|
||
|
}
|
||
|
}
|
||
|
break;
|
||
|
}
|
||
|
|
||
|
case kBadHeader:
|
||
|
case kBadRecord:
|
||
|
case kEof:
|
||
|
case kOldRecord:
|
||
|
if (in_fragmented_record_) {
|
||
|
ReportCorruption(fragments_.size(), "error in middle of record");
|
||
|
in_fragmented_record_ = false;
|
||
|
fragments_.clear();
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
case kBadRecordChecksum:
|
||
|
if (recycled_) {
|
||
|
fragments_.clear();
|
||
|
return false;
|
||
|
}
|
||
|
ReportCorruption(drop_size, "checksum mismatch");
|
||
|
if (in_fragmented_record_) {
|
||
|
ReportCorruption(fragments_.size(), "error in middle of record");
|
||
|
in_fragmented_record_ = false;
|
||
|
fragments_.clear();
|
||
|
}
|
||
|
break;
|
||
|
|
||
|
default: {
|
||
|
char buf[40];
|
||
|
snprintf(buf, sizeof(buf), "unknown record type %u",
|
||
|
fragment_type_or_err);
|
||
|
ReportCorruption(
|
||
|
fragment.size() + (in_fragmented_record_ ? fragments_.size() : 0),
|
||
|
buf);
|
||
|
in_fragmented_record_ = false;
|
||
|
fragments_.clear();
|
||
|
break;
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
void FragmentBufferedReader::UnmarkEOF() {
|
||
|
if (read_error_) {
|
||
|
return;
|
||
|
}
|
||
|
eof_ = false;
|
||
|
UnmarkEOFInternal();
|
||
|
}
|
||
|
|
||
|
bool FragmentBufferedReader::TryReadMore(size_t* drop_size, int* error) {
|
||
|
if (!eof_ && !read_error_) {
|
||
|
// Last read was a full read, so this is a trailer to skip
|
||
|
buffer_.clear();
|
||
|
// TODO: rate limit log reader with approriate priority.
|
||
|
// TODO: avoid overcharging rate limiter:
|
||
|
// Note that the Read here might overcharge SequentialFileReader's internal
|
||
|
// rate limiter if priority is not IO_TOTAL, e.g., when there is not enough
|
||
|
// content left until EOF to read.
|
||
|
Status status = file_->Read(kBlockSize, &buffer_, backing_store_,
|
||
|
Env::IO_TOTAL /* rate_limiter_priority */);
|
||
|
end_of_buffer_offset_ += buffer_.size();
|
||
|
if (!status.ok()) {
|
||
|
buffer_.clear();
|
||
|
ReportDrop(kBlockSize, status);
|
||
|
read_error_ = true;
|
||
|
*error = kEof;
|
||
|
return false;
|
||
|
} else if (buffer_.size() < static_cast<size_t>(kBlockSize)) {
|
||
|
eof_ = true;
|
||
|
eof_offset_ = buffer_.size();
|
||
|
TEST_SYNC_POINT_CALLBACK(
|
||
|
"FragmentBufferedLogReader::TryReadMore:FirstEOF", nullptr);
|
||
|
}
|
||
|
return true;
|
||
|
} else if (!read_error_) {
|
||
|
UnmarkEOF();
|
||
|
}
|
||
|
if (!read_error_) {
|
||
|
return true;
|
||
|
}
|
||
|
*error = kEof;
|
||
|
*drop_size = buffer_.size();
|
||
|
if (buffer_.size() > 0) {
|
||
|
*error = kBadHeader;
|
||
|
}
|
||
|
buffer_.clear();
|
||
|
return false;
|
||
|
}
|
||
|
|
||
|
// return true if the caller should process the fragment_type_or_err.
|
||
|
bool FragmentBufferedReader::TryReadFragment(
|
||
|
Slice* fragment, size_t* drop_size, unsigned int* fragment_type_or_err) {
|
||
|
assert(fragment != nullptr);
|
||
|
assert(drop_size != nullptr);
|
||
|
assert(fragment_type_or_err != nullptr);
|
||
|
|
||
|
while (buffer_.size() < static_cast<size_t>(kHeaderSize)) {
|
||
|
size_t old_size = buffer_.size();
|
||
|
int error = kEof;
|
||
|
if (!TryReadMore(drop_size, &error)) {
|
||
|
*fragment_type_or_err = error;
|
||
|
return false;
|
||
|
} else if (old_size == buffer_.size()) {
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
const char* header = buffer_.data();
|
||
|
const uint32_t a = static_cast<uint32_t>(header[4]) & 0xff;
|
||
|
const uint32_t b = static_cast<uint32_t>(header[5]) & 0xff;
|
||
|
const unsigned int type = header[6];
|
||
|
const uint32_t length = a | (b << 8);
|
||
|
int header_size = kHeaderSize;
|
||
|
if ((type >= kRecyclableFullType && type <= kRecyclableLastType) ||
|
||
|
type == kRecyclableUserDefinedTimestampSizeType) {
|
||
|
if (end_of_buffer_offset_ - buffer_.size() == 0) {
|
||
|
recycled_ = true;
|
||
|
}
|
||
|
header_size = kRecyclableHeaderSize;
|
||
|
while (buffer_.size() < static_cast<size_t>(kRecyclableHeaderSize)) {
|
||
|
size_t old_size = buffer_.size();
|
||
|
int error = kEof;
|
||
|
if (!TryReadMore(drop_size, &error)) {
|
||
|
*fragment_type_or_err = error;
|
||
|
return false;
|
||
|
} else if (old_size == buffer_.size()) {
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
const uint32_t log_num = DecodeFixed32(header + 7);
|
||
|
if (log_num != log_number_) {
|
||
|
*fragment_type_or_err = kOldRecord;
|
||
|
return true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
while (header_size + length > buffer_.size()) {
|
||
|
size_t old_size = buffer_.size();
|
||
|
int error = kEof;
|
||
|
if (!TryReadMore(drop_size, &error)) {
|
||
|
*fragment_type_or_err = error;
|
||
|
return false;
|
||
|
} else if (old_size == buffer_.size()) {
|
||
|
return false;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
if (type == kZeroType && length == 0) {
|
||
|
buffer_.clear();
|
||
|
*fragment_type_or_err = kBadRecord;
|
||
|
return true;
|
||
|
}
|
||
|
|
||
|
if (checksum_) {
|
||
|
uint32_t expected_crc = crc32c::Unmask(DecodeFixed32(header));
|
||
|
uint32_t actual_crc = crc32c::Value(header + 6, length + header_size - 6);
|
||
|
if (actual_crc != expected_crc) {
|
||
|
*drop_size = buffer_.size();
|
||
|
buffer_.clear();
|
||
|
*fragment_type_or_err = kBadRecordChecksum;
|
||
|
return true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
buffer_.remove_prefix(header_size + length);
|
||
|
|
||
|
if (!uncompress_ || type == kSetCompressionType ||
|
||
|
type == kUserDefinedTimestampSizeType ||
|
||
|
type == kRecyclableUserDefinedTimestampSizeType) {
|
||
|
*fragment = Slice(header + header_size, length);
|
||
|
*fragment_type_or_err = type;
|
||
|
return true;
|
||
|
} else {
|
||
|
// Uncompress compressed records
|
||
|
uncompressed_record_.clear();
|
||
|
size_t uncompressed_size = 0;
|
||
|
int remaining = 0;
|
||
|
const char* input = header + header_size;
|
||
|
do {
|
||
|
remaining = uncompress_->Uncompress(
|
||
|
input, length, uncompressed_buffer_.get(), &uncompressed_size);
|
||
|
input = nullptr;
|
||
|
if (remaining < 0) {
|
||
|
buffer_.clear();
|
||
|
*fragment_type_or_err = kBadRecord;
|
||
|
return true;
|
||
|
}
|
||
|
if (uncompressed_size > 0) {
|
||
|
uncompressed_record_.append(uncompressed_buffer_.get(),
|
||
|
uncompressed_size);
|
||
|
}
|
||
|
} while (remaining > 0 || uncompressed_size == kBlockSize);
|
||
|
*fragment = Slice(std::move(uncompressed_record_));
|
||
|
*fragment_type_or_err = type;
|
||
|
return true;
|
||
|
}
|
||
|
}
|
||
|
|
||
|
} // namespace log
|
||
|
} // namespace ROCKSDB_NAMESPACE
|