You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
rust-rocksdb/utilities/transactions/optimistic_transaction_test.cc

1677 lines
51 KiB

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
#include <cstdint>
#include <functional>
#include <memory>
#include <string>
#include <thread>
#include "db/db_impl/db_impl.h"
#include "db/db_test_util.h"
#include "port/port.h"
#include "rocksdb/db.h"
#include "rocksdb/perf_context.h"
#include "rocksdb/utilities/optimistic_transaction_db.h"
#include "rocksdb/utilities/transaction.h"
#include "test_util/sync_point.h"
#include "test_util/testharness.h"
#include "test_util/transaction_test_util.h"
#include "util/crc32c.h"
#include "util/random.h"
namespace ROCKSDB_NAMESPACE {
class OptimisticTransactionTest
: public testing::Test,
public testing::WithParamInterface<OccValidationPolicy> {
public:
std::unique_ptr<OptimisticTransactionDB> txn_db;
std::string dbname;
Options options;
OptimisticTransactionDBOptions occ_opts;
OptimisticTransactionTest() {
options.create_if_missing = true;
options.max_write_buffer_number = 2;
options.max_write_buffer_size_to_maintain = 2 * Arena::kInlineSize;
options.merge_operator.reset(new TestPutOperator());
occ_opts.validate_policy = GetParam();
dbname = test::PerThreadDBPath("optimistic_transaction_testdb");
EXPECT_OK(DestroyDB(dbname, options));
Open();
}
~OptimisticTransactionTest() override {
EXPECT_OK(txn_db->Close());
txn_db.reset();
EXPECT_OK(DestroyDB(dbname, options));
}
void Reopen() {
txn_db.reset();
Open();
}
static void OpenImpl(const Options& options,
const OptimisticTransactionDBOptions& occ_opts,
const std::string& dbname,
std::unique_ptr<OptimisticTransactionDB>* txn_db) {
ColumnFamilyOptions cf_options(options);
std::vector<ColumnFamilyDescriptor> column_families;
std::vector<ColumnFamilyHandle*> handles;
column_families.push_back(
ColumnFamilyDescriptor(kDefaultColumnFamilyName, cf_options));
OptimisticTransactionDB* raw_txn_db = nullptr;
Status s = OptimisticTransactionDB::Open(
options, occ_opts, dbname, column_families, &handles, &raw_txn_db);
ASSERT_OK(s);
ASSERT_NE(raw_txn_db, nullptr);
txn_db->reset(raw_txn_db);
ASSERT_EQ(handles.size(), 1);
delete handles[0];
}
private:
void Open() { OpenImpl(options, occ_opts, dbname, &txn_db); }
};
TEST_P(OptimisticTransactionTest, SuccessTest) {
WriteOptions write_options;
ReadOptions read_options;
std::string value;
ASSERT_OK(txn_db->Put(write_options, Slice("foo"), Slice("bar")));
ASSERT_OK(txn_db->Put(write_options, Slice("foo2"), Slice("bar")));
Transaction* txn = txn_db->BeginTransaction(write_options);
ASSERT_NE(txn, nullptr);
ASSERT_OK(txn->GetForUpdate(read_options, "foo", &value));
ASSERT_EQ(value, "bar");
ASSERT_OK(txn->Put(Slice("foo"), Slice("bar2")));
ASSERT_OK(txn->GetForUpdate(read_options, "foo", &value));
ASSERT_EQ(value, "bar2");
ASSERT_OK(txn->Commit());
ASSERT_OK(txn_db->Get(read_options, "foo", &value));
ASSERT_EQ(value, "bar2");
delete txn;
}
TEST_P(OptimisticTransactionTest, WriteConflictTest) {
WriteOptions write_options;
ReadOptions read_options;
std::string value;
ASSERT_OK(txn_db->Put(write_options, "foo", "bar"));
ASSERT_OK(txn_db->Put(write_options, "foo2", "bar"));
Transaction* txn = txn_db->BeginTransaction(write_options);
ASSERT_NE(txn, nullptr);
ASSERT_OK(txn->Put("foo", "bar2"));
// This Put outside of a transaction will conflict with the previous write
ASSERT_OK(txn_db->Put(write_options, "foo", "barz"));
ASSERT_OK(txn_db->Get(read_options, "foo", &value));
ASSERT_EQ(value, "barz");
ASSERT_EQ(1, txn->GetNumKeys());
Status s = txn->Commit();
ASSERT_TRUE(s.IsBusy()); // Txn should not commit
// Verify that transaction did not write anything
ASSERT_OK(txn_db->Get(read_options, "foo", &value));
ASSERT_EQ(value, "barz");
ASSERT_OK(txn_db->Get(read_options, "foo2", &value));
ASSERT_EQ(value, "bar");
delete txn;
}
TEST_P(OptimisticTransactionTest, WriteConflictTest2) {
WriteOptions write_options;
ReadOptions read_options;
OptimisticTransactionOptions txn_options;
std::string value;
ASSERT_OK(txn_db->Put(write_options, "foo", "bar"));
ASSERT_OK(txn_db->Put(write_options, "foo2", "bar"));
txn_options.set_snapshot = true;
Transaction* txn = txn_db->BeginTransaction(write_options, txn_options);
ASSERT_NE(txn, nullptr);
// This Put outside of a transaction will conflict with a later write
ASSERT_OK(txn_db->Put(write_options, "foo", "barz"));
ASSERT_OK(txn->Put(
"foo", "bar2")); // Conflicts with write done after snapshot taken
ASSERT_OK(txn_db->Get(read_options, "foo", &value));
ASSERT_EQ(value, "barz");
Status s = txn->Commit();
ASSERT_TRUE(s.IsBusy()); // Txn should not commit
// Verify that transaction did not write anything
ASSERT_OK(txn_db->Get(read_options, "foo", &value));
ASSERT_EQ(value, "barz");
ASSERT_OK(txn_db->Get(read_options, "foo2", &value));
ASSERT_EQ(value, "bar");
delete txn;
}
TEST_P(OptimisticTransactionTest, WriteConflictTest3) {
ASSERT_OK(txn_db->Put(WriteOptions(), "foo", "bar"));
Transaction* txn = txn_db->BeginTransaction(WriteOptions());
ASSERT_NE(txn, nullptr);
std::string value;
ASSERT_OK(txn->GetForUpdate(ReadOptions(), "foo", &value));
ASSERT_EQ(value, "bar");
ASSERT_OK(txn->Merge("foo", "bar3"));
// Merge outside of a transaction should conflict with the previous merge
ASSERT_OK(txn_db->Merge(WriteOptions(), "foo", "bar2"));
ASSERT_OK(txn_db->Get(ReadOptions(), "foo", &value));
ASSERT_EQ(value, "bar2");
ASSERT_EQ(1, txn->GetNumKeys());
Status s = txn->Commit();
EXPECT_TRUE(s.IsBusy()); // Txn should not commit
// Verify that transaction did not write anything
ASSERT_OK(txn_db->Get(ReadOptions(), "foo", &value));
ASSERT_EQ(value, "bar2");
delete txn;
}
TEST_P(OptimisticTransactionTest, WriteConflict4) {
ASSERT_OK(txn_db->Put(WriteOptions(), "foo", "bar"));
Transaction* txn = txn_db->BeginTransaction(WriteOptions());
ASSERT_NE(txn, nullptr);
std::string value;
ASSERT_OK(txn->GetForUpdate(ReadOptions(), "foo", &value));
ASSERT_EQ(value, "bar");
ASSERT_OK(txn->Merge("foo", "bar3"));
// Range delete outside of a transaction should conflict with the previous
// merge inside txn
auto* dbimpl = static_cast_with_check<DBImpl>(txn_db->GetRootDB());
ColumnFamilyHandle* default_cf = dbimpl->DefaultColumnFamily();
ASSERT_OK(dbimpl->DeleteRange(WriteOptions(), default_cf, "foo", "foo1"));
Status s = txn_db->Get(ReadOptions(), "foo", &value);
ASSERT_TRUE(s.IsNotFound());
ASSERT_EQ(1, txn->GetNumKeys());
s = txn->Commit();
EXPECT_TRUE(s.IsBusy()); // Txn should not commit
// Verify that transaction did not write anything
s = txn_db->Get(ReadOptions(), "foo", &value);
ASSERT_TRUE(s.IsNotFound());
delete txn;
}
TEST_P(OptimisticTransactionTest, ReadConflictTest) {
WriteOptions write_options;
ReadOptions read_options, snapshot_read_options;
OptimisticTransactionOptions txn_options;
std::string value;
ASSERT_OK(txn_db->Put(write_options, "foo", "bar"));
ASSERT_OK(txn_db->Put(write_options, "foo2", "bar"));
txn_options.set_snapshot = true;
Transaction* txn = txn_db->BeginTransaction(write_options, txn_options);
ASSERT_NE(txn, nullptr);
txn->SetSnapshot();
snapshot_read_options.snapshot = txn->GetSnapshot();
ASSERT_OK(txn->GetForUpdate(snapshot_read_options, "foo", &value));
ASSERT_EQ(value, "bar");
// This Put outside of a transaction will conflict with the previous read
ASSERT_OK(txn_db->Put(write_options, "foo", "barz"));
ASSERT_OK(txn_db->Get(read_options, "foo", &value));
ASSERT_EQ(value, "barz");
Status s = txn->Commit();
ASSERT_TRUE(s.IsBusy()); // Txn should not commit
// Verify that transaction did not write anything
ASSERT_OK(txn->GetForUpdate(read_options, "foo", &value));
ASSERT_EQ(value, "barz");
ASSERT_OK(txn->GetForUpdate(read_options, "foo2", &value));
ASSERT_EQ(value, "bar");
delete txn;
}
TEST_P(OptimisticTransactionTest, TxnOnlyTest) {
// Test to make sure transactions work when there are no other writes in an
// empty db.
WriteOptions write_options;
ReadOptions read_options;
std::string value;
Transaction* txn = txn_db->BeginTransaction(write_options);
ASSERT_NE(txn, nullptr);
ASSERT_OK(txn->Put("x", "y"));
ASSERT_OK(txn->Commit());
delete txn;
}
TEST_P(OptimisticTransactionTest, FlushTest) {
WriteOptions write_options;
ReadOptions read_options, snapshot_read_options;
std::string value;
ASSERT_OK(txn_db->Put(write_options, Slice("foo"), Slice("bar")));
ASSERT_OK(txn_db->Put(write_options, Slice("foo2"), Slice("bar")));
Transaction* txn = txn_db->BeginTransaction(write_options);
ASSERT_NE(txn, nullptr);
snapshot_read_options.snapshot = txn->GetSnapshot();
ASSERT_OK(txn->GetForUpdate(snapshot_read_options, "foo", &value));
ASSERT_EQ(value, "bar");
ASSERT_OK(txn->Put(Slice("foo"), Slice("bar2")));
ASSERT_OK(txn->GetForUpdate(snapshot_read_options, "foo", &value));
ASSERT_EQ(value, "bar2");
// Put a random key so we have a memtable to flush
ASSERT_OK(txn_db->Put(write_options, "dummy", "dummy"));
// force a memtable flush
FlushOptions flush_ops;
ASSERT_OK(txn_db->Flush(flush_ops));
// txn should commit since the flushed table is still in MemtableList History
ASSERT_OK(txn->Commit());
ASSERT_OK(txn_db->Get(read_options, "foo", &value));
ASSERT_EQ(value, "bar2");
delete txn;
}
namespace {
void FlushTest2PopulateTxn(Transaction* txn) {
ReadOptions snapshot_read_options;
std::string value;
snapshot_read_options.snapshot = txn->GetSnapshot();
ASSERT_OK(txn->GetForUpdate(snapshot_read_options, "foo", &value));
ASSERT_EQ(value, "bar");
ASSERT_OK(txn->Put(Slice("foo"), Slice("bar2")));
ASSERT_OK(txn->GetForUpdate(snapshot_read_options, "foo", &value));
ASSERT_EQ(value, "bar2");
}
} // namespace
TEST_P(OptimisticTransactionTest, FlushTest2) {
WriteOptions write_options;
ReadOptions read_options;
std::string value;
ASSERT_OK(txn_db->Put(write_options, Slice("foo"), Slice("bar")));
ASSERT_OK(txn_db->Put(write_options, Slice("foo2"), Slice("bar")));
Transaction* txn = txn_db->BeginTransaction(write_options);
ASSERT_NE(txn, nullptr);
FlushTest2PopulateTxn(txn);
// Put a random key so we have a MemTable to flush
ASSERT_OK(txn_db->Put(write_options, "dummy", "dummy"));
// force a memtable flush
FlushOptions flush_ops;
ASSERT_OK(txn_db->Flush(flush_ops));
// Put a random key so we have a MemTable to flush
ASSERT_OK(txn_db->Put(write_options, "dummy", "dummy2"));
// force a memtable flush
ASSERT_OK(txn_db->Flush(flush_ops));
ASSERT_OK(txn_db->Put(write_options, "dummy", "dummy3"));
// force a memtable flush
// Since our test db has max_write_buffer_number=2, this flush will cause
// the first memtable to get purged from the MemtableList history.
ASSERT_OK(txn_db->Flush(flush_ops));
Status s = txn->Commit();
// txn should not commit since MemTableList History is not large enough
ASSERT_TRUE(s.IsTryAgain());
// simply trying Commit again doesn't help
s = txn->Commit();
ASSERT_TRUE(s.IsTryAgain());
ASSERT_OK(txn_db->Get(read_options, "foo", &value));
ASSERT_EQ(value, "bar");
// But rolling back and redoing does
ASSERT_OK(txn->Rollback());
FlushTest2PopulateTxn(txn);
ASSERT_OK(txn->Commit());
ASSERT_OK(txn_db->Get(read_options, "foo", &value));
ASSERT_EQ(value, "bar2");
delete txn;
}
// Trigger the condition where some old memtables are skipped when doing
// TransactionUtil::CheckKey(), and make sure the result is still correct.
TEST_P(OptimisticTransactionTest, CheckKeySkipOldMemtable) {
const int kAttemptHistoryMemtable = 0;
const int kAttemptImmMemTable = 1;
for (int attempt = kAttemptHistoryMemtable; attempt <= kAttemptImmMemTable;
attempt++) {
Reopen();
WriteOptions write_options;
ReadOptions read_options;
ReadOptions snapshot_read_options;
ReadOptions snapshot_read_options2;
std::string value;
ASSERT_OK(txn_db->Put(write_options, Slice("foo"), Slice("bar")));
ASSERT_OK(txn_db->Put(write_options, Slice("foo2"), Slice("bar")));
Transaction* txn = txn_db->BeginTransaction(write_options);
ASSERT_TRUE(txn != nullptr);
Transaction* txn2 = txn_db->BeginTransaction(write_options);
ASSERT_TRUE(txn2 != nullptr);
snapshot_read_options.snapshot = txn->GetSnapshot();
ASSERT_OK(txn->GetForUpdate(snapshot_read_options, "foo", &value));
ASSERT_EQ(value, "bar");
ASSERT_OK(txn->Put(Slice("foo"), Slice("bar2")));
snapshot_read_options2.snapshot = txn2->GetSnapshot();
ASSERT_OK(txn2->GetForUpdate(snapshot_read_options2, "foo2", &value));
ASSERT_EQ(value, "bar");
ASSERT_OK(txn2->Put(Slice("foo2"), Slice("bar2")));
// txn updates "foo" and txn2 updates "foo2", and now a write is
// issued for "foo", which conflicts with txn but not txn2
ASSERT_OK(txn_db->Put(write_options, "foo", "bar"));
if (attempt == kAttemptImmMemTable) {
// For the second attempt, hold flush from beginning. The memtable
// will be switched to immutable after calling TEST_SwitchMemtable()
// while CheckKey() is called.
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency(
{{"OptimisticTransactionTest.CheckKeySkipOldMemtable",
"FlushJob::Start"}});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
}
// force a memtable flush. The memtable should still be kept
FlushOptions flush_ops;
if (attempt == kAttemptHistoryMemtable) {
ASSERT_OK(txn_db->Flush(flush_ops));
} else {
ASSERT_EQ(attempt, kAttemptImmMemTable);
DBImpl* db_impl = static_cast<DBImpl*>(txn_db->GetRootDB());
ASSERT_OK(db_impl->TEST_SwitchMemtable());
}
uint64_t num_imm_mems;
ASSERT_TRUE(txn_db->GetIntProperty(DB::Properties::kNumImmutableMemTable,
&num_imm_mems));
if (attempt == kAttemptHistoryMemtable) {
ASSERT_EQ(0, num_imm_mems);
} else {
ASSERT_EQ(attempt, kAttemptImmMemTable);
ASSERT_EQ(1, num_imm_mems);
}
// Put something in active memtable
ASSERT_OK(txn_db->Put(write_options, Slice("foo3"), Slice("bar")));
// Create txn3 after flushing, when this transaction is commited,
// only need to check the active memtable
Transaction* txn3 = txn_db->BeginTransaction(write_options);
ASSERT_TRUE(txn3 != nullptr);
// Commit both of txn and txn2. txn will conflict but txn2 will
// pass. In both ways, both memtables are queried.
SetPerfLevel(PerfLevel::kEnableCount);
get_perf_context()->Reset();
Status s = txn->Commit();
// We should have checked two memtables
ASSERT_EQ(2, get_perf_context()->get_from_memtable_count);
// txn should fail because of conflict, even if the memtable
// has flushed, because it is still preserved in history.
ASSERT_TRUE(s.IsBusy());
get_perf_context()->Reset();
s = txn2->Commit();
// We should have checked two memtables
ASSERT_EQ(2, get_perf_context()->get_from_memtable_count);
ASSERT_TRUE(s.ok());
ASSERT_OK(txn3->Put(Slice("foo2"), Slice("bar2")));
get_perf_context()->Reset();
s = txn3->Commit();
// txn3 is created after the active memtable is created, so that is the only
// memtable to check.
ASSERT_EQ(1, get_perf_context()->get_from_memtable_count);
ASSERT_TRUE(s.ok());
TEST_SYNC_POINT("OptimisticTransactionTest.CheckKeySkipOldMemtable");
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
SetPerfLevel(PerfLevel::kDisable);
delete txn;
delete txn2;
delete txn3;
}
}
TEST_P(OptimisticTransactionTest, NoSnapshotTest) {
WriteOptions write_options;
ReadOptions read_options;
std::string value;
ASSERT_OK(txn_db->Put(write_options, "AAA", "bar"));
Transaction* txn = txn_db->BeginTransaction(write_options);
ASSERT_NE(txn, nullptr);
// Modify key after transaction start
ASSERT_OK(txn_db->Put(write_options, "AAA", "bar1"));
// Read and write without a snapshot
ASSERT_OK(txn->GetForUpdate(read_options, "AAA", &value));
ASSERT_EQ(value, "bar1");
ASSERT_OK(txn->Put("AAA", "bar2"));
// Should commit since read/write was done after data changed
ASSERT_OK(txn->Commit());
ASSERT_OK(txn->GetForUpdate(read_options, "AAA", &value));
ASSERT_EQ(value, "bar2");
delete txn;
}
TEST_P(OptimisticTransactionTest, MultipleSnapshotTest) {
WriteOptions write_options;
ReadOptions read_options, snapshot_read_options;
std::string value;
ASSERT_OK(txn_db->Put(write_options, "AAA", "bar"));
ASSERT_OK(txn_db->Put(write_options, "BBB", "bar"));
ASSERT_OK(txn_db->Put(write_options, "CCC", "bar"));
Transaction* txn = txn_db->BeginTransaction(write_options);
ASSERT_NE(txn, nullptr);
ASSERT_OK(txn_db->Put(write_options, "AAA", "bar1"));
// Read and write without a snapshot
ASSERT_OK(txn->GetForUpdate(read_options, "AAA", &value));
ASSERT_EQ(value, "bar1");
ASSERT_OK(txn->Put("AAA", "bar2"));
// Modify BBB before snapshot is taken
ASSERT_OK(txn_db->Put(write_options, "BBB", "bar1"));
txn->SetSnapshot();
snapshot_read_options.snapshot = txn->GetSnapshot();
// Read and write with snapshot
ASSERT_OK(txn->GetForUpdate(snapshot_read_options, "BBB", &value));
ASSERT_EQ(value, "bar1");
ASSERT_OK(txn->Put("BBB", "bar2"));
ASSERT_OK(txn_db->Put(write_options, "CCC", "bar1"));
// Set a new snapshot
txn->SetSnapshot();
snapshot_read_options.snapshot = txn->GetSnapshot();
// Read and write with snapshot
ASSERT_OK(txn->GetForUpdate(snapshot_read_options, "CCC", &value));
ASSERT_EQ(value, "bar1");
ASSERT_OK(txn->Put("CCC", "bar2"));
ASSERT_OK(txn->GetForUpdate(read_options, "AAA", &value));
ASSERT_EQ(value, "bar2");
ASSERT_OK(txn->GetForUpdate(read_options, "BBB", &value));
ASSERT_EQ(value, "bar2");
ASSERT_OK(txn->GetForUpdate(read_options, "CCC", &value));
ASSERT_EQ(value, "bar2");
ASSERT_OK(txn_db->Get(read_options, "AAA", &value));
ASSERT_EQ(value, "bar1");
ASSERT_OK(txn_db->Get(read_options, "BBB", &value));
ASSERT_EQ(value, "bar1");
ASSERT_OK(txn_db->Get(read_options, "CCC", &value));
ASSERT_EQ(value, "bar1");
ASSERT_OK(txn->Commit());
ASSERT_OK(txn_db->Get(read_options, "AAA", &value));
ASSERT_EQ(value, "bar2");
ASSERT_OK(txn_db->Get(read_options, "BBB", &value));
ASSERT_EQ(value, "bar2");
ASSERT_OK(txn_db->Get(read_options, "CCC", &value));
ASSERT_EQ(value, "bar2");
// verify that we track multiple writes to the same key at different snapshots
delete txn;
txn = txn_db->BeginTransaction(write_options);
// Potentially conflicting writes
ASSERT_OK(txn_db->Put(write_options, "ZZZ", "zzz"));
ASSERT_OK(txn_db->Put(write_options, "XXX", "xxx"));
txn->SetSnapshot();
OptimisticTransactionOptions txn_options;
txn_options.set_snapshot = true;
Transaction* txn2 = txn_db->BeginTransaction(write_options, txn_options);
txn2->SetSnapshot();
// This should not conflict in txn since the snapshot is later than the
// previous write (spoiler alert: it will later conflict with txn2).
ASSERT_OK(txn->Put("ZZZ", "zzzz"));
ASSERT_OK(txn->Commit());
delete txn;
// This will conflict since the snapshot is earlier than another write to ZZZ
ASSERT_OK(txn2->Put("ZZZ", "xxxxx"));
Status s = txn2->Commit();
ASSERT_TRUE(s.IsBusy());
delete txn2;
}
TEST_P(OptimisticTransactionTest, ColumnFamiliesTest) {
WriteOptions write_options;
ReadOptions read_options, snapshot_read_options;
OptimisticTransactionOptions txn_options;
std::string value;
ColumnFamilyHandle *cfa, *cfb;
ColumnFamilyOptions cf_options;
// Create 2 new column families
ASSERT_OK(txn_db->CreateColumnFamily(cf_options, "CFA", &cfa));
ASSERT_OK(txn_db->CreateColumnFamily(cf_options, "CFB", &cfb));
delete cfa;
delete cfb;
txn_db.reset();
OptimisticTransactionDBOptions my_occ_opts = occ_opts;
const size_t bucket_count = 500;
my_occ_opts.shared_lock_buckets = MakeSharedOccLockBuckets(bucket_count);
// open DB with three column families
std::vector<ColumnFamilyDescriptor> column_families;
// have to open default column family
column_families.push_back(
ColumnFamilyDescriptor(kDefaultColumnFamilyName, ColumnFamilyOptions()));
// open the new column families
column_families.push_back(
ColumnFamilyDescriptor("CFA", ColumnFamilyOptions()));
column_families.push_back(
ColumnFamilyDescriptor("CFB", ColumnFamilyOptions()));
std::vector<ColumnFamilyHandle*> handles;
OptimisticTransactionDB* raw_txn_db = nullptr;
ASSERT_OK(OptimisticTransactionDB::Open(
options, my_occ_opts, dbname, column_families, &handles, &raw_txn_db));
ASSERT_NE(raw_txn_db, nullptr);
txn_db.reset(raw_txn_db);
Transaction* txn = txn_db->BeginTransaction(write_options);
ASSERT_NE(txn, nullptr);
txn->SetSnapshot();
snapshot_read_options.snapshot = txn->GetSnapshot();
txn_options.set_snapshot = true;
Transaction* txn2 = txn_db->BeginTransaction(write_options, txn_options);
ASSERT_TRUE(txn2);
// Write some data to the db
WriteBatch batch;
ASSERT_OK(batch.Put("foo", "foo"));
ASSERT_OK(batch.Put(handles[1], "AAA", "bar"));
ASSERT_OK(batch.Put(handles[1], "AAAZZZ", "bar"));
ASSERT_OK(txn_db->Write(write_options, &batch));
ASSERT_OK(txn_db->Delete(write_options, handles[1], "AAAZZZ"));
// These keys do no conflict with existing writes since they're in
// different column families
ASSERT_OK(txn->Delete("AAA"));
Status s =
txn->GetForUpdate(snapshot_read_options, handles[1], "foo", &value);
ASSERT_TRUE(s.IsNotFound());
Slice key_slice("AAAZZZ");
Slice value_slices[2] = {Slice("bar"), Slice("bar")};
ASSERT_OK(txn->Put(handles[2], SliceParts(&key_slice, 1),
SliceParts(value_slices, 2)));
ASSERT_EQ(3, txn->GetNumKeys());
// Txn should commit
ASSERT_OK(txn->Commit());
s = txn_db->Get(read_options, "AAA", &value);
ASSERT_TRUE(s.IsNotFound());
s = txn_db->Get(read_options, handles[2], "AAAZZZ", &value);
ASSERT_EQ(value, "barbar");
Slice key_slices[3] = {Slice("AAA"), Slice("ZZ"), Slice("Z")};
Slice value_slice("barbarbar");
// This write will cause a conflict with the earlier batch write
ASSERT_OK(txn2->Put(handles[1], SliceParts(key_slices, 3),
SliceParts(&value_slice, 1)));
ASSERT_OK(txn2->Delete(handles[2], "XXX"));
ASSERT_OK(txn2->Delete(handles[1], "XXX"));
s = txn2->GetForUpdate(snapshot_read_options, handles[1], "AAA", &value);
ASSERT_TRUE(s.IsNotFound());
// Verify txn did not commit
s = txn2->Commit();
ASSERT_TRUE(s.IsBusy());
s = txn_db->Get(read_options, handles[1], "AAAZZZ", &value);
ASSERT_TRUE(s.IsNotFound());
ASSERT_EQ(value, "barbar");
delete txn;
delete txn2;
// ** MultiGet **
txn = txn_db->BeginTransaction(write_options, txn_options);
snapshot_read_options.snapshot = txn->GetSnapshot();
txn2 = txn_db->BeginTransaction(write_options, txn_options);
ASSERT_NE(txn, nullptr);
std::vector<ColumnFamilyHandle*> multiget_cfh = {handles[1], handles[2],
handles[0], handles[2]};
std::vector<Slice> multiget_keys = {"AAA", "AAAZZZ", "foo", "foo"};
std::vector<std::string> values(4);
std::vector<Status> results = txn->MultiGetForUpdate(
snapshot_read_options, multiget_cfh, multiget_keys, &values);
ASSERT_OK(results[0]);
ASSERT_OK(results[1]);
ASSERT_OK(results[2]);
ASSERT_TRUE(results[3].IsNotFound());
ASSERT_EQ(values[0], "bar");
ASSERT_EQ(values[1], "barbar");
ASSERT_EQ(values[2], "foo");
ASSERT_OK(txn->Delete(handles[2], "ZZZ"));
ASSERT_OK(txn->Put(handles[2], "ZZZ", "YYY"));
ASSERT_OK(txn->Put(handles[2], "ZZZ", "YYYY"));
ASSERT_OK(txn->Delete(handles[2], "ZZZ"));
ASSERT_OK(txn->Put(handles[2], "AAAZZZ", "barbarbar"));
ASSERT_EQ(5, txn->GetNumKeys());
// Txn should commit
ASSERT_OK(txn->Commit());
s = txn_db->Get(read_options, handles[2], "ZZZ", &value);
ASSERT_TRUE(s.IsNotFound());
// Put a key which will conflict with the next txn using the previous snapshot
ASSERT_OK(txn_db->Put(write_options, handles[2], "foo", "000"));
results = txn2->MultiGetForUpdate(snapshot_read_options, multiget_cfh,
multiget_keys, &values);
ASSERT_OK(results[0]);
ASSERT_OK(results[1]);
ASSERT_OK(results[2]);
ASSERT_TRUE(results[3].IsNotFound());
ASSERT_EQ(values[0], "bar");
ASSERT_EQ(values[1], "barbar");
ASSERT_EQ(values[2], "foo");
// Verify Txn Did not Commit
s = txn2->Commit();
ASSERT_TRUE(s.IsBusy());
delete txn;
delete txn2;
// ** Test independence and/or sharing of lock buckets across CFs and DBs **
if (my_occ_opts.validate_policy == OccValidationPolicy::kValidateParallel) {
struct SeenStat {
uint64_t rolling_hash = 0;
uintptr_t min = 0;
uintptr_t max = 0;
};
SeenStat cur_seen;
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"OptimisticTransaction::CommitWithParallelValidate::lock_bucket_ptr",
[&](void* arg) {
// Hash the pointer
cur_seen.rolling_hash = Hash64(reinterpret_cast<char*>(&arg),
sizeof(arg), cur_seen.rolling_hash);
uintptr_t val = reinterpret_cast<uintptr_t>(arg);
if (cur_seen.min == 0 || val < cur_seen.min) {
cur_seen.min = val;
}
if (cur_seen.max == 0 || val > cur_seen.max) {
cur_seen.max = val;
}
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
// Another db sharing lock buckets
auto shared_dbname =
test::PerThreadDBPath("optimistic_transaction_testdb_shared");
std::unique_ptr<OptimisticTransactionDB> shared_txn_db = nullptr;
OpenImpl(options, my_occ_opts, shared_dbname, &shared_txn_db);
// Another db not sharing lock buckets
auto nonshared_dbname =
test::PerThreadDBPath("optimistic_transaction_testdb_nonshared");
std::unique_ptr<OptimisticTransactionDB> nonshared_txn_db = nullptr;
my_occ_opts.occ_lock_buckets = bucket_count;
my_occ_opts.shared_lock_buckets = nullptr;
OpenImpl(options, my_occ_opts, nonshared_dbname, &nonshared_txn_db);
// Plenty of keys to avoid randomly hitting the same hash sequence
std::array<std::string, 30> keys;
for (size_t i = 0; i < keys.size(); ++i) {
keys[i] = std::to_string(i);
}
// Get a baseline pattern of bucket accesses
cur_seen = {};
txn = txn_db->BeginTransaction(write_options, txn_options);
for (const auto& key : keys) {
txn->Put(handles[0], key, "blah");
}
ASSERT_OK(txn->Commit());
// Sufficiently large hash coverage of the space
const uintptr_t min_span_bytes = sizeof(port::Mutex) * bucket_count / 2;
ASSERT_GT(cur_seen.max - cur_seen.min, min_span_bytes);
// Save
SeenStat base_seen = cur_seen;
// Verify it is repeatable
cur_seen = {};
txn = txn_db->BeginTransaction(write_options, txn_options, txn);
for (const auto& key : keys) {
txn->Put(handles[0], key, "moo");
}
ASSERT_OK(txn->Commit());
ASSERT_EQ(cur_seen.rolling_hash, base_seen.rolling_hash);
ASSERT_EQ(cur_seen.min, base_seen.min);
ASSERT_EQ(cur_seen.max, base_seen.max);
// Try another CF
cur_seen = {};
txn = txn_db->BeginTransaction(write_options, txn_options, txn);
for (const auto& key : keys) {
txn->Put(handles[1], key, "blah");
}
ASSERT_OK(txn->Commit());
// Different access pattern (different hash seed)
ASSERT_NE(cur_seen.rolling_hash, base_seen.rolling_hash);
// Same pointer space
ASSERT_LT(cur_seen.min, base_seen.max);
ASSERT_GT(cur_seen.max, base_seen.min);
// Sufficiently large hash coverage of the space
ASSERT_GT(cur_seen.max - cur_seen.min, min_span_bytes);
// Save
SeenStat cf1_seen = cur_seen;
// And another CF
cur_seen = {};
txn = txn_db->BeginTransaction(write_options, txn_options, txn);
for (const auto& key : keys) {
txn->Put(handles[2], key, "blah");
}
ASSERT_OK(txn->Commit());
// Different access pattern (different hash seed)
ASSERT_NE(cur_seen.rolling_hash, base_seen.rolling_hash);
ASSERT_NE(cur_seen.rolling_hash, cf1_seen.rolling_hash);
// Same pointer space
ASSERT_LT(cur_seen.min, base_seen.max);
ASSERT_GT(cur_seen.max, base_seen.min);
// Sufficiently large hash coverage of the space
ASSERT_GT(cur_seen.max - cur_seen.min, min_span_bytes);
// And DB with shared lock buckets
cur_seen = {};
delete txn;
txn = shared_txn_db->BeginTransaction(write_options, txn_options);
for (const auto& key : keys) {
txn->Put(key, "blah");
}
ASSERT_OK(txn->Commit());
// Different access pattern (different hash seed)
ASSERT_NE(cur_seen.rolling_hash, base_seen.rolling_hash);
ASSERT_NE(cur_seen.rolling_hash, cf1_seen.rolling_hash);
// Same pointer space
ASSERT_LT(cur_seen.min, base_seen.max);
ASSERT_GT(cur_seen.max, base_seen.min);
// Sufficiently large hash coverage of the space
ASSERT_GT(cur_seen.max - cur_seen.min, min_span_bytes);
// And DB with distinct lock buckets
cur_seen = {};
delete txn;
txn = nonshared_txn_db->BeginTransaction(write_options, txn_options);
for (const auto& key : keys) {
txn->Put(key, "blah");
}
ASSERT_OK(txn->Commit());
// Different access pattern (different hash seed)
ASSERT_NE(cur_seen.rolling_hash, base_seen.rolling_hash);
ASSERT_NE(cur_seen.rolling_hash, cf1_seen.rolling_hash);
// Different pointer space
ASSERT_TRUE(cur_seen.min > base_seen.max || cur_seen.max < base_seen.min);
// Sufficiently large hash coverage of the space
ASSERT_GT(cur_seen.max - cur_seen.min, min_span_bytes);
delete txn;
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
}
// ** Test dropping column family before committing, or even creating txn **
txn = txn_db->BeginTransaction(write_options, txn_options);
ASSERT_OK(txn->Delete(handles[1], "AAA"));
s = txn_db->DropColumnFamily(handles[1]);
ASSERT_OK(s);
s = txn_db->DropColumnFamily(handles[2]);
ASSERT_OK(s);
ASSERT_NOK(txn->Commit());
txn2 = txn_db->BeginTransaction(write_options, txn_options);
ASSERT_OK(txn2->Delete(handles[2], "AAA"));
ASSERT_NOK(txn2->Commit());
delete txn;
delete txn2;
for (auto handle : handles) {
delete handle;
}
}
TEST_P(OptimisticTransactionTest, EmptyTest) {
WriteOptions write_options;
ReadOptions read_options;
std::string value;
ASSERT_OK(txn_db->Put(write_options, "aaa", "aaa"));
Transaction* txn = txn_db->BeginTransaction(write_options);
ASSERT_OK(txn->Commit());
delete txn;
txn = txn_db->BeginTransaction(write_options);
ASSERT_OK(txn->Rollback());
delete txn;
txn = txn_db->BeginTransaction(write_options);
ASSERT_OK(txn->GetForUpdate(read_options, "aaa", &value));
ASSERT_EQ(value, "aaa");
ASSERT_OK(txn->Commit());
delete txn;
txn = txn_db->BeginTransaction(write_options);
txn->SetSnapshot();
ASSERT_OK(txn->GetForUpdate(read_options, "aaa", &value));
ASSERT_EQ(value, "aaa");
ASSERT_OK(txn_db->Put(write_options, "aaa", "xxx"));
Status s = txn->Commit();
ASSERT_TRUE(s.IsBusy());
delete txn;
}
TEST_P(OptimisticTransactionTest, PredicateManyPreceders) {
WriteOptions write_options;
ReadOptions read_options1, read_options2;
OptimisticTransactionOptions txn_options;
std::string value;
txn_options.set_snapshot = true;
Transaction* txn1 = txn_db->BeginTransaction(write_options, txn_options);
read_options1.snapshot = txn1->GetSnapshot();
Transaction* txn2 = txn_db->BeginTransaction(write_options);
txn2->SetSnapshot();
read_options2.snapshot = txn2->GetSnapshot();
std::vector<Slice> multiget_keys = {"1", "2", "3"};
std::vector<std::string> multiget_values;
std::vector<Status> results =
txn1->MultiGetForUpdate(read_options1, multiget_keys, &multiget_values);
ASSERT_TRUE(results[0].IsNotFound());
ASSERT_TRUE(results[1].IsNotFound());
ASSERT_TRUE(results[2].IsNotFound());
ASSERT_OK(txn2->Put("2", "x"));
ASSERT_OK(txn2->Commit());
multiget_values.clear();
results =
txn1->MultiGetForUpdate(read_options1, multiget_keys, &multiget_values);
ASSERT_TRUE(results[0].IsNotFound());
ASSERT_TRUE(results[1].IsNotFound());
ASSERT_TRUE(results[2].IsNotFound());
// should not commit since txn2 wrote a key txn has read
Status s = txn1->Commit();
ASSERT_TRUE(s.IsBusy());
delete txn1;
delete txn2;
txn1 = txn_db->BeginTransaction(write_options, txn_options);
read_options1.snapshot = txn1->GetSnapshot();
txn2 = txn_db->BeginTransaction(write_options, txn_options);
read_options2.snapshot = txn2->GetSnapshot();
ASSERT_OK(txn1->Put("4", "x"));
ASSERT_OK(txn2->Delete("4"));
// txn1 can commit since txn2's delete hasn't happened yet (it's just batched)
ASSERT_OK(txn1->Commit());
s = txn2->GetForUpdate(read_options2, "4", &value);
ASSERT_TRUE(s.IsNotFound());
// txn2 cannot commit since txn1 changed "4"
s = txn2->Commit();
ASSERT_TRUE(s.IsBusy());
delete txn1;
delete txn2;
}
TEST_P(OptimisticTransactionTest, LostUpdate) {
WriteOptions write_options;
ReadOptions read_options, read_options1, read_options2;
OptimisticTransactionOptions txn_options;
std::string value;
// Test 2 transactions writing to the same key in multiple orders and
// with/without snapshots
Transaction* txn1 = txn_db->BeginTransaction(write_options);
Transaction* txn2 = txn_db->BeginTransaction(write_options);
ASSERT_OK(txn1->Put("1", "1"));
ASSERT_OK(txn2->Put("1", "2"));
ASSERT_OK(txn1->Commit());
Status s = txn2->Commit();
ASSERT_TRUE(s.IsBusy());
delete txn1;
delete txn2;
txn_options.set_snapshot = true;
txn1 = txn_db->BeginTransaction(write_options, txn_options);
read_options1.snapshot = txn1->GetSnapshot();
txn2 = txn_db->BeginTransaction(write_options, txn_options);
read_options2.snapshot = txn2->GetSnapshot();
ASSERT_OK(txn1->Put("1", "3"));
ASSERT_OK(txn2->Put("1", "4"));
ASSERT_OK(txn1->Commit());
s = txn2->Commit();
ASSERT_TRUE(s.IsBusy());
delete txn1;
delete txn2;
txn1 = txn_db->BeginTransaction(write_options, txn_options);
read_options1.snapshot = txn1->GetSnapshot();
txn2 = txn_db->BeginTransaction(write_options, txn_options);
read_options2.snapshot = txn2->GetSnapshot();
ASSERT_OK(txn1->Put("1", "5"));
ASSERT_OK(txn1->Commit());
ASSERT_OK(txn2->Put("1", "6"));
s = txn2->Commit();
ASSERT_TRUE(s.IsBusy());
delete txn1;
delete txn2;
txn1 = txn_db->BeginTransaction(write_options, txn_options);
read_options1.snapshot = txn1->GetSnapshot();
txn2 = txn_db->BeginTransaction(write_options, txn_options);
read_options2.snapshot = txn2->GetSnapshot();
ASSERT_OK(txn1->Put("1", "5"));
ASSERT_OK(txn1->Commit());
txn2->SetSnapshot();
ASSERT_OK(txn2->Put("1", "6"));
ASSERT_OK(txn2->Commit());
delete txn1;
delete txn2;
txn1 = txn_db->BeginTransaction(write_options);
txn2 = txn_db->BeginTransaction(write_options);
ASSERT_OK(txn1->Put("1", "7"));
ASSERT_OK(txn1->Commit());
ASSERT_OK(txn2->Put("1", "8"));
ASSERT_OK(txn2->Commit());
delete txn1;
delete txn2;
ASSERT_OK(txn_db->Get(read_options, "1", &value));
ASSERT_EQ(value, "8");
}
TEST_P(OptimisticTransactionTest, UntrackedWrites) {
WriteOptions write_options;
ReadOptions read_options;
std::string value;
Status s;
// Verify transaction rollback works for untracked keys.
Transaction* txn = txn_db->BeginTransaction(write_options);
ASSERT_OK(txn->PutUntracked("untracked", "0"));
ASSERT_OK(txn->Rollback());
s = txn_db->Get(read_options, "untracked", &value);
ASSERT_TRUE(s.IsNotFound());
delete txn;
txn = txn_db->BeginTransaction(write_options);
ASSERT_OK(txn->Put("tracked", "1"));
ASSERT_OK(txn->PutUntracked("untracked", "1"));
ASSERT_OK(txn->MergeUntracked("untracked", "2"));
ASSERT_OK(txn->DeleteUntracked("untracked"));
// Write to the untracked key outside of the transaction and verify
// it doesn't prevent the transaction from committing.
ASSERT_OK(txn_db->Put(write_options, "untracked", "x"));
ASSERT_OK(txn->Commit());
s = txn_db->Get(read_options, "untracked", &value);
ASSERT_TRUE(s.IsNotFound());
delete txn;
txn = txn_db->BeginTransaction(write_options);
ASSERT_OK(txn->Put("tracked", "10"));
ASSERT_OK(txn->PutUntracked("untracked", "A"));
// Write to tracked key outside of the transaction and verify that the
// untracked keys are not written when the commit fails.
ASSERT_OK(txn_db->Delete(write_options, "tracked"));
s = txn->Commit();
ASSERT_TRUE(s.IsBusy());
s = txn_db->Get(read_options, "untracked", &value);
ASSERT_TRUE(s.IsNotFound());
delete txn;
}
TEST_P(OptimisticTransactionTest, IteratorTest) {
WriteOptions write_options;
ReadOptions read_options, snapshot_read_options;
OptimisticTransactionOptions txn_options;
std::string value;
// Write some keys to the db
ASSERT_OK(txn_db->Put(write_options, "A", "a"));
ASSERT_OK(txn_db->Put(write_options, "G", "g"));
ASSERT_OK(txn_db->Put(write_options, "F", "f"));
ASSERT_OK(txn_db->Put(write_options, "C", "c"));
ASSERT_OK(txn_db->Put(write_options, "D", "d"));
Transaction* txn = txn_db->BeginTransaction(write_options);
ASSERT_NE(txn, nullptr);
// Write some keys in a txn
ASSERT_OK(txn->Put("B", "b"));
ASSERT_OK(txn->Put("H", "h"));
ASSERT_OK(txn->Delete("D"));
ASSERT_OK(txn->Put("E", "e"));
txn->SetSnapshot();
const Snapshot* snapshot = txn->GetSnapshot();
// Write some keys to the db after the snapshot
ASSERT_OK(txn_db->Put(write_options, "BB", "xx"));
ASSERT_OK(txn_db->Put(write_options, "C", "xx"));
read_options.snapshot = snapshot;
Iterator* iter = txn->GetIterator(read_options);
ASSERT_OK(iter->status());
iter->SeekToFirst();
// Read all keys via iter and lock them all
std::string results[] = {"a", "b", "c", "e", "f", "g", "h"};
for (int i = 0; i < 7; i++) {
ASSERT_OK(iter->status());
ASSERT_TRUE(iter->Valid());
ASSERT_EQ(results[i], iter->value().ToString());
ASSERT_OK(txn->GetForUpdate(read_options, iter->key(), nullptr));
iter->Next();
}
ASSERT_FALSE(iter->Valid());
iter->Seek("G");
ASSERT_OK(iter->status());
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("g", iter->value().ToString());
iter->Prev();
ASSERT_OK(iter->status());
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("f", iter->value().ToString());
iter->Seek("D");
ASSERT_OK(iter->status());
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("e", iter->value().ToString());
iter->Seek("C");
ASSERT_OK(iter->status());
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("c", iter->value().ToString());
iter->Next();
ASSERT_OK(iter->status());
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("e", iter->value().ToString());
iter->Seek("");
ASSERT_OK(iter->status());
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("a", iter->value().ToString());
iter->Seek("X");
ASSERT_OK(iter->status());
ASSERT_FALSE(iter->Valid());
iter->SeekToLast();
ASSERT_OK(iter->status());
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("h", iter->value().ToString());
// key "C" was modified in the db after txn's snapshot. txn will not commit.
Status s = txn->Commit();
ASSERT_TRUE(s.IsBusy());
delete iter;
delete txn;
}
TEST_P(OptimisticTransactionTest, DeleteRangeSupportTest) {
// `OptimisticTransactionDB` does not allow range deletion in any API.
ASSERT_TRUE(
txn_db
->DeleteRange(WriteOptions(), txn_db->DefaultColumnFamily(), "a", "b")
.IsNotSupported());
WriteBatch wb;
ASSERT_OK(wb.DeleteRange("a", "b"));
ASSERT_NOK(txn_db->Write(WriteOptions(), &wb));
}
TEST_P(OptimisticTransactionTest, SavepointTest) {
WriteOptions write_options;
ReadOptions read_options, snapshot_read_options;
OptimisticTransactionOptions txn_options;
std::string value;
Transaction* txn = txn_db->BeginTransaction(write_options);
ASSERT_NE(txn, nullptr);
Status s = txn->RollbackToSavePoint();
ASSERT_TRUE(s.IsNotFound());
txn->SetSavePoint(); // 1
ASSERT_OK(txn->RollbackToSavePoint()); // Rollback to beginning of txn
s = txn->RollbackToSavePoint();
ASSERT_TRUE(s.IsNotFound());
ASSERT_OK(txn->Put("B", "b"));
ASSERT_OK(txn->Commit());
ASSERT_OK(txn_db->Get(read_options, "B", &value));
ASSERT_EQ("b", value);
delete txn;
txn = txn_db->BeginTransaction(write_options);
ASSERT_NE(txn, nullptr);
ASSERT_OK(txn->Put("A", "a"));
ASSERT_OK(txn->Put("B", "bb"));
ASSERT_OK(txn->Put("C", "c"));
txn->SetSavePoint(); // 2
ASSERT_OK(txn->Delete("B"));
ASSERT_OK(txn->Put("C", "cc"));
ASSERT_OK(txn->Put("D", "d"));
ASSERT_OK(txn->RollbackToSavePoint()); // Rollback to 2
ASSERT_OK(txn->Get(read_options, "A", &value));
ASSERT_EQ("a", value);
ASSERT_OK(txn->Get(read_options, "B", &value));
ASSERT_EQ("bb", value);
ASSERT_OK(txn->Get(read_options, "C", &value));
ASSERT_EQ("c", value);
s = txn->Get(read_options, "D", &value);
ASSERT_TRUE(s.IsNotFound());
ASSERT_OK(txn->Put("A", "a"));
ASSERT_OK(txn->Put("E", "e"));
// Rollback to beginning of txn
s = txn->RollbackToSavePoint();
ASSERT_TRUE(s.IsNotFound());
ASSERT_OK(txn->Rollback());
s = txn->Get(read_options, "A", &value);
ASSERT_TRUE(s.IsNotFound());
ASSERT_OK(txn->Get(read_options, "B", &value));
ASSERT_EQ("b", value);
s = txn->Get(read_options, "D", &value);
ASSERT_TRUE(s.IsNotFound());
s = txn->Get(read_options, "D", &value);
ASSERT_TRUE(s.IsNotFound());
s = txn->Get(read_options, "E", &value);
ASSERT_TRUE(s.IsNotFound());
ASSERT_OK(txn->Put("A", "aa"));
ASSERT_OK(txn->Put("F", "f"));
txn->SetSavePoint(); // 3
txn->SetSavePoint(); // 4
ASSERT_OK(txn->Put("G", "g"));
ASSERT_OK(txn->Delete("F"));
ASSERT_OK(txn->Delete("B"));
ASSERT_OK(txn->Get(read_options, "A", &value));
ASSERT_EQ("aa", value);
s = txn->Get(read_options, "F", &value);
ASSERT_TRUE(s.IsNotFound());
s = txn->Get(read_options, "B", &value);
ASSERT_TRUE(s.IsNotFound());
ASSERT_OK(txn->RollbackToSavePoint()); // Rollback to 3
ASSERT_OK(txn->Get(read_options, "F", &value));
ASSERT_EQ("f", value);
s = txn->Get(read_options, "G", &value);
ASSERT_TRUE(s.IsNotFound());
ASSERT_OK(txn->Commit());
ASSERT_OK(txn_db->Get(read_options, "F", &value));
ASSERT_EQ("f", value);
s = txn_db->Get(read_options, "G", &value);
ASSERT_TRUE(s.IsNotFound());
ASSERT_OK(txn_db->Get(read_options, "A", &value));
ASSERT_EQ("aa", value);
ASSERT_OK(txn_db->Get(read_options, "B", &value));
ASSERT_EQ("b", value);
s = txn_db->Get(read_options, "C", &value);
ASSERT_TRUE(s.IsNotFound());
s = txn_db->Get(read_options, "D", &value);
ASSERT_TRUE(s.IsNotFound());
s = txn_db->Get(read_options, "E", &value);
ASSERT_TRUE(s.IsNotFound());
delete txn;
}
TEST_P(OptimisticTransactionTest, UndoGetForUpdateTest) {
WriteOptions write_options;
ReadOptions read_options, snapshot_read_options;
OptimisticTransactionOptions txn_options;
std::string value;
ASSERT_OK(txn_db->Put(write_options, "A", ""));
Transaction* txn1 = txn_db->BeginTransaction(write_options);
ASSERT_TRUE(txn1);
ASSERT_OK(txn1->GetForUpdate(read_options, "A", &value));
txn1->UndoGetForUpdate("A");
Transaction* txn2 = txn_db->BeginTransaction(write_options);
txn2->Put("A", "x");
ASSERT_OK(txn2->Commit());
delete txn2;
// Verify that txn1 can commit since A isn't conflict checked
ASSERT_OK(txn1->Commit());
delete txn1;
txn1 = txn_db->BeginTransaction(write_options);
ASSERT_OK(txn1->Put("A", "a"));
ASSERT_OK(txn1->GetForUpdate(read_options, "A", &value));
txn1->UndoGetForUpdate("A");
txn2 = txn_db->BeginTransaction(write_options);
ASSERT_OK(txn2->Put("A", "x"));
ASSERT_OK(txn2->Commit());
delete txn2;
// Verify that txn1 cannot commit since A will still be conflict checked
Status s = txn1->Commit();
ASSERT_TRUE(s.IsBusy());
delete txn1;
txn1 = txn_db->BeginTransaction(write_options);
ASSERT_OK(txn1->GetForUpdate(read_options, "A", &value));
ASSERT_OK(txn1->GetForUpdate(read_options, "A", &value));
txn1->UndoGetForUpdate("A");
txn2 = txn_db->BeginTransaction(write_options);
ASSERT_OK(txn2->Put("A", "x"));
ASSERT_OK(txn2->Commit());
delete txn2;
// Verify that txn1 cannot commit since A will still be conflict checked
s = txn1->Commit();
ASSERT_TRUE(s.IsBusy());
delete txn1;
txn1 = txn_db->BeginTransaction(write_options);
ASSERT_OK(txn1->GetForUpdate(read_options, "A", &value));
ASSERT_OK(txn1->GetForUpdate(read_options, "A", &value));
txn1->UndoGetForUpdate("A");
txn1->UndoGetForUpdate("A");
txn2 = txn_db->BeginTransaction(write_options);
ASSERT_OK(txn2->Put("A", "x"));
ASSERT_OK(txn2->Commit());
delete txn2;
// Verify that txn1 can commit since A isn't conflict checked
ASSERT_OK(txn1->Commit());
delete txn1;
txn1 = txn_db->BeginTransaction(write_options);
ASSERT_OK(txn1->GetForUpdate(read_options, "A", &value));
txn1->SetSavePoint();
txn1->UndoGetForUpdate("A");
txn2 = txn_db->BeginTransaction(write_options);
ASSERT_OK(txn2->Put("A", "x"));
ASSERT_OK(txn2->Commit());
delete txn2;
// Verify that txn1 cannot commit since A will still be conflict checked
s = txn1->Commit();
ASSERT_TRUE(s.IsBusy());
delete txn1;
txn1 = txn_db->BeginTransaction(write_options);
ASSERT_OK(txn1->GetForUpdate(read_options, "A", &value));
txn1->SetSavePoint();
ASSERT_OK(txn1->GetForUpdate(read_options, "A", &value));
txn1->UndoGetForUpdate("A");
txn2 = txn_db->BeginTransaction(write_options);
ASSERT_OK(txn2->Put("A", "x"));
ASSERT_OK(txn2->Commit());
delete txn2;
// Verify that txn1 cannot commit since A will still be conflict checked
s = txn1->Commit();
ASSERT_TRUE(s.IsBusy());
delete txn1;
txn1 = txn_db->BeginTransaction(write_options);
ASSERT_OK(txn1->GetForUpdate(read_options, "A", &value));
txn1->SetSavePoint();
ASSERT_OK(txn1->GetForUpdate(read_options, "A", &value));
txn1->UndoGetForUpdate("A");
ASSERT_OK(txn1->RollbackToSavePoint());
txn1->UndoGetForUpdate("A");
txn2 = txn_db->BeginTransaction(write_options);
ASSERT_OK(txn2->Put("A", "x"));
ASSERT_OK(txn2->Commit());
delete txn2;
// Verify that txn1 can commit since A isn't conflict checked
ASSERT_OK(txn1->Commit());
delete txn1;
}
namespace {
Status OptimisticTransactionStressTestInserter(OptimisticTransactionDB* db,
const size_t num_transactions,
const size_t num_sets,
const size_t num_keys_per_set) {
size_t seed = std::hash<std::thread::id>()(std::this_thread::get_id());
Random64 _rand(seed);
WriteOptions write_options;
ReadOptions read_options;
OptimisticTransactionOptions txn_options;
txn_options.set_snapshot = true;
RandomTransactionInserter inserter(&_rand, write_options, read_options,
num_keys_per_set,
static_cast<uint16_t>(num_sets));
for (size_t t = 0; t < num_transactions; t++) {
bool success = inserter.OptimisticTransactionDBInsert(db, txn_options);
if (!success) {
// unexpected failure
return inserter.GetLastStatus();
}
}
inserter.GetLastStatus().PermitUncheckedError();
// Make sure at least some of the transactions succeeded. It's ok if
// some failed due to write-conflicts.
if (inserter.GetFailureCount() > num_transactions / 2) {
return Status::TryAgain("Too many transactions failed! " +
std::to_string(inserter.GetFailureCount()) + " / " +
std::to_string(num_transactions));
}
return Status::OK();
}
} // namespace
TEST_P(OptimisticTransactionTest, OptimisticTransactionStressTest) {
const size_t num_threads = 4;
const size_t num_transactions_per_thread = 10000;
const size_t num_sets = 3;
const size_t num_keys_per_set = 100;
// Setting the key-space to be 100 keys should cause enough write-conflicts
// to make this test interesting.
std::vector<port::Thread> threads;
std::function<void()> call_inserter = [&] {
ASSERT_OK(OptimisticTransactionStressTestInserter(
txn_db.get(), num_transactions_per_thread, num_sets, num_keys_per_set));
};
// Create N threads that use RandomTransactionInserter to write
// many transactions.
for (uint32_t i = 0; i < num_threads; i++) {
threads.emplace_back(call_inserter);
}
// Wait for all threads to run
for (auto& t : threads) {
t.join();
}
// Verify that data is consistent
Status s = RandomTransactionInserter::Verify(txn_db.get(), num_sets);
ASSERT_OK(s);
}
TEST_P(OptimisticTransactionTest, SequenceNumberAfterRecoverTest) {
WriteOptions write_options;
OptimisticTransactionOptions transaction_options;
Transaction* transaction(
txn_db->BeginTransaction(write_options, transaction_options));
Status s = transaction->Put("foo", "val");
ASSERT_OK(s);
s = transaction->Put("foo2", "val");
ASSERT_OK(s);
s = transaction->Put("foo3", "val");
ASSERT_OK(s);
s = transaction->Commit();
ASSERT_OK(s);
delete transaction;
Reopen();
transaction = txn_db->BeginTransaction(write_options, transaction_options);
s = transaction->Put("bar", "val");
ASSERT_OK(s);
s = transaction->Put("bar2", "val");
ASSERT_OK(s);
s = transaction->Commit();
ASSERT_OK(s);
delete transaction;
}
TEST_P(OptimisticTransactionTest, TimestampedSnapshotMissingCommitTs) {
std::unique_ptr<Transaction> txn(txn_db->BeginTransaction(WriteOptions()));
ASSERT_OK(txn->Put("a", "v"));
Status s = txn->CommitAndTryCreateSnapshot();
ASSERT_TRUE(s.IsInvalidArgument());
}
TEST_P(OptimisticTransactionTest, TimestampedSnapshotSetCommitTs) {
std::unique_ptr<Transaction> txn(txn_db->BeginTransaction(WriteOptions()));
ASSERT_OK(txn->Put("a", "v"));
std::shared_ptr<const Snapshot> snapshot;
Status s = txn->CommitAndTryCreateSnapshot(nullptr, /*ts=*/100, &snapshot);
ASSERT_TRUE(s.IsNotSupported());
}
INSTANTIATE_TEST_CASE_P(
InstanceOccGroup, OptimisticTransactionTest,
testing::Values(OccValidationPolicy::kValidateSerial,
OccValidationPolicy::kValidateParallel));
TEST(OccLockBucketsTest, CacheAligned) {
// Typical x86_64 is 40 byte mutex, 64 byte cache line
if (sizeof(port::Mutex) >= sizeof(CacheAlignedWrapper<port::Mutex>)) {
ROCKSDB_GTEST_BYPASS("Test requires mutex smaller than cache line");
return;
}
auto buckets_unaligned = MakeSharedOccLockBuckets(100, false);
auto buckets_aligned = MakeSharedOccLockBuckets(100, true);
// Save at least one byte per bucket
ASSERT_LE(buckets_unaligned->ApproximateMemoryUsage() + 100,
buckets_aligned->ApproximateMemoryUsage());
}
} // namespace ROCKSDB_NAMESPACE
int main(int argc, char** argv) {
ROCKSDB_NAMESPACE::port::InstallStackTraceHandler();
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}