You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
rust-rocksdb/db/db_test.cc

7366 lines
253 KiB

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
// Introduction of SyncPoint effectively disabled building and running this test
// in Release build.
// which is a pity, it is a good test
#include <fcntl.h>
#include <algorithm>
#include <set>
#include <thread>
#include <unordered_set>
#include <utility>
#ifndef OS_WIN
#include <unistd.h>
#endif
#ifdef OS_SOLARIS
#include <alloca.h>
#endif
#include "cache/lru_cache.h"
#include "db/blob/blob_index.h"
#include "db/blob/blob_log_format.h"
#include "db/db_impl/db_impl.h"
#include "db/db_test_util.h"
#include "db/dbformat.h"
#include "db/job_context.h"
#include "db/version_set.h"
#include "db/write_batch_internal.h"
#include "env/mock_env.h"
#include "file/filename.h"
#include "monitoring/thread_status_util.h"
#include "port/port.h"
#include "port/stack_trace.h"
#include "rocksdb/cache.h"
#include "rocksdb/compaction_filter.h"
#include "rocksdb/convenience.h"
#include "rocksdb/db.h"
#include "rocksdb/env.h"
#include "rocksdb/experimental.h"
#include "rocksdb/filter_policy.h"
#include "rocksdb/options.h"
#include "rocksdb/perf_context.h"
#include "rocksdb/slice.h"
#include "rocksdb/slice_transform.h"
#include "rocksdb/snapshot.h"
#include "rocksdb/table.h"
#include "rocksdb/table_properties.h"
#include "rocksdb/thread_status.h"
#include "rocksdb/types.h"
#include "rocksdb/utilities/checkpoint.h"
#include "rocksdb/utilities/optimistic_transaction_db.h"
#include "rocksdb/utilities/write_batch_with_index.h"
#include "table/mock_table.h"
#include "table/scoped_arena_iterator.h"
#include "test_util/sync_point.h"
#include "test_util/testharness.h"
#include "test_util/testutil.h"
#include "util/compression.h"
#include "util/mutexlock.h"
#include "util/random.h"
#include "util/rate_limiter_impl.h"
#include "util/string_util.h"
#include "utilities/merge_operators.h"
namespace ROCKSDB_NAMESPACE {
// Note that whole DBTest and its child classes disable fsync on files
// and directories for speed.
// If fsync needs to be covered in a test, put it in other places.
class DBTest : public DBTestBase {
public:
DBTest() : DBTestBase("db_test", /*env_do_fsync=*/false) {}
};
class DBTestWithParam
: public DBTest,
public testing::WithParamInterface<std::tuple<uint32_t, bool>> {
public:
DBTestWithParam() {
max_subcompactions_ = std::get<0>(GetParam());
exclusive_manual_compaction_ = std::get<1>(GetParam());
}
// Required if inheriting from testing::WithParamInterface<>
static void SetUpTestCase() {}
static void TearDownTestCase() {}
uint32_t max_subcompactions_;
bool exclusive_manual_compaction_;
};
TEST_F(DBTest, MockEnvTest) {
std::unique_ptr<MockEnv> env{MockEnv::Create(Env::Default())};
Options options;
options.create_if_missing = true;
options.env = env.get();
DB* db;
const Slice keys[] = {Slice("aaa"), Slice("bbb"), Slice("ccc")};
const Slice vals[] = {Slice("foo"), Slice("bar"), Slice("baz")};
ASSERT_OK(DB::Open(options, "/dir/db", &db));
for (size_t i = 0; i < 3; ++i) {
ASSERT_OK(db->Put(WriteOptions(), keys[i], vals[i]));
}
for (size_t i = 0; i < 3; ++i) {
std::string res;
ASSERT_OK(db->Get(ReadOptions(), keys[i], &res));
ASSERT_TRUE(res == vals[i]);
}
Iterator* iterator = db->NewIterator(ReadOptions());
iterator->SeekToFirst();
for (size_t i = 0; i < 3; ++i) {
ASSERT_TRUE(iterator->Valid());
ASSERT_TRUE(keys[i] == iterator->key());
ASSERT_TRUE(vals[i] == iterator->value());
iterator->Next();
}
ASSERT_TRUE(!iterator->Valid());
delete iterator;
DBImpl* dbi = static_cast_with_check<DBImpl>(db);
ASSERT_OK(dbi->TEST_FlushMemTable());
for (size_t i = 0; i < 3; ++i) {
std::string res;
ASSERT_OK(db->Get(ReadOptions(), keys[i], &res));
ASSERT_TRUE(res == vals[i]);
}
delete db;
}
TEST_F(DBTest, MemEnvTest) {
std::unique_ptr<Env> env{NewMemEnv(Env::Default())};
Options options;
options.create_if_missing = true;
options.env = env.get();
DB* db;
const Slice keys[] = {Slice("aaa"), Slice("bbb"), Slice("ccc")};
const Slice vals[] = {Slice("foo"), Slice("bar"), Slice("baz")};
ASSERT_OK(DB::Open(options, "/dir/db", &db));
for (size_t i = 0; i < 3; ++i) {
ASSERT_OK(db->Put(WriteOptions(), keys[i], vals[i]));
}
for (size_t i = 0; i < 3; ++i) {
std::string res;
ASSERT_OK(db->Get(ReadOptions(), keys[i], &res));
ASSERT_TRUE(res == vals[i]);
}
Iterator* iterator = db->NewIterator(ReadOptions());
iterator->SeekToFirst();
for (size_t i = 0; i < 3; ++i) {
ASSERT_TRUE(iterator->Valid());
ASSERT_TRUE(keys[i] == iterator->key());
ASSERT_TRUE(vals[i] == iterator->value());
iterator->Next();
}
ASSERT_TRUE(!iterator->Valid());
delete iterator;
DBImpl* dbi = static_cast_with_check<DBImpl>(db);
ASSERT_OK(dbi->TEST_FlushMemTable());
for (size_t i = 0; i < 3; ++i) {
std::string res;
ASSERT_OK(db->Get(ReadOptions(), keys[i], &res));
ASSERT_TRUE(res == vals[i]);
}
delete db;
options.create_if_missing = false;
ASSERT_OK(DB::Open(options, "/dir/db", &db));
for (size_t i = 0; i < 3; ++i) {
std::string res;
ASSERT_OK(db->Get(ReadOptions(), keys[i], &res));
ASSERT_TRUE(res == vals[i]);
}
delete db;
}
TEST_F(DBTest, WriteEmptyBatch) {
Options options = CurrentOptions();
options.env = env_;
options.write_buffer_size = 100000;
CreateAndReopenWithCF({"pikachu"}, options);
ASSERT_OK(Put(1, "foo", "bar"));
WriteOptions wo;
wo.sync = true;
wo.disableWAL = false;
WriteBatch empty_batch;
ASSERT_OK(dbfull()->Write(wo, &empty_batch));
// make sure we can re-open it.
ASSERT_OK(TryReopenWithColumnFamilies({"default", "pikachu"}, options));
ASSERT_EQ("bar", Get(1, "foo"));
}
TEST_F(DBTest, SkipDelay) {
Options options = CurrentOptions();
options.env = env_;
options.write_buffer_size = 100000;
CreateAndReopenWithCF({"pikachu"}, options);
for (bool sync : {true, false}) {
for (bool disableWAL : {true, false}) {
if (sync && disableWAL) {
// sync and disableWAL is incompatible.
continue;
}
// Use a small number to ensure a large delay that is still effective
// when we do Put
// TODO(myabandeh): this is time dependent and could potentially make
// the test flaky
auto token = dbfull()->TEST_write_controler().GetDelayToken(1);
std::atomic<int> sleep_count(0);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"DBImpl::DelayWrite:Sleep",
[&](void* /*arg*/) { sleep_count.fetch_add(1); });
std::atomic<int> wait_count(0);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"DBImpl::DelayWrite:Wait",
[&](void* /*arg*/) { wait_count.fetch_add(1); });
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
WriteOptions wo;
wo.sync = sync;
wo.disableWAL = disableWAL;
wo.no_slowdown = true;
// Large enough to exceed allowance for one time interval
std::string large_value(1024, 'x');
// Perhaps ideally this first write would fail because of delay, but
// the current implementation does not guarantee that.
dbfull()->Put(wo, "foo", large_value).PermitUncheckedError();
// We need the 2nd write to trigger delay. This is because delay is
// estimated based on the last write size which is 0 for the first write.
ASSERT_NOK(dbfull()->Put(wo, "foo2", large_value));
ASSERT_GE(sleep_count.load(), 0);
ASSERT_GE(wait_count.load(), 0);
token.reset();
token = dbfull()->TEST_write_controler().GetDelayToken(1000000);
wo.no_slowdown = false;
ASSERT_OK(dbfull()->Put(wo, "foo3", large_value));
ASSERT_GE(sleep_count.load(), 1);
token.reset();
}
}
}
TEST_F(DBTest, MixedSlowdownOptions) {
Options options = CurrentOptions();
options.env = env_;
options.write_buffer_size = 100000;
CreateAndReopenWithCF({"pikachu"}, options);
std::vector<port::Thread> threads;
std::atomic<int> thread_num(0);
std::function<void()> write_slowdown_func = [&]() {
int a = thread_num.fetch_add(1);
std::string key = "foo" + std::to_string(a);
WriteOptions wo;
wo.no_slowdown = false;
ASSERT_OK(dbfull()->Put(wo, key, "bar"));
};
std::function<void()> write_no_slowdown_func = [&]() {
int a = thread_num.fetch_add(1);
std::string key = "foo" + std::to_string(a);
WriteOptions wo;
wo.no_slowdown = true;
ASSERT_NOK(dbfull()->Put(wo, key, "bar"));
};
// Use a small number to ensure a large delay that is still effective
// when we do Put
// TODO(myabandeh): this is time dependent and could potentially make
// the test flaky
auto token = dbfull()->TEST_write_controler().GetDelayToken(1);
std::atomic<int> sleep_count(0);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"DBImpl::DelayWrite:BeginWriteStallDone", [&](void* /*arg*/) {
sleep_count.fetch_add(1);
if (threads.empty()) {
for (int i = 0; i < 2; ++i) {
threads.emplace_back(write_slowdown_func);
}
for (int i = 0; i < 2; ++i) {
threads.emplace_back(write_no_slowdown_func);
}
}
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
WriteOptions wo;
wo.sync = false;
wo.disableWAL = false;
wo.no_slowdown = false;
ASSERT_OK(dbfull()->Put(wo, "foo", "bar"));
// We need the 2nd write to trigger delay. This is because delay is
// estimated based on the last write size which is 0 for the first write.
ASSERT_OK(dbfull()->Put(wo, "foo2", "bar2"));
token.reset();
for (auto& t : threads) {
t.join();
}
ASSERT_GE(sleep_count.load(), 1);
wo.no_slowdown = true;
ASSERT_OK(dbfull()->Put(wo, "foo3", "bar"));
}
TEST_F(DBTest, MixedSlowdownOptionsInQueue) {
Options options = CurrentOptions();
options.env = env_;
options.write_buffer_size = 100000;
CreateAndReopenWithCF({"pikachu"}, options);
std::vector<port::Thread> threads;
std::atomic<int> thread_num(0);
std::function<void()> write_no_slowdown_func = [&]() {
int a = thread_num.fetch_add(1);
std::string key = "foo" + std::to_string(a);
WriteOptions wo;
wo.no_slowdown = true;
ASSERT_NOK(dbfull()->Put(wo, key, "bar"));
};
// Use a small number to ensure a large delay that is still effective
// when we do Put
// TODO(myabandeh): this is time dependent and could potentially make
// the test flaky
auto token = dbfull()->TEST_write_controler().GetDelayToken(1);
std::atomic<int> sleep_count(0);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"DBImpl::DelayWrite:Sleep", [&](void* /*arg*/) {
sleep_count.fetch_add(1);
if (threads.empty()) {
for (int i = 0; i < 2; ++i) {
threads.emplace_back(write_no_slowdown_func);
}
// Sleep for 3s to allow the threads to insert themselves into the
// write queue
env_->SleepForMicroseconds(3000000ULL);
}
});
std::atomic<int> wait_count(0);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"DBImpl::DelayWrite:Wait",
[&](void* /*arg*/) { wait_count.fetch_add(1); });
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
WriteOptions wo;
wo.sync = false;
wo.disableWAL = false;
wo.no_slowdown = false;
ASSERT_OK(dbfull()->Put(wo, "foo", "bar"));
// We need the 2nd write to trigger delay. This is because delay is
// estimated based on the last write size which is 0 for the first write.
ASSERT_OK(dbfull()->Put(wo, "foo2", "bar2"));
token.reset();
for (auto& t : threads) {
t.join();
}
ASSERT_EQ(sleep_count.load(), 1);
ASSERT_GE(wait_count.load(), 0);
}
TEST_F(DBTest, MixedSlowdownOptionsStop) {
Options options = CurrentOptions();
options.env = env_;
options.write_buffer_size = 100000;
CreateAndReopenWithCF({"pikachu"}, options);
std::vector<port::Thread> threads;
std::atomic<int> thread_num(0);
std::function<void()> write_slowdown_func = [&]() {
int a = thread_num.fetch_add(1);
std::string key = "foo" + std::to_string(a);
WriteOptions wo;
wo.no_slowdown = false;
ASSERT_OK(dbfull()->Put(wo, key, "bar"));
};
std::function<void()> write_no_slowdown_func = [&]() {
int a = thread_num.fetch_add(1);
std::string key = "foo" + std::to_string(a);
WriteOptions wo;
wo.no_slowdown = true;
ASSERT_NOK(dbfull()->Put(wo, key, "bar"));
};
std::function<void()> wakeup_writer = [&]() {
dbfull()->mutex_.Lock();
dbfull()->bg_cv_.SignalAll();
dbfull()->mutex_.Unlock();
};
// Use a small number to ensure a large delay that is still effective
// when we do Put
// TODO(myabandeh): this is time dependent and could potentially make
// the test flaky
auto token = dbfull()->TEST_write_controler().GetStopToken();
std::atomic<int> wait_count(0);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"DBImpl::DelayWrite:Wait", [&](void* /*arg*/) {
wait_count.fetch_add(1);
if (threads.empty()) {
for (int i = 0; i < 2; ++i) {
threads.emplace_back(write_slowdown_func);
}
for (int i = 0; i < 2; ++i) {
threads.emplace_back(write_no_slowdown_func);
}
// Sleep for 3s to allow the threads to insert themselves into the
// write queue
env_->SleepForMicroseconds(3000000ULL);
}
token.reset();
threads.emplace_back(wakeup_writer);
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
WriteOptions wo;
wo.sync = false;
wo.disableWAL = false;
wo.no_slowdown = false;
ASSERT_OK(dbfull()->Put(wo, "foo", "bar"));
// We need the 2nd write to trigger delay. This is because delay is
// estimated based on the last write size which is 0 for the first write.
ASSERT_OK(dbfull()->Put(wo, "foo2", "bar2"));
token.reset();
for (auto& t : threads) {
t.join();
}
ASSERT_GE(wait_count.load(), 1);
wo.no_slowdown = true;
ASSERT_OK(dbfull()->Put(wo, "foo3", "bar"));
}
TEST_F(DBTest, LevelLimitReopen) {
Options options = CurrentOptions();
CreateAndReopenWithCF({"pikachu"}, options);
const std::string value(1024 * 1024, ' ');
int i = 0;
while (NumTableFilesAtLevel(2, 1) == 0) {
ASSERT_OK(Put(1, Key(i++), value));
}
options.num_levels = 1;
options.max_bytes_for_level_multiplier_additional.resize(1, 1);
Status s = TryReopenWithColumnFamilies({"default", "pikachu"}, options);
ASSERT_EQ(s.IsInvalidArgument(), true);
ASSERT_EQ(s.ToString(),
"Invalid argument: db has more levels than options.num_levels");
options.num_levels = 10;
options.max_bytes_for_level_multiplier_additional.resize(10, 1);
ASSERT_OK(TryReopenWithColumnFamilies({"default", "pikachu"}, options));
}
TEST_F(DBTest, LevelReopenWithFIFO) {
const int kLevelCount = 4;
const int kKeyCount = 5;
const int kTotalSstFileCount = kLevelCount * kKeyCount;
const int kCF = 1;
Options options = CurrentOptions();
// Config level0_file_num_compaction_trigger to prevent L0 files being
// automatically compacted while we are constructing a LSM tree structure
// to test multi-level FIFO compaction.
options.level0_file_num_compaction_trigger = kKeyCount + 1;
CreateAndReopenWithCF({"pikachu"}, options);
// The expected number of files per level after each file creation.
const std::string expected_files_per_level[kLevelCount][kKeyCount] = {
{"0,0,0,1", "0,0,0,2", "0,0,0,3", "0,0,0,4", "0,0,0,5"},
{"0,0,1,5", "0,0,2,5", "0,0,3,5", "0,0,4,5", "0,0,5,5"},
{"0,1,5,5", "0,2,5,5", "0,3,5,5", "0,4,5,5", "0,5,5,5"},
{"1,5,5,5", "2,5,5,5", "3,5,5,5", "4,5,5,5", "5,5,5,5"},
};
const std::string expected_entries[kKeyCount][kLevelCount + 1] = {
{"[ ]", "[ a3 ]", "[ a2, a3 ]", "[ a1, a2, a3 ]", "[ a0, a1, a2, a3 ]"},
{"[ ]", "[ b3 ]", "[ b2, b3 ]", "[ b1, b2, b3 ]", "[ b0, b1, b2, b3 ]"},
{"[ ]", "[ c3 ]", "[ c2, c3 ]", "[ c1, c2, c3 ]", "[ c0, c1, c2, c3 ]"},
{"[ ]", "[ d3 ]", "[ d2, d3 ]", "[ d1, d2, d3 ]", "[ d0, d1, d2, d3 ]"},
{"[ ]", "[ e3 ]", "[ e2, e3 ]", "[ e1, e2, e3 ]", "[ e0, e1, e2, e3 ]"},
};
// The loop below creates the following LSM tree where each (k, v) pair
// represents a file that contains that entry. When a file is created,
// the db is reopend with FIFO compaction and verified the LSM tree
// structure is still the same.
//
// The resulting LSM tree will contain 5 different keys. Each key as
// 4 different versions, located in different level.
//
// L0: (e, e0) (d, d0) (c, c0) (b, b0) (a, a0)
// L1: (a, a1) (b, b1) (c, c1) (d, d1) (e, e1)
// L2: (a, a2) (b, b2) (c, c2) (d, d2) (e, e2)
// L3: (a, a3) (b, b3) (c, c3) (d, d3) (e, e3)
for (int l = 0; l < kLevelCount; ++l) {
int level = kLevelCount - 1 - l;
for (int p = 0; p < kKeyCount; ++p) {
std::string put_key = std::string(1, char('a' + p));
ASSERT_OK(Put(kCF, put_key, put_key + std::to_string(level)));
ASSERT_OK(Flush(kCF));
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable());
for (int g = 0; g < kKeyCount; ++g) {
int entry_count = (p >= g) ? l + 1 : l;
std::string get_key = std::string(1, char('a' + g));
CheckAllEntriesWithFifoReopen(expected_entries[g][entry_count], get_key,
kCF, {"pikachu"}, options);
}
if (level != 0) {
MoveFilesToLevel(level, kCF);
for (int g = 0; g < kKeyCount; ++g) {
int entry_count = (p >= g) ? l + 1 : l;
std::string get_key = std::string(1, char('a' + g));
CheckAllEntriesWithFifoReopen(expected_entries[g][entry_count],
get_key, kCF, {"pikachu"}, options);
}
}
ASSERT_EQ(expected_files_per_level[l][p], FilesPerLevel(kCF));
}
}
// The expected number of sst files in each level after each FIFO compaction
// that deletes the oldest sst file.
const std::string expected_files_per_level_after_fifo[] = {
"5,5,5,4", "5,5,5,3", "5,5,5,2", "5,5,5,1", "5,5,5", "5,5,4", "5,5,3",
"5,5,2", "5,5,1", "5,5", "5,4", "5,3", "5,2", "5,1",
"5", "4", "3", "2", "1", "",
};
// The expected value entries of each key after each FIFO compaction.
// This verifies whether FIFO removes the file with the smallest key in non-L0
// files first then the oldest files in L0.
const std::string expected_entries_after_fifo[kKeyCount][kLevelCount + 1] = {
{"[ a0, a1, a2, a3 ]", "[ a0, a1, a2 ]", "[ a0, a1 ]", "[ a0 ]", "[ ]"},
{"[ b0, b1, b2, b3 ]", "[ b0, b1, b2 ]", "[ b0, b1 ]", "[ b0 ]", "[ ]"},
{"[ c0, c1, c2, c3 ]", "[ c0, c1, c2 ]", "[ c0, c1 ]", "[ c0 ]", "[ ]"},
{"[ d0, d1, d2, d3 ]", "[ d0, d1, d2 ]", "[ d0, d1 ]", "[ d0 ]", "[ ]"},
{"[ e0, e1, e2, e3 ]", "[ e0, e1, e2 ]", "[ e0, e1 ]", "[ e0 ]", "[ ]"},
};
// In the 2nd phase, we reopen the DB with FIFO compaction. In each reopen,
// we config max_table_files_size so that FIFO will remove exactly one file
// at a time upon compaction, and we will use it to verify whether the sst
// files are deleted in the correct order.
for (int i = 0; i < kTotalSstFileCount; ++i) {
uint64_t total_sst_files_size = 0;
ASSERT_TRUE(dbfull()->GetIntProperty(
handles_[1], "rocksdb.total-sst-files-size", &total_sst_files_size));
ASSERT_TRUE(total_sst_files_size > 0);
Options fifo_options(options);
fifo_options.compaction_style = kCompactionStyleFIFO;
options.create_if_missing = false;
fifo_options.max_open_files = -1;
fifo_options.disable_auto_compactions = false;
// Config max_table_files_size to be total_sst_files_size - 1 so that
// FIFO will delete one file.
fifo_options.compaction_options_fifo.max_table_files_size =
total_sst_files_size - 1;
ASSERT_OK(
TryReopenWithColumnFamilies({"default", "pikachu"}, fifo_options));
// For FIFO to pick a compaction
ASSERT_OK(dbfull()->TEST_CompactRange(0, nullptr, nullptr, handles_[1]));
ASSERT_OK(dbfull()->TEST_WaitForBackgroundWork());
for (int g = 0; g < kKeyCount; ++g) {
std::string get_key = std::string(1, char('a' + g));
int status_index = i / kKeyCount;
if ((i % kKeyCount) >= g) {
// If true, then it means the sst file containing the get_key in the
// current level has already been deleted, so we need to move the
// status_index for checking the expected value.
status_index++;
}
CheckAllEntriesWithFifoReopen(
expected_entries_after_fifo[g][status_index], get_key, kCF,
{"pikachu"}, options);
}
ASSERT_EQ(expected_files_per_level_after_fifo[i], FilesPerLevel(kCF));
}
}
TEST_F(DBTest, PutSingleDeleteGet) {
do {
CreateAndReopenWithCF({"pikachu"}, CurrentOptions());
ASSERT_OK(Put(1, "foo", "v1"));
ASSERT_EQ("v1", Get(1, "foo"));
ASSERT_OK(Put(1, "foo2", "v2"));
ASSERT_EQ("v2", Get(1, "foo2"));
ASSERT_OK(SingleDelete(1, "foo"));
ASSERT_EQ("NOT_FOUND", Get(1, "foo"));
// Skip FIFO and universal compaction because they do not apply to the test
// case. Skip MergePut because single delete does not get removed when it
// encounters a merge.
} while (ChangeOptions(kSkipFIFOCompaction | kSkipUniversalCompaction |
kSkipMergePut));
}
TEST_F(DBTest, ReadFromPersistedTier) {
do {
Random rnd(301);
Options options = CurrentOptions();
for (int disableWAL = 0; disableWAL <= 1; ++disableWAL) {
CreateAndReopenWithCF({"pikachu"}, options);
WriteOptions wopt;
wopt.disableWAL = (disableWAL == 1);
// 1st round: put but not flush
ASSERT_OK(db_->Put(wopt, handles_[1], "foo", "first"));
ASSERT_OK(db_->Put(wopt, handles_[1], "bar", "one"));
ASSERT_EQ("first", Get(1, "foo"));
ASSERT_EQ("one", Get(1, "bar"));
// Read directly from persited data.
ReadOptions ropt;
ropt.read_tier = kPersistedTier;
std::string value;
if (wopt.disableWAL) {
// as data has not yet being flushed, we expect not found.
ASSERT_TRUE(db_->Get(ropt, handles_[1], "foo", &value).IsNotFound());
ASSERT_TRUE(db_->Get(ropt, handles_[1], "bar", &value).IsNotFound());
} else {
ASSERT_OK(db_->Get(ropt, handles_[1], "foo", &value));
ASSERT_OK(db_->Get(ropt, handles_[1], "bar", &value));
}
// Multiget
std::vector<ColumnFamilyHandle*> multiget_cfs;
multiget_cfs.push_back(handles_[1]);
multiget_cfs.push_back(handles_[1]);
std::vector<Slice> multiget_keys;
multiget_keys.push_back("foo");
multiget_keys.push_back("bar");
std::vector<std::string> multiget_values;
auto statuses =
db_->MultiGet(ropt, multiget_cfs, multiget_keys, &multiget_values);
if (wopt.disableWAL) {
ASSERT_TRUE(statuses[0].IsNotFound());
ASSERT_TRUE(statuses[1].IsNotFound());
} else {
ASSERT_OK(statuses[0]);
ASSERT_OK(statuses[1]);
}
// 2nd round: flush and put a new value in memtable.
ASSERT_OK(Flush(1));
ASSERT_OK(db_->Put(wopt, handles_[1], "rocksdb", "hello"));
// once the data has been flushed, we are able to get the
// data when kPersistedTier is used.
ASSERT_TRUE(db_->Get(ropt, handles_[1], "foo", &value).ok());
ASSERT_EQ(value, "first");
ASSERT_TRUE(db_->Get(ropt, handles_[1], "bar", &value).ok());
ASSERT_EQ(value, "one");
if (wopt.disableWAL) {
ASSERT_TRUE(
db_->Get(ropt, handles_[1], "rocksdb", &value).IsNotFound());
} else {
ASSERT_OK(db_->Get(ropt, handles_[1], "rocksdb", &value));
ASSERT_EQ(value, "hello");
}
// Expect same result in multiget
multiget_cfs.push_back(handles_[1]);
multiget_keys.push_back("rocksdb");
statuses =
db_->MultiGet(ropt, multiget_cfs, multiget_keys, &multiget_values);
ASSERT_TRUE(statuses[0].ok());
ASSERT_EQ("first", multiget_values[0]);
ASSERT_TRUE(statuses[1].ok());
ASSERT_EQ("one", multiget_values[1]);
if (wopt.disableWAL) {
ASSERT_TRUE(statuses[2].IsNotFound());
} else {
ASSERT_OK(statuses[2]);
}
// 3rd round: delete and flush
ASSERT_OK(db_->Delete(wopt, handles_[1], "foo"));
Flush(1);
ASSERT_OK(db_->Delete(wopt, handles_[1], "bar"));
ASSERT_TRUE(db_->Get(ropt, handles_[1], "foo", &value).IsNotFound());
if (wopt.disableWAL) {
// Still expect finding the value as its delete has not yet being
// flushed.
ASSERT_TRUE(db_->Get(ropt, handles_[1], "bar", &value).ok());
ASSERT_EQ(value, "one");
} else {
ASSERT_TRUE(db_->Get(ropt, handles_[1], "bar", &value).IsNotFound());
}
ASSERT_TRUE(db_->Get(ropt, handles_[1], "rocksdb", &value).ok());
ASSERT_EQ(value, "hello");
statuses =
db_->MultiGet(ropt, multiget_cfs, multiget_keys, &multiget_values);
ASSERT_TRUE(statuses[0].IsNotFound());
if (wopt.disableWAL) {
ASSERT_TRUE(statuses[1].ok());
ASSERT_EQ("one", multiget_values[1]);
} else {
ASSERT_TRUE(statuses[1].IsNotFound());
}
ASSERT_TRUE(statuses[2].ok());
ASSERT_EQ("hello", multiget_values[2]);
if (wopt.disableWAL == 0) {
DestroyAndReopen(options);
}
}
} while (ChangeOptions());
}
TEST_F(DBTest, SingleDeleteFlush) {
// Test to check whether flushing preserves a single delete hidden
// behind a put.
do {
Random rnd(301);
Options options = CurrentOptions();
options.disable_auto_compactions = true;
CreateAndReopenWithCF({"pikachu"}, options);
// Put values on second level (so that they will not be in the same
// compaction as the other operations.
ASSERT_OK(Put(1, "foo", "first"));
ASSERT_OK(Put(1, "bar", "one"));
ASSERT_OK(Flush(1));
MoveFilesToLevel(2, 1);
// (Single) delete hidden by a put
ASSERT_OK(SingleDelete(1, "foo"));
ASSERT_OK(Put(1, "foo", "second"));
ASSERT_OK(Delete(1, "bar"));
ASSERT_OK(Put(1, "bar", "two"));
ASSERT_OK(Flush(1));
ASSERT_OK(SingleDelete(1, "foo"));
ASSERT_OK(Delete(1, "bar"));
ASSERT_OK(Flush(1));
ASSERT_OK(dbfull()->CompactRange(CompactRangeOptions(), handles_[1],
nullptr, nullptr));
ASSERT_EQ("NOT_FOUND", Get(1, "bar"));
ASSERT_EQ("NOT_FOUND", Get(1, "foo"));
// Skip FIFO and universal compaction beccaus they do not apply to the test
// case. Skip MergePut because single delete does not get removed when it
// encounters a merge.
} while (ChangeOptions(kSkipFIFOCompaction | kSkipUniversalCompaction |
kSkipMergePut));
}
TEST_F(DBTest, SingleDeletePutFlush) {
// Single deletes that encounter the matching put in a flush should get
// removed.
do {
Random rnd(301);
Options options = CurrentOptions();
options.disable_auto_compactions = true;
CreateAndReopenWithCF({"pikachu"}, options);
ASSERT_OK(Put(1, "foo", Slice()));
ASSERT_OK(Put(1, "a", Slice()));
ASSERT_OK(SingleDelete(1, "a"));
ASSERT_OK(Flush(1));
ASSERT_EQ("[ ]", AllEntriesFor("a", 1));
// Skip FIFO and universal compaction because they do not apply to the test
// case. Skip MergePut because single delete does not get removed when it
// encounters a merge.
} while (ChangeOptions(kSkipFIFOCompaction | kSkipUniversalCompaction |
kSkipMergePut));
}
// Disable because not all platform can run it.
// It requires more than 9GB memory to run it, With single allocation
// of more than 3GB.
TEST_F(DBTest, DISABLED_SanitizeVeryVeryLargeValue) {
const size_t kValueSize = 4 * size_t{1024 * 1024 * 1024}; // 4GB value
std::string raw(kValueSize, 'v');
Options options = CurrentOptions();
options.env = env_;
options.merge_operator = MergeOperators::CreatePutOperator();
options.write_buffer_size = 100000; // Small write buffer
options.paranoid_checks = true;
DestroyAndReopen(options);
ASSERT_OK(Put("boo", "v1"));
ASSERT_TRUE(Put("foo", raw).IsInvalidArgument());
ASSERT_TRUE(Merge("foo", raw).IsInvalidArgument());
WriteBatch wb;
ASSERT_TRUE(wb.Put("foo", raw).IsInvalidArgument());
ASSERT_TRUE(wb.Merge("foo", raw).IsInvalidArgument());
Slice value_slice = raw;
Slice key_slice = "foo";
SliceParts sp_key(&key_slice, 1);
SliceParts sp_value(&value_slice, 1);
ASSERT_TRUE(wb.Put(sp_key, sp_value).IsInvalidArgument());
ASSERT_TRUE(wb.Merge(sp_key, sp_value).IsInvalidArgument());
}
// Disable because not all platform can run it.
// It requires more than 9GB memory to run it, With single allocation
// of more than 3GB.
TEST_F(DBTest, DISABLED_VeryLargeValue) {
const size_t kValueSize = 3221225472u; // 3GB value
const size_t kKeySize = 8388608u; // 8MB key
std::string raw(kValueSize, 'v');
std::string key1(kKeySize, 'c');
std::string key2(kKeySize, 'd');
Options options = CurrentOptions();
options.env = env_;
options.write_buffer_size = 100000; // Small write buffer
options.paranoid_checks = true;
DestroyAndReopen(options);
ASSERT_OK(Put("boo", "v1"));
ASSERT_OK(Put("foo", "v1"));
ASSERT_OK(Put(key1, raw));
raw[0] = 'w';
ASSERT_OK(Put(key2, raw));
dbfull()->TEST_WaitForFlushMemTable();
ASSERT_EQ(1, NumTableFilesAtLevel(0));
std::string value;
Status s = db_->Get(ReadOptions(), key1, &value);
ASSERT_OK(s);
ASSERT_EQ(kValueSize, value.size());
ASSERT_EQ('v', value[0]);
s = db_->Get(ReadOptions(), key2, &value);
ASSERT_OK(s);
ASSERT_EQ(kValueSize, value.size());
ASSERT_EQ('w', value[0]);
// Compact all files.
Flush();
db_->CompactRange(CompactRangeOptions(), nullptr, nullptr);
// Check DB is not in read-only state.
ASSERT_OK(Put("boo", "v1"));
s = db_->Get(ReadOptions(), key1, &value);
ASSERT_OK(s);
ASSERT_EQ(kValueSize, value.size());
ASSERT_EQ('v', value[0]);
s = db_->Get(ReadOptions(), key2, &value);
ASSERT_OK(s);
ASSERT_EQ(kValueSize, value.size());
ASSERT_EQ('w', value[0]);
}
TEST_F(DBTest, GetFromImmutableLayer) {
do {
Options options = CurrentOptions();
options.env = env_;
CreateAndReopenWithCF({"pikachu"}, options);
ASSERT_OK(Put(1, "foo", "v1"));
ASSERT_EQ("v1", Get(1, "foo"));
// Block sync calls
env_->delay_sstable_sync_.store(true, std::memory_order_release);
ASSERT_OK(Put(1, "k1", std::string(100000, 'x'))); // Fill memtable
ASSERT_OK(Put(1, "k2", std::string(100000, 'y'))); // Trigger flush
ASSERT_EQ("v1", Get(1, "foo"));
ASSERT_EQ("NOT_FOUND", Get(0, "foo"));
// Release sync calls
env_->delay_sstable_sync_.store(false, std::memory_order_release);
} while (ChangeOptions());
}
TEST_F(DBTest, GetLevel0Ordering) {
do {
CreateAndReopenWithCF({"pikachu"}, CurrentOptions());
// Check that we process level-0 files in correct order. The code
// below generates two level-0 files where the earlier one comes
// before the later one in the level-0 file list since the earlier
// one has a smaller "smallest" key.
ASSERT_OK(Put(1, "bar", "b"));
ASSERT_OK(Put(1, "foo", "v1"));
ASSERT_OK(Flush(1));
ASSERT_OK(Put(1, "foo", "v2"));
ASSERT_OK(Flush(1));
ASSERT_EQ("v2", Get(1, "foo"));
} while (ChangeOptions());
}
TEST_F(DBTest, WrongLevel0Config) {
Options options = CurrentOptions();
Close();
ASSERT_OK(DestroyDB(dbname_, options));
options.level0_stop_writes_trigger = 1;
options.level0_slowdown_writes_trigger = 2;
options.level0_file_num_compaction_trigger = 3;
ASSERT_OK(DB::Open(options, dbname_, &db_));
}
TEST_F(DBTest, GetOrderedByLevels) {
do {
CreateAndReopenWithCF({"pikachu"}, CurrentOptions());
ASSERT_OK(Put(1, "foo", "v1"));
Compact(1, "a", "z");
ASSERT_EQ("v1", Get(1, "foo"));
ASSERT_OK(Put(1, "foo", "v2"));
ASSERT_EQ("v2", Get(1, "foo"));
ASSERT_OK(Flush(1));
ASSERT_EQ("v2", Get(1, "foo"));
} while (ChangeOptions());
}
TEST_F(DBTest, GetPicksCorrectFile) {
do {
CreateAndReopenWithCF({"pikachu"}, CurrentOptions());
// Arrange to have multiple files in a non-level-0 level.
ASSERT_OK(Put(1, "a", "va"));
Compact(1, "a", "b");
ASSERT_OK(Put(1, "x", "vx"));
Compact(1, "x", "y");
ASSERT_OK(Put(1, "f", "vf"));
Compact(1, "f", "g");
ASSERT_EQ("va", Get(1, "a"));
ASSERT_EQ("vf", Get(1, "f"));
ASSERT_EQ("vx", Get(1, "x"));
} while (ChangeOptions());
}
TEST_F(DBTest, GetEncountersEmptyLevel) {
do {
Options options = CurrentOptions();
CreateAndReopenWithCF({"pikachu"}, options);
// Arrange for the following to happen:
// * sstable A in level 0
// * nothing in level 1
// * sstable B in level 2
// Then do enough Get() calls to arrange for an automatic compaction
// of sstable A. A bug would cause the compaction to be marked as
// occurring at level 1 (instead of the correct level 0).
// Step 1: First place sstables in levels 0 and 2
ASSERT_OK(Put(1, "a", "begin"));
ASSERT_OK(Put(1, "z", "end"));
ASSERT_OK(Flush(1));
ASSERT_OK(dbfull()->TEST_CompactRange(0, nullptr, nullptr, handles_[1]));
ASSERT_OK(dbfull()->TEST_CompactRange(1, nullptr, nullptr, handles_[1]));
ASSERT_OK(Put(1, "a", "begin"));
ASSERT_OK(Put(1, "z", "end"));
ASSERT_OK(Flush(1));
ASSERT_GT(NumTableFilesAtLevel(0, 1), 0);
ASSERT_GT(NumTableFilesAtLevel(2, 1), 0);
// Step 2: clear level 1 if necessary.
ASSERT_OK(dbfull()->TEST_CompactRange(1, nullptr, nullptr, handles_[1]));
ASSERT_EQ(NumTableFilesAtLevel(0, 1), 1);
ASSERT_EQ(NumTableFilesAtLevel(1, 1), 0);
ASSERT_EQ(NumTableFilesAtLevel(2, 1), 1);
// Step 3: read a bunch of times
for (int i = 0; i < 1000; i++) {
ASSERT_EQ("NOT_FOUND", Get(1, "missing"));
}
// Step 4: Wait for compaction to finish
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_EQ(NumTableFilesAtLevel(0, 1), 1); // XXX
} while (ChangeOptions(kSkipUniversalCompaction | kSkipFIFOCompaction));
}
TEST_F(DBTest, FlushMultipleMemtable) {
do {
Options options = CurrentOptions();
WriteOptions writeOpt = WriteOptions();
writeOpt.disableWAL = true;
options.max_write_buffer_number = 4;
options.min_write_buffer_number_to_merge = 3;
options.max_write_buffer_size_to_maintain = -1;
CreateAndReopenWithCF({"pikachu"}, options);
ASSERT_OK(dbfull()->Put(writeOpt, handles_[1], "foo", "v1"));
ASSERT_OK(Flush(1));
ASSERT_OK(dbfull()->Put(writeOpt, handles_[1], "bar", "v1"));
ASSERT_EQ("v1", Get(1, "foo"));
ASSERT_EQ("v1", Get(1, "bar"));
ASSERT_OK(Flush(1));
} while (ChangeCompactOptions());
}
TEST_F(DBTest, FlushSchedule) {
Options options = CurrentOptions();
options.disable_auto_compactions = true;
options.level0_stop_writes_trigger = 1 << 10;
options.level0_slowdown_writes_trigger = 1 << 10;
options.min_write_buffer_number_to_merge = 1;
options.max_write_buffer_size_to_maintain =
static_cast<int64_t>(options.write_buffer_size);
options.max_write_buffer_number = 2;
options.write_buffer_size = 120 * 1024;
auto flush_listener = std::make_shared<FlushCounterListener>();
flush_listener->expected_flush_reason = FlushReason::kWriteBufferFull;
options.listeners.push_back(flush_listener);
CreateAndReopenWithCF({"pikachu"}, options);
std::vector<port::Thread> threads;
std::atomic<int> thread_num(0);
// each column family will have 5 thread, each thread generating 2 memtables.
// each column family should end up with 10 table files
std::function<void()> fill_memtable_func = [&]() {
int a = thread_num.fetch_add(1);
Random rnd(a);
WriteOptions wo;
// this should fill up 2 memtables
for (int k = 0; k < 5000; ++k) {
ASSERT_OK(db_->Put(wo, handles_[a & 1], rnd.RandomString(13), ""));
}
};
for (int i = 0; i < 10; ++i) {
threads.emplace_back(fill_memtable_func);
}
for (auto& t : threads) {
t.join();
}
auto default_tables = GetNumberOfSstFilesForColumnFamily(db_, "default");
auto pikachu_tables = GetNumberOfSstFilesForColumnFamily(db_, "pikachu");
ASSERT_LE(default_tables, static_cast<uint64_t>(10));
ASSERT_GT(default_tables, static_cast<uint64_t>(0));
ASSERT_LE(pikachu_tables, static_cast<uint64_t>(10));
ASSERT_GT(pikachu_tables, static_cast<uint64_t>(0));
}
namespace {
class KeepFilter : public CompactionFilter {
public:
bool Filter(int /*level*/, const Slice& /*key*/, const Slice& /*value*/,
std::string* /*new_value*/,
bool* /*value_changed*/) const override {
return false;
}
const char* Name() const override { return "KeepFilter"; }
};
class KeepFilterFactory : public CompactionFilterFactory {
public:
explicit KeepFilterFactory(bool check_context = false)
: check_context_(check_context) {}
std::unique_ptr<CompactionFilter> CreateCompactionFilter(
const CompactionFilter::Context& context) override {
if (check_context_) {
EXPECT_EQ(expect_full_compaction_.load(), context.is_full_compaction);
EXPECT_EQ(expect_manual_compaction_.load(), context.is_manual_compaction);
}
return std::unique_ptr<CompactionFilter>(new KeepFilter());
}
const char* Name() const override { return "KeepFilterFactory"; }
bool check_context_;
std::atomic_bool expect_full_compaction_;
std::atomic_bool expect_manual_compaction_;
};
class DelayFilter : public CompactionFilter {
public:
explicit DelayFilter(DBTestBase* d) : db_test(d) {}
bool Filter(int /*level*/, const Slice& /*key*/, const Slice& /*value*/,
std::string* /*new_value*/,
bool* /*value_changed*/) const override {
db_test->env_->MockSleepForMicroseconds(1000);
return true;
}
const char* Name() const override { return "DelayFilter"; }
private:
DBTestBase* db_test;
};
class DelayFilterFactory : public CompactionFilterFactory {
public:
explicit DelayFilterFactory(DBTestBase* d) : db_test(d) {}
std::unique_ptr<CompactionFilter> CreateCompactionFilter(
const CompactionFilter::Context& /*context*/) override {
return std::unique_ptr<CompactionFilter>(new DelayFilter(db_test));
}
const char* Name() const override { return "DelayFilterFactory"; }
private:
DBTestBase* db_test;
};
} // anonymous namespace
static std::string CompressibleString(Random* rnd, int len) {
std::string r;
test::CompressibleString(rnd, 0.8, len, &r);
return r;
}
TEST_F(DBTest, FailMoreDbPaths) {
Options options = CurrentOptions();
options.db_paths.emplace_back(dbname_, 10000000);
options.db_paths.emplace_back(dbname_ + "_2", 1000000);
options.db_paths.emplace_back(dbname_ + "_3", 1000000);
options.db_paths.emplace_back(dbname_ + "_4", 1000000);
options.db_paths.emplace_back(dbname_ + "_5", 1000000);
ASSERT_TRUE(TryReopen(options).IsNotSupported());
}
void CheckColumnFamilyMeta(
const ColumnFamilyMetaData& cf_meta, const std::string& cf_name,
const std::vector<std::vector<FileMetaData>>& files_by_level,
uint64_t start_time, uint64_t end_time) {
ASSERT_EQ(cf_meta.name, cf_name);
ASSERT_EQ(cf_meta.levels.size(), files_by_level.size());
uint64_t cf_size = 0;
size_t file_count = 0;
for (size_t i = 0; i < cf_meta.levels.size(); ++i) {
const auto& level_meta_from_cf = cf_meta.levels[i];
const auto& level_meta_from_files = files_by_level[i];
ASSERT_EQ(level_meta_from_cf.level, i);
ASSERT_EQ(level_meta_from_cf.files.size(), level_meta_from_files.size());
file_count += level_meta_from_cf.files.size();
uint64_t level_size = 0;
for (size_t j = 0; j < level_meta_from_cf.files.size(); ++j) {
const auto& file_meta_from_cf = level_meta_from_cf.files[j];
const auto& file_meta_from_files = level_meta_from_files[j];
level_size += file_meta_from_cf.size;
ASSERT_EQ(file_meta_from_cf.file_number,
file_meta_from_files.fd.GetNumber());
ASSERT_EQ(file_meta_from_cf.file_number,
TableFileNameToNumber(file_meta_from_cf.name));
ASSERT_EQ(file_meta_from_cf.size, file_meta_from_files.fd.file_size);
ASSERT_EQ(file_meta_from_cf.smallest_seqno,
file_meta_from_files.fd.smallest_seqno);
ASSERT_EQ(file_meta_from_cf.largest_seqno,
file_meta_from_files.fd.largest_seqno);
ASSERT_EQ(file_meta_from_cf.smallestkey,
file_meta_from_files.smallest.user_key().ToString());
ASSERT_EQ(file_meta_from_cf.largestkey,
file_meta_from_files.largest.user_key().ToString());
ASSERT_EQ(file_meta_from_cf.oldest_blob_file_number,
file_meta_from_files.oldest_blob_file_number);
ASSERT_EQ(file_meta_from_cf.oldest_ancester_time,
file_meta_from_files.oldest_ancester_time);
ASSERT_EQ(file_meta_from_cf.file_creation_time,
file_meta_from_files.file_creation_time);
ASSERT_GE(file_meta_from_cf.file_creation_time, start_time);
ASSERT_LE(file_meta_from_cf.file_creation_time, end_time);
ASSERT_EQ(file_meta_from_cf.epoch_number,
file_meta_from_files.epoch_number);
ASSERT_GE(file_meta_from_cf.oldest_ancester_time, start_time);
ASSERT_LE(file_meta_from_cf.oldest_ancester_time, end_time);
// More from FileStorageInfo
ASSERT_EQ(file_meta_from_cf.file_type, kTableFile);
ASSERT_EQ(file_meta_from_cf.name,
"/" + file_meta_from_cf.relative_filename);
ASSERT_EQ(file_meta_from_cf.directory, file_meta_from_cf.db_path);
}
ASSERT_EQ(level_meta_from_cf.size, level_size);
cf_size += level_size;
}
ASSERT_EQ(cf_meta.file_count, file_count);
ASSERT_EQ(cf_meta.size, cf_size);
}
void CheckLiveFilesMeta(
const std::vector<LiveFileMetaData>& live_file_meta,
const std::vector<std::vector<FileMetaData>>& files_by_level) {
size_t total_file_count = 0;
for (const auto& f : files_by_level) {
total_file_count += f.size();
}
ASSERT_EQ(live_file_meta.size(), total_file_count);
int level = 0;
int i = 0;
for (const auto& meta : live_file_meta) {
if (level != meta.level) {
level = meta.level;
i = 0;
}
ASSERT_LT(i, files_by_level[level].size());
const auto& expected_meta = files_by_level[level][i];
ASSERT_EQ(meta.column_family_name, kDefaultColumnFamilyName);
ASSERT_EQ(meta.file_number, expected_meta.fd.GetNumber());
ASSERT_EQ(meta.file_number, TableFileNameToNumber(meta.name));
ASSERT_EQ(meta.size, expected_meta.fd.file_size);
ASSERT_EQ(meta.smallest_seqno, expected_meta.fd.smallest_seqno);
ASSERT_EQ(meta.largest_seqno, expected_meta.fd.largest_seqno);
ASSERT_EQ(meta.smallestkey, expected_meta.smallest.user_key().ToString());
ASSERT_EQ(meta.largestkey, expected_meta.largest.user_key().ToString());
ASSERT_EQ(meta.oldest_blob_file_number,
expected_meta.oldest_blob_file_number);
ASSERT_EQ(meta.epoch_number, expected_meta.epoch_number);
// More from FileStorageInfo
ASSERT_EQ(meta.file_type, kTableFile);
ASSERT_EQ(meta.name, "/" + meta.relative_filename);
ASSERT_EQ(meta.directory, meta.db_path);
++i;
}
}
void AddBlobFile(const ColumnFamilyHandle* cfh, uint64_t blob_file_number,
uint64_t total_blob_count, uint64_t total_blob_bytes,
const std::string& checksum_method,
const std::string& checksum_value,
uint64_t garbage_blob_count = 0,
uint64_t garbage_blob_bytes = 0) {
ColumnFamilyData* cfd =
(static_cast<const ColumnFamilyHandleImpl*>(cfh))->cfd();
assert(cfd);
Version* const version = cfd->current();
assert(version);
VersionStorageInfo* const storage_info = version->storage_info();
assert(storage_info);
// Add a live blob file.
auto shared_meta = SharedBlobFileMetaData::Create(
blob_file_number, total_blob_count, total_blob_bytes, checksum_method,
checksum_value);
auto meta = BlobFileMetaData::Create(std::move(shared_meta),
BlobFileMetaData::LinkedSsts(),
garbage_blob_count, garbage_blob_bytes);
storage_info->AddBlobFile(std::move(meta));
}
static void CheckBlobMetaData(
const BlobMetaData& bmd, uint64_t blob_file_number,
uint64_t total_blob_count, uint64_t total_blob_bytes,
const std::string& checksum_method, const std::string& checksum_value,
uint64_t garbage_blob_count = 0, uint64_t garbage_blob_bytes = 0) {
ASSERT_EQ(bmd.blob_file_number, blob_file_number);
ASSERT_EQ(bmd.blob_file_name, BlobFileName("", blob_file_number));
ASSERT_EQ(bmd.blob_file_size,
total_blob_bytes + BlobLogHeader::kSize + BlobLogFooter::kSize);
ASSERT_EQ(bmd.total_blob_count, total_blob_count);
ASSERT_EQ(bmd.total_blob_bytes, total_blob_bytes);
ASSERT_EQ(bmd.garbage_blob_count, garbage_blob_count);
ASSERT_EQ(bmd.garbage_blob_bytes, garbage_blob_bytes);
ASSERT_EQ(bmd.checksum_method, checksum_method);
ASSERT_EQ(bmd.checksum_value, checksum_value);
}
TEST_F(DBTest, MetaDataTest) {
Options options = CurrentOptions();
options.create_if_missing = true;
options.disable_auto_compactions = true;
int64_t temp_time = 0;
options.env->GetCurrentTime(&temp_time);
uint64_t start_time = static_cast<uint64_t>(temp_time);
DestroyAndReopen(options);
Random rnd(301);
int key_index = 0;
for (int i = 0; i < 100; ++i) {
// Add a single blob reference to each file
std::string blob_index;
BlobIndex::EncodeBlob(&blob_index, /* blob_file_number */ i + 1000,
/* offset */ 1234, /* size */ 5678, kNoCompression);
WriteBatch batch;
ASSERT_OK(WriteBatchInternal::PutBlobIndex(&batch, 0, Key(key_index),
blob_index));
ASSERT_OK(dbfull()->Write(WriteOptions(), &batch));
++key_index;
// Fill up the rest of the file with random values.
GenerateNewFile(&rnd, &key_index, /* nowait */ true);
ASSERT_OK(Flush());
}
std::vector<std::vector<FileMetaData>> files_by_level;
dbfull()->TEST_GetFilesMetaData(db_->DefaultColumnFamily(), &files_by_level);
options.env->GetCurrentTime(&temp_time);
uint64_t end_time = static_cast<uint64_t>(temp_time);
ColumnFamilyMetaData cf_meta;
db_->GetColumnFamilyMetaData(&cf_meta);
CheckColumnFamilyMeta(cf_meta, kDefaultColumnFamilyName, files_by_level,
start_time, end_time);
std::vector<LiveFileMetaData> live_file_meta;
db_->GetLiveFilesMetaData(&live_file_meta);
CheckLiveFilesMeta(live_file_meta, files_by_level);
}
TEST_F(DBTest, AllMetaDataTest) {
Options options = CurrentOptions();
options.create_if_missing = true;
options.disable_auto_compactions = true;
DestroyAndReopen(options);
CreateAndReopenWithCF({"pikachu"}, options);
constexpr uint64_t blob_file_number = 234;
constexpr uint64_t total_blob_count = 555;
constexpr uint64_t total_blob_bytes = 66666;
constexpr char checksum_method[] = "CRC32";
constexpr char checksum_value[] = "\x3d\x87\xff\x57";
int64_t temp_time = 0;
options.env->GetCurrentTime(&temp_time).PermitUncheckedError();
uint64_t start_time = static_cast<uint64_t>(temp_time);
Random rnd(301);
dbfull()->TEST_LockMutex();
for (int cf = 0; cf < 2; cf++) {
AddBlobFile(handles_[cf], blob_file_number * (cf + 1),
total_blob_count * (cf + 1), total_blob_bytes * (cf + 1),
checksum_method, checksum_value);
}
dbfull()->TEST_UnlockMutex();
std::vector<ColumnFamilyMetaData> all_meta;
db_->GetAllColumnFamilyMetaData(&all_meta);
std::vector<std::vector<FileMetaData>> default_files_by_level;
std::vector<std::vector<FileMetaData>> pikachu_files_by_level;
dbfull()->TEST_GetFilesMetaData(handles_[0], &default_files_by_level);
dbfull()->TEST_GetFilesMetaData(handles_[1], &pikachu_files_by_level);
options.env->GetCurrentTime(&temp_time).PermitUncheckedError();
uint64_t end_time = static_cast<uint64_t>(temp_time);
ASSERT_EQ(all_meta.size(), 2);
for (int cf = 0; cf < 2; cf++) {
const auto& cfmd = all_meta[cf];
if (cf == 0) {
CheckColumnFamilyMeta(cfmd, "default", default_files_by_level, start_time,
end_time);
} else {
CheckColumnFamilyMeta(cfmd, "pikachu", pikachu_files_by_level, start_time,
end_time);
}
ASSERT_EQ(cfmd.blob_files.size(), 1U);
const auto& bmd = cfmd.blob_files[0];
ASSERT_EQ(cfmd.blob_file_count, 1U);
ASSERT_EQ(cfmd.blob_file_size, bmd.blob_file_size);
ASSERT_EQ(NormalizePath(bmd.blob_file_path), NormalizePath(dbname_));
CheckBlobMetaData(bmd, blob_file_number * (cf + 1),
total_blob_count * (cf + 1), total_blob_bytes * (cf + 1),
checksum_method, checksum_value);
}
}
namespace {
void MinLevelHelper(DBTest* self, Options& options) {
Random rnd(301);
for (int num = 0; num < options.level0_file_num_compaction_trigger - 1;
num++) {
std::vector<std::string> values;
// Write 120KB (12 values, each 10K)
for (int i = 0; i < 12; i++) {
values.push_back(rnd.RandomString(10000));
ASSERT_OK(self->Put(DBTestBase::Key(i), values[i]));
}
ASSERT_OK(self->dbfull()->TEST_WaitForFlushMemTable());
ASSERT_EQ(self->NumTableFilesAtLevel(0), num + 1);
}
// generate one more file in level-0, and should trigger level-0 compaction
std::vector<std::string> values;
for (int i = 0; i < 12; i++) {
values.push_back(rnd.RandomString(10000));
ASSERT_OK(self->Put(DBTestBase::Key(i), values[i]));
}
ASSERT_OK(self->dbfull()->TEST_WaitForCompact());
ASSERT_EQ(self->NumTableFilesAtLevel(0), 0);
ASSERT_EQ(self->NumTableFilesAtLevel(1), 1);
}
// returns false if the calling-Test should be skipped
bool MinLevelToCompress(CompressionType& type, Options& options, int wbits,
int lev, int strategy) {
fprintf(stderr,
"Test with compression options : window_bits = %d, level = %d, "
"strategy = %d}\n",
wbits, lev, strategy);
options.write_buffer_size = 100 << 10; // 100KB
options.arena_block_size = 4096;
options.num_levels = 3;
options.level0_file_num_compaction_trigger = 3;
options.create_if_missing = true;
if (Snappy_Supported()) {
type = kSnappyCompression;
fprintf(stderr, "using snappy\n");
} else if (Zlib_Supported()) {
type = kZlibCompression;
fprintf(stderr, "using zlib\n");
} else if (BZip2_Supported()) {
type = kBZip2Compression;
fprintf(stderr, "using bzip2\n");
} else if (LZ4_Supported()) {
type = kLZ4Compression;
fprintf(stderr, "using lz4\n");
} else if (XPRESS_Supported()) {
type = kXpressCompression;
fprintf(stderr, "using xpress\n");
} else if (ZSTD_Supported()) {
type = kZSTD;
fprintf(stderr, "using ZSTD\n");
} else {
fprintf(stderr, "skipping test, compression disabled\n");
return false;
}
options.compression_per_level.resize(options.num_levels);
// do not compress L0
for (int i = 0; i < 1; i++) {
options.compression_per_level[i] = kNoCompression;
}
for (int i = 1; i < options.num_levels; i++) {
options.compression_per_level[i] = type;
}
return true;
}
} // anonymous namespace
TEST_F(DBTest, MinLevelToCompress1) {
Options options = CurrentOptions();
CompressionType type = kSnappyCompression;
if (!MinLevelToCompress(type, options, -14, -1, 0)) {
return;
}
Reopen(options);
MinLevelHelper(this, options);
// do not compress L0 and L1
for (int i = 0; i < 2; i++) {
options.compression_per_level[i] = kNoCompression;
}
for (int i = 2; i < options.num_levels; i++) {
options.compression_per_level[i] = type;
}
DestroyAndReopen(options);
MinLevelHelper(this, options);
}
TEST_F(DBTest, MinLevelToCompress2) {
Options options = CurrentOptions();
CompressionType type = kSnappyCompression;
if (!MinLevelToCompress(type, options, 15, -1, 0)) {
return;
}
Reopen(options);
MinLevelHelper(this, options);
// do not compress L0 and L1
for (int i = 0; i < 2; i++) {
options.compression_per_level[i] = kNoCompression;
}
for (int i = 2; i < options.num_levels; i++) {
options.compression_per_level[i] = type;
}
DestroyAndReopen(options);
MinLevelHelper(this, options);
}
// This test may fail because of a legit case that multiple L0 files
// are trivial moved to L1.
TEST_F(DBTest, DISABLED_RepeatedWritesToSameKey) {
do {
Options options = CurrentOptions();
options.env = env_;
options.write_buffer_size = 100000; // Small write buffer
CreateAndReopenWithCF({"pikachu"}, options);
// We must have at most one file per level except for level-0,
// which may have up to kL0_StopWritesTrigger files.
const int kMaxFiles =
options.num_levels + options.level0_stop_writes_trigger;
Random rnd(301);
std::string value =
rnd.RandomString(static_cast<int>(2 * options.write_buffer_size));
for (int i = 0; i < 5 * kMaxFiles; i++) {
ASSERT_OK(Put(1, "key", value));
ASSERT_LE(TotalTableFiles(1), kMaxFiles);
}
} while (ChangeCompactOptions());
}
static bool Between(uint64_t val, uint64_t low, uint64_t high) {
bool result = (val >= low) && (val <= high);
if (!result) {
fprintf(stderr, "Value %llu is not in range [%llu, %llu]\n",
(unsigned long long)(val), (unsigned long long)(low),
(unsigned long long)(high));
}
return result;
}
TEST_F(DBTest, ApproximateSizesMemTable) {
Options options = CurrentOptions();
options.write_buffer_size = 100000000; // Large write buffer
options.compression = kNoCompression;
options.create_if_missing = true;
DestroyAndReopen(options);
auto default_cf = db_->DefaultColumnFamily();
const int N = 128;
Random rnd(301);
for (int i = 0; i < N; i++) {
ASSERT_OK(Put(Key(i), rnd.RandomString(1024)));
}
uint64_t size;
std::string start = Key(50);
std::string end = Key(60);
Range r(start, end);
SizeApproximationOptions size_approx_options;
size_approx_options.include_memtables = true;
size_approx_options.include_files = true;
ASSERT_OK(
db_->GetApproximateSizes(size_approx_options, default_cf, &r, 1, &size));
ASSERT_GT(size, 6000);
ASSERT_LT(size, 204800);
// Zero if not including mem table
ASSERT_OK(db_->GetApproximateSizes(&r, 1, &size));
ASSERT_EQ(size, 0);
start = Key(500);
end = Key(600);
r = Range(start, end);
ASSERT_OK(
db_->GetApproximateSizes(size_approx_options, default_cf, &r, 1, &size));
ASSERT_EQ(size, 0);
for (int i = 0; i < N; i++) {
ASSERT_OK(Put(Key(1000 + i), rnd.RandomString(1024)));
}
start = Key(500);
end = Key(600);
r = Range(start, end);
ASSERT_OK(
db_->GetApproximateSizes(size_approx_options, default_cf, &r, 1, &size));
ASSERT_EQ(size, 0);
start = Key(100);
end = Key(1020);
r = Range(start, end);
ASSERT_OK(
db_->GetApproximateSizes(size_approx_options, default_cf, &r, 1, &size));
ASSERT_GT(size, 6000);
options.max_write_buffer_number = 8;
options.min_write_buffer_number_to_merge = 5;
options.write_buffer_size = 1024 * N; // Not very large
DestroyAndReopen(options);
default_cf = db_->DefaultColumnFamily();
int keys[N * 3];
for (int i = 0; i < N; i++) {
keys[i * 3] = i * 5;
keys[i * 3 + 1] = i * 5 + 1;
keys[i * 3 + 2] = i * 5 + 2;
}
// MemTable entry counting is estimated and can vary greatly depending on
// layout. Thus, using deterministic seed for test stability.
RandomShuffle(std::begin(keys), std::end(keys), rnd.Next());
for (int i = 0; i < N * 3; i++) {
ASSERT_OK(Put(Key(keys[i] + 1000), rnd.RandomString(1024)));
}
start = Key(100);
end = Key(300);
r = Range(start, end);
ASSERT_OK(
db_->GetApproximateSizes(size_approx_options, default_cf, &r, 1, &size));
ASSERT_EQ(size, 0);
start = Key(1050);
end = Key(1080);
r = Range(start, end);
ASSERT_OK(
db_->GetApproximateSizes(size_approx_options, default_cf, &r, 1, &size));
ASSERT_GT(size, 6000);
start = Key(2100);
end = Key(2300);
r = Range(start, end);
ASSERT_OK(
db_->GetApproximateSizes(size_approx_options, default_cf, &r, 1, &size));
ASSERT_EQ(size, 0);
start = Key(1050);
end = Key(1080);
r = Range(start, end);
uint64_t size_with_mt, size_without_mt;
ASSERT_OK(db_->GetApproximateSizes(size_approx_options, default_cf, &r, 1,
&size_with_mt));
ASSERT_GT(size_with_mt, 6000);
ASSERT_OK(db_->GetApproximateSizes(&r, 1, &size_without_mt));
ASSERT_EQ(size_without_mt, 0);
ASSERT_OK(Flush());
for (int i = 0; i < N; i++) {
ASSERT_OK(Put(Key(i + 1000), rnd.RandomString(1024)));
}
start = Key(1050);
end = Key(1080);
r = Range(start, end);
ASSERT_OK(db_->GetApproximateSizes(size_approx_options, default_cf, &r, 1,
&size_with_mt));
ASSERT_OK(db_->GetApproximateSizes(&r, 1, &size_without_mt));
ASSERT_GT(size_with_mt, size_without_mt);
ASSERT_GT(size_without_mt, 6000);
// Check that include_memtables flag works as expected
size_approx_options.include_memtables = false;
ASSERT_OK(
db_->GetApproximateSizes(size_approx_options, default_cf, &r, 1, &size));
ASSERT_EQ(size, size_without_mt);
// Check that files_size_error_margin works as expected, when the heuristic
// conditions are not met
start = Key(1);
end = Key(1000 + N - 2);
r = Range(start, end);
size_approx_options.files_size_error_margin = -1.0; // disabled
ASSERT_OK(
db_->GetApproximateSizes(size_approx_options, default_cf, &r, 1, &size));
uint64_t size2;
size_approx_options.files_size_error_margin = 0.5; // enabled, but not used
ASSERT_OK(
db_->GetApproximateSizes(size_approx_options, default_cf, &r, 1, &size2));
ASSERT_EQ(size, size2);
}
TEST_F(DBTest, ApproximateSizesFilesWithErrorMargin) {
// Roughly 4 keys per data block, 1000 keys per file,
// with filter substantially larger than a data block
BlockBasedTableOptions table_options;
table_options.filter_policy.reset(NewBloomFilterPolicy(16));
table_options.block_size = 100;
Options options = CurrentOptions();
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
options.write_buffer_size = 24 * 1024;
options.compression = kNoCompression;
options.create_if_missing = true;
options.target_file_size_base = 24 * 1024;
DestroyAndReopen(options);
const auto default_cf = db_->DefaultColumnFamily();
const int N = 64000;
Random rnd(301);
for (int i = 0; i < N; i++) {
ASSERT_OK(Put(Key(i), rnd.RandomString(24)));
}
// Flush everything to files
ASSERT_OK(Flush());
// Compact the entire key space into the next level
ASSERT_OK(
db_->CompactRange(CompactRangeOptions(), default_cf, nullptr, nullptr));
// Write more keys
for (int i = N; i < (N + N / 4); i++) {
ASSERT_OK(Put(Key(i), rnd.RandomString(24)));
}
// Flush everything to files again
ASSERT_OK(Flush());
// Wait for compaction to finish
ASSERT_OK(dbfull()->TEST_WaitForCompact());
{
const std::string start = Key(0);
const std::string end = Key(2 * N);
const Range r(start, end);
SizeApproximationOptions size_approx_options;
size_approx_options.include_memtables = false;
size_approx_options.include_files = true;
size_approx_options.files_size_error_margin = -1.0; // disabled
// Get the precise size without any approximation heuristic
uint64_t size;
ASSERT_OK(db_->GetApproximateSizes(size_approx_options, default_cf, &r, 1,
&size));
ASSERT_NE(size, 0);
// Get the size with an approximation heuristic
uint64_t size2;
const double error_margin = 0.2;
size_approx_options.files_size_error_margin = error_margin;
ASSERT_OK(db_->GetApproximateSizes(size_approx_options, default_cf, &r, 1,
&size2));
ASSERT_LT(size2, size * (1 + error_margin));
ASSERT_GT(size2, size * (1 - error_margin));
}
{
// Ensure that metadata is not falsely attributed only to the last data in
// the file. (In some applications, filters can be large portion of data
// size.)
// Perform many queries over small range, enough to ensure crossing file
// boundary, and make sure we never see a spike for large filter.
for (int i = 0; i < 3000; i += 10) {
const std::string start = Key(i);
const std::string end = Key(i + 11); // overlap by 1 key
const Range r(start, end);
uint64_t size;
ASSERT_OK(db_->GetApproximateSizes(&r, 1, &size));
ASSERT_LE(size, 11 * 100);
}
}
}
TEST_F(DBTest, GetApproximateMemTableStats) {
Options options = CurrentOptions();
options.write_buffer_size = 100000000;
options.compression = kNoCompression;
options.create_if_missing = true;
DestroyAndReopen(options);
const int N = 128;
Random rnd(301);
for (int i = 0; i < N; i++) {
ASSERT_OK(Put(Key(i), rnd.RandomString(1024)));
}
uint64_t count;
uint64_t size;
std::string start = Key(50);
std::string end = Key(60);
Range r(start, end);
db_->GetApproximateMemTableStats(r, &count, &size);
ASSERT_GT(count, 0);
ASSERT_LE(count, N);
ASSERT_GT(size, 6000);
ASSERT_LT(size, 204800);
start = Key(500);
end = Key(600);
r = Range(start, end);
db_->GetApproximateMemTableStats(r, &count, &size);
ASSERT_EQ(count, 0);
ASSERT_EQ(size, 0);
ASSERT_OK(Flush());
start = Key(50);
end = Key(60);
r = Range(start, end);
db_->GetApproximateMemTableStats(r, &count, &size);
ASSERT_EQ(count, 0);
ASSERT_EQ(size, 0);
for (int i = 0; i < N; i++) {
ASSERT_OK(Put(Key(1000 + i), rnd.RandomString(1024)));
}
start = Key(100);
end = Key(1020);
r = Range(start, end);
db_->GetApproximateMemTableStats(r, &count, &size);
ASSERT_GT(count, 20);
ASSERT_GT(size, 6000);
}
TEST_F(DBTest, ApproximateSizes) {
do {
Options options = CurrentOptions();
options.write_buffer_size = 100000000; // Large write buffer
options.compression = kNoCompression;
options.create_if_missing = true;
DestroyAndReopen(options);
CreateAndReopenWithCF({"pikachu"}, options);
uint64_t size;
ASSERT_OK(Size("", "xyz", 1, &size));
ASSERT_TRUE(Between(size, 0, 0));
ReopenWithColumnFamilies({"default", "pikachu"}, options);
ASSERT_OK(Size("", "xyz", 1, &size));
ASSERT_TRUE(Between(size, 0, 0));
// Write 8MB (80 values, each 100K)
ASSERT_EQ(NumTableFilesAtLevel(0, 1), 0);
const int N = 80;
static const int S1 = 100000;
static const int S2 = 105000; // Allow some expansion from metadata
Random rnd(301);
for (int i = 0; i < N; i++) {
ASSERT_OK(Put(1, Key(i), rnd.RandomString(S1)));
}
// 0 because GetApproximateSizes() does not account for memtable space
ASSERT_OK(Size("", Key(50), 1, &size));
ASSERT_TRUE(Between(size, 0, 0));
// Check sizes across recovery by reopening a few times
for (int run = 0; run < 3; run++) {
ReopenWithColumnFamilies({"default", "pikachu"}, options);
for (int compact_start = 0; compact_start < N; compact_start += 10) {
for (int i = 0; i < N; i += 10) {
ASSERT_OK(Size("", Key(i), 1, &size));
ASSERT_TRUE(Between(size, S1 * i, S2 * i));
ASSERT_OK(Size("", Key(i) + ".suffix", 1, &size));
ASSERT_TRUE(Between(size, S1 * (i + 1), S2 * (i + 1)));
ASSERT_OK(Size(Key(i), Key(i + 10), 1, &size));
ASSERT_TRUE(Between(size, S1 * 10, S2 * 10));
}
ASSERT_OK(Size("", Key(50), 1, &size));
ASSERT_TRUE(Between(size, S1 * 50, S2 * 50));
ASSERT_OK(Size("", Key(50) + ".suffix", 1, &size));
ASSERT_TRUE(Between(size, S1 * 50, S2 * 50));
std::string cstart_str = Key(compact_start);
std::string cend_str = Key(compact_start + 9);
Slice cstart = cstart_str;
Slice cend = cend_str;
ASSERT_OK(dbfull()->TEST_CompactRange(0, &cstart, &cend, handles_[1]));
}
ASSERT_EQ(NumTableFilesAtLevel(0, 1), 0);
ASSERT_GT(NumTableFilesAtLevel(1, 1), 0);
}
// ApproximateOffsetOf() is not yet implemented in plain table format.
} while (ChangeOptions(kSkipUniversalCompaction | kSkipFIFOCompaction |
kSkipPlainTable | kSkipHashIndex));
}
TEST_F(DBTest, ApproximateSizes_MixOfSmallAndLarge) {
do {
Options options = CurrentOptions();
options.compression = kNoCompression;
CreateAndReopenWithCF({"pikachu"}, options);
Random rnd(301);
std::string big1 = rnd.RandomString(100000);
ASSERT_OK(Put(1, Key(0), rnd.RandomString(10000)));
ASSERT_OK(Put(1, Key(1), rnd.RandomString(10000)));
ASSERT_OK(Put(1, Key(2), big1));
ASSERT_OK(Put(1, Key(3), rnd.RandomString(10000)));
ASSERT_OK(Put(1, Key(4), big1));
ASSERT_OK(Put(1, Key(5), rnd.RandomString(10000)));
ASSERT_OK(Put(1, Key(6), rnd.RandomString(300000)));
ASSERT_OK(Put(1, Key(7), rnd.RandomString(10000)));
// Check sizes across recovery by reopening a few times
uint64_t size;
for (int run = 0; run < 3; run++) {
ReopenWithColumnFamilies({"default", "pikachu"}, options);
ASSERT_OK(Size("", Key(0), 1, &size));
ASSERT_TRUE(Between(size, 0, 0));
ASSERT_OK(Size("", Key(1), 1, &size));
ASSERT_TRUE(Between(size, 10000, 11000));
ASSERT_OK(Size("", Key(2), 1, &size));
ASSERT_TRUE(Between(size, 20000, 21000));
ASSERT_OK(Size("", Key(3), 1, &size));
ASSERT_TRUE(Between(size, 120000, 121000));
ASSERT_OK(Size("", Key(4), 1, &size));
ASSERT_TRUE(Between(size, 130000, 131000));
ASSERT_OK(Size("", Key(5), 1, &size));
ASSERT_TRUE(Between(size, 230000, 232000));
ASSERT_OK(Size("", Key(6), 1, &size));
ASSERT_TRUE(Between(size, 240000, 242000));
// Ensure some overhead is accounted for, even without including all
ASSERT_OK(Size("", Key(7), 1, &size));
ASSERT_TRUE(Between(size, 540500, 545000));
ASSERT_OK(Size("", Key(8), 1, &size));
ASSERT_TRUE(Between(size, 550500, 555000));
ASSERT_OK(Size(Key(3), Key(5), 1, &size));
ASSERT_TRUE(Between(size, 110100, 111000));
ASSERT_OK(dbfull()->TEST_CompactRange(0, nullptr, nullptr, handles_[1]));
}
// ApproximateOffsetOf() is not yet implemented in plain table format.
} while (ChangeOptions(kSkipPlainTable));
}
TEST_F(DBTest, Snapshot) {
env_->SetMockSleep();
anon::OptionsOverride options_override;
options_override.skip_policy = kSkipNoSnapshot;
do {
CreateAndReopenWithCF({"pikachu"}, CurrentOptions(options_override));
ASSERT_OK(Put(0, "foo", "0v1"));
ASSERT_OK(Put(1, "foo", "1v1"));
const Snapshot* s1 = db_->GetSnapshot();
ASSERT_EQ(1U, GetNumSnapshots());
uint64_t time_snap1 = GetTimeOldestSnapshots();
ASSERT_GT(time_snap1, 0U);
ASSERT_EQ(GetSequenceOldestSnapshots(), s1->GetSequenceNumber());
ASSERT_EQ(GetTimeOldestSnapshots(),
static_cast<uint64_t>(s1->GetUnixTime()));
ASSERT_OK(Put(0, "foo", "0v2"));
ASSERT_OK(Put(1, "foo", "1v2"));
env_->MockSleepForSeconds(1);
const Snapshot* s2 = db_->GetSnapshot();
ASSERT_EQ(2U, GetNumSnapshots());
ASSERT_EQ(time_snap1, GetTimeOldestSnapshots());
ASSERT_EQ(GetSequenceOldestSnapshots(), s1->GetSequenceNumber());
ASSERT_EQ(GetTimeOldestSnapshots(),
static_cast<uint64_t>(s1->GetUnixTime()));
ASSERT_OK(Put(0, "foo", "0v3"));
ASSERT_OK(Put(1, "foo", "1v3"));
{
ManagedSnapshot s3(db_);
ASSERT_EQ(3U, GetNumSnapshots());
ASSERT_EQ(time_snap1, GetTimeOldestSnapshots());
ASSERT_EQ(GetSequenceOldestSnapshots(), s1->GetSequenceNumber());
ASSERT_EQ(GetTimeOldestSnapshots(),
static_cast<uint64_t>(s1->GetUnixTime()));
ASSERT_OK(Put(0, "foo", "0v4"));
ASSERT_OK(Put(1, "foo", "1v4"));
ASSERT_EQ("0v1", Get(0, "foo", s1));
ASSERT_EQ("1v1", Get(1, "foo", s1));
ASSERT_EQ("0v2", Get(0, "foo", s2));
ASSERT_EQ("1v2", Get(1, "foo", s2));
ASSERT_EQ("0v3", Get(0, "foo", s3.snapshot()));
ASSERT_EQ("1v3", Get(1, "foo", s3.snapshot()));
ASSERT_EQ("0v4", Get(0, "foo"));
ASSERT_EQ("1v4", Get(1, "foo"));
}
ASSERT_EQ(2U, GetNumSnapshots());
ASSERT_EQ(time_snap1, GetTimeOldestSnapshots());
ASSERT_EQ(GetSequenceOldestSnapshots(), s1->GetSequenceNumber());
ASSERT_EQ(GetTimeOldestSnapshots(),
static_cast<uint64_t>(s1->GetUnixTime()));
ASSERT_EQ("0v1", Get(0, "foo", s1));
ASSERT_EQ("1v1", Get(1, "foo", s1));
ASSERT_EQ("0v2", Get(0, "foo", s2));
ASSERT_EQ("1v2", Get(1, "foo", s2));
ASSERT_EQ("0v4", Get(0, "foo"));
ASSERT_EQ("1v4", Get(1, "foo"));
db_->ReleaseSnapshot(s1);
ASSERT_EQ("0v2", Get(0, "foo", s2));
ASSERT_EQ("1v2", Get(1, "foo", s2));
ASSERT_EQ("0v4", Get(0, "foo"));
ASSERT_EQ("1v4", Get(1, "foo"));
ASSERT_EQ(1U, GetNumSnapshots());
ASSERT_LT(time_snap1, GetTimeOldestSnapshots());
ASSERT_EQ(GetSequenceOldestSnapshots(), s2->GetSequenceNumber());
ASSERT_EQ(GetTimeOldestSnapshots(),
static_cast<uint64_t>(s2->GetUnixTime()));
db_->ReleaseSnapshot(s2);
ASSERT_EQ(0U, GetNumSnapshots());
ASSERT_EQ(GetSequenceOldestSnapshots(), 0);
ASSERT_EQ("0v4", Get(0, "foo"));
ASSERT_EQ("1v4", Get(1, "foo"));
} while (ChangeOptions());
}
TEST_F(DBTest, HiddenValuesAreRemoved) {
anon::OptionsOverride options_override;
options_override.skip_policy = kSkipNoSnapshot;
uint64_t size;
do {
Options options = CurrentOptions(options_override);
CreateAndReopenWithCF({"pikachu"}, options);
Random rnd(301);
FillLevels("a", "z", 1);
std::string big = rnd.RandomString(50000);
ASSERT_OK(Put(1, "foo", big));
ASSERT_OK(Put(1, "pastfoo", "v"));
const Snapshot* snapshot = db_->GetSnapshot();
ASSERT_OK(Put(1, "foo", "tiny"));
ASSERT_OK(Put(1, "pastfoo2", "v2")); // Advance sequence number one more
ASSERT_OK(Flush(1));
ASSERT_GT(NumTableFilesAtLevel(0, 1), 0);
ASSERT_EQ(big, Get(1, "foo", snapshot));
ASSERT_OK(Size("", "pastfoo", 1, &size));
ASSERT_TRUE(Between(size, 50000, 60000));
db_->ReleaseSnapshot(snapshot);
ASSERT_EQ(AllEntriesFor("foo", 1), "[ tiny, " + big + " ]");
Slice x("x");
ASSERT_OK(dbfull()->TEST_CompactRange(0, nullptr, &x, handles_[1]));
ASSERT_EQ(AllEntriesFor("foo", 1), "[ tiny ]");
ASSERT_EQ(NumTableFilesAtLevel(0, 1), 0);
ASSERT_GE(NumTableFilesAtLevel(1, 1), 1);
ASSERT_OK(dbfull()->TEST_CompactRange(1, nullptr, &x, handles_[1]));
ASSERT_EQ(AllEntriesFor("foo", 1), "[ tiny ]");
ASSERT_OK(Size("", "pastfoo", 1, &size));
ASSERT_TRUE(Between(size, 0, 1000));
// ApproximateOffsetOf() is not yet implemented in plain table format,
// which is used by Size().
} while (ChangeOptions(kSkipUniversalCompaction | kSkipFIFOCompaction |
kSkipPlainTable));
}
TEST_F(DBTest, UnremovableSingleDelete) {
// If we compact:
//
// Put(A, v1) Snapshot SingleDelete(A) Put(A, v2)
//
// We do not want to end up with:
//
// Put(A, v1) Snapshot Put(A, v2)
//
// Because a subsequent SingleDelete(A) would delete the Put(A, v2)
// but not Put(A, v1), so Get(A) would return v1.
anon::OptionsOverride options_override;
options_override.skip_policy = kSkipNoSnapshot;
do {
Options options = CurrentOptions(options_override);
options.disable_auto_compactions = true;
CreateAndReopenWithCF({"pikachu"}, options);
ASSERT_OK(Put(1, "foo", "first"));
const Snapshot* snapshot = db_->GetSnapshot();
ASSERT_OK(SingleDelete(1, "foo"));
ASSERT_OK(Put(1, "foo", "second"));
ASSERT_OK(Flush(1));
ASSERT_EQ("first", Get(1, "foo", snapshot));
ASSERT_EQ("second", Get(1, "foo"));
ASSERT_OK(dbfull()->CompactRange(CompactRangeOptions(), handles_[1],
nullptr, nullptr));
ASSERT_EQ("[ second, SDEL, first ]", AllEntriesFor("foo", 1));
ASSERT_OK(SingleDelete(1, "foo"));
ASSERT_EQ("first", Get(1, "foo", snapshot));
ASSERT_EQ("NOT_FOUND", Get(1, "foo"));
ASSERT_OK(dbfull()->CompactRange(CompactRangeOptions(), handles_[1],
nullptr, nullptr));
ASSERT_EQ("first", Get(1, "foo", snapshot));
ASSERT_EQ("NOT_FOUND", Get(1, "foo"));
db_->ReleaseSnapshot(snapshot);
// Skip FIFO and universal compaction because they do not apply to the test
// case. Skip MergePut because single delete does not get removed when it
// encounters a merge.
} while (ChangeOptions(kSkipFIFOCompaction | kSkipUniversalCompaction |
kSkipMergePut));
}
TEST_F(DBTest, DeletionMarkers1) {
Options options = CurrentOptions();
CreateAndReopenWithCF({"pikachu"}, options);
ASSERT_OK(Put(1, "foo", "v1"));
ASSERT_OK(Flush(1));
const int last = 2;
MoveFilesToLevel(last, 1);
// foo => v1 is now in last level
ASSERT_EQ(NumTableFilesAtLevel(last, 1), 1);
// Place a table at level last-1 to prevent merging with preceding mutation
ASSERT_OK(Put(1, "a", "begin"));
ASSERT_OK(Put(1, "z", "end"));
ASSERT_OK(Flush(1));
MoveFilesToLevel(last - 1, 1);
ASSERT_EQ(NumTableFilesAtLevel(last, 1), 1);
ASSERT_EQ(NumTableFilesAtLevel(last - 1, 1), 1);
ASSERT_OK(Delete(1, "foo"));
ASSERT_OK(Put(1, "foo", "v2"));
ASSERT_EQ(AllEntriesFor("foo", 1), "[ v2, DEL, v1 ]");
ASSERT_OK(Flush(1)); // Moves to level last-2
ASSERT_EQ(AllEntriesFor("foo", 1), "[ v2, v1 ]");
Slice z("z");
ASSERT_OK(dbfull()->TEST_CompactRange(last - 2, nullptr, &z, handles_[1]));
// DEL eliminated, but v1 remains because we aren't compacting that level
// (DEL can be eliminated because v2 hides v1).
ASSERT_EQ(AllEntriesFor("foo", 1), "[ v2, v1 ]");
ASSERT_OK(
dbfull()->TEST_CompactRange(last - 1, nullptr, nullptr, handles_[1]));
// Merging last-1 w/ last, so we are the base level for "foo", so
// DEL is removed. (as is v1).
ASSERT_EQ(AllEntriesFor("foo", 1), "[ v2 ]");
}
TEST_F(DBTest, DeletionMarkers2) {
Options options = CurrentOptions();
CreateAndReopenWithCF({"pikachu"}, options);
ASSERT_OK(Put(1, "foo", "v1"));
ASSERT_OK(Flush(1));
const int last = 2;
MoveFilesToLevel(last, 1);
// foo => v1 is now in last level
ASSERT_EQ(NumTableFilesAtLevel(last, 1), 1);
// Place a table at level last-1 to prevent merging with preceding mutation
ASSERT_OK(Put(1, "a", "begin"));
ASSERT_OK(Put(1, "z", "end"));
ASSERT_OK(Flush(1));
MoveFilesToLevel(last - 1, 1);
ASSERT_EQ(NumTableFilesAtLevel(last, 1), 1);
ASSERT_EQ(NumTableFilesAtLevel(last - 1, 1), 1);
ASSERT_OK(Delete(1, "foo"));
ASSERT_EQ(AllEntriesFor("foo", 1), "[ DEL, v1 ]");
ASSERT_OK(Flush(1)); // Moves to level last-2
ASSERT_EQ(AllEntriesFor("foo", 1), "[ DEL, v1 ]");
ASSERT_OK(
dbfull()->TEST_CompactRange(last - 2, nullptr, nullptr, handles_[1]));
// DEL kept: "last" file overlaps
ASSERT_EQ(AllEntriesFor("foo", 1), "[ DEL, v1 ]");
ASSERT_OK(
dbfull()->TEST_CompactRange(last - 1, nullptr, nullptr, handles_[1]));
// Merging last-1 w/ last, so we are the base level for "foo", so
// DEL is removed. (as is v1).
ASSERT_EQ(AllEntriesFor("foo", 1), "[ ]");
}
TEST_F(DBTest, OverlapInLevel0) {
do {
Options options = CurrentOptions();
CreateAndReopenWithCF({"pikachu"}, options);
// Fill levels 1 and 2 to disable the pushing of new memtables to levels >
// 0.
ASSERT_OK(Put(1, "100", "v100"));
ASSERT_OK(Put(1, "999", "v999"));
ASSERT_OK(Flush(1));
MoveFilesToLevel(2, 1);
ASSERT_OK(Delete(1, "100"));
ASSERT_OK(Delete(1, "999"));
ASSERT_OK(Flush(1));
MoveFilesToLevel(1, 1);
ASSERT_EQ("0,1,1", FilesPerLevel(1));
// Make files spanning the following ranges in level-0:
// files[0] 200 .. 900
// files[1] 300 .. 500
// Note that files are sorted by smallest key.
ASSERT_OK(Put(1, "300", "v300"));
ASSERT_OK(Put(1, "500", "v500"));
ASSERT_OK(Flush(1));
ASSERT_OK(Put(1, "200", "v200"));
ASSERT_OK(Put(1, "600", "v600"));
ASSERT_OK(Put(1, "900", "v900"));
ASSERT_OK(Flush(1));
ASSERT_EQ("2,1,1", FilesPerLevel(1));
// BEGIN addition to existing test
// Take this opportunity to verify SST unique ids (including Plain table)
TablePropertiesCollection tbc;
ASSERT_OK(db_->GetPropertiesOfAllTables(handles_[1], &tbc));
VerifySstUniqueIds(tbc);
// END addition to existing test
// Compact away the placeholder files we created initially
ASSERT_OK(dbfull()->TEST_CompactRange(1, nullptr, nullptr, handles_[1]));
ASSERT_OK(dbfull()->TEST_CompactRange(2, nullptr, nullptr, handles_[1]));
ASSERT_EQ("2", FilesPerLevel(1));
// Do a memtable compaction. Before bug-fix, the compaction would
// not detect the overlap with level-0 files and would incorrectly place
// the deletion in a deeper level.
ASSERT_OK(Delete(1, "600"));
ASSERT_OK(Flush(1));
ASSERT_EQ("3", FilesPerLevel(1));
ASSERT_EQ("NOT_FOUND", Get(1, "600"));
} while (ChangeOptions(kSkipUniversalCompaction | kSkipFIFOCompaction));
}
TEST_F(DBTest, ComparatorCheck) {
class NewComparator : public Comparator {
public:
const char* Name() const override { return "rocksdb.NewComparator"; }
int Compare(const Slice& a, const Slice& b) const override {
return BytewiseComparator()->Compare(a, b);
}
void FindShortestSeparator(std::string* s, const Slice& l) const override {
BytewiseComparator()->FindShortestSeparator(s, l);
}
void FindShortSuccessor(std::string* key) const override {
BytewiseComparator()->FindShortSuccessor(key);
}
};
Options new_options, options;
NewComparator cmp;
do {
options = CurrentOptions();
CreateAndReopenWithCF({"pikachu"}, options);
new_options = CurrentOptions();
new_options.comparator = &cmp;
// only the non-default column family has non-matching comparator
Status s = TryReopenWithColumnFamilies(
{"default", "pikachu"}, std::vector<Options>({options, new_options}));
ASSERT_TRUE(!s.ok());
ASSERT_TRUE(s.ToString().find("comparator") != std::string::npos)
<< s.ToString();
} while (ChangeCompactOptions());
}
TEST_F(DBTest, CustomComparator) {
class NumberComparator : public Comparator {
public:
const char* Name() const override { return "test.NumberComparator"; }
int Compare(const Slice& a, const Slice& b) const override {
return ToNumber(a) - ToNumber(b);
}
void FindShortestSeparator(std::string* s, const Slice& l) const override {
ToNumber(*s); // Check format
ToNumber(l); // Check format
}
void FindShortSuccessor(std::string* key) const override {
ToNumber(*key); // Check format
}
private:
static int ToNumber(const Slice& x) {
// Check that there are no extra characters.
EXPECT_TRUE(x.size() >= 2 && x[0] == '[' && x[x.size() - 1] == ']')
<< EscapeString(x);
int val;
char ignored;
EXPECT_TRUE(sscanf(x.ToString().c_str(), "[%i]%c", &val, &ignored) == 1)
<< EscapeString(x);
return val;
}
};
Options new_options;
NumberComparator cmp;
do {
new_options = CurrentOptions();
new_options.create_if_missing = true;
new_options.comparator = &cmp;
new_options.write_buffer_size = 4096; // Compact more often
new_options.arena_block_size = 4096;
new_options = CurrentOptions(new_options);
DestroyAndReopen(new_options);
CreateAndReopenWithCF({"pikachu"}, new_options);
ASSERT_OK(Put(1, "[10]", "ten"));
ASSERT_OK(Put(1, "[0x14]", "twenty"));
for (int i = 0; i < 2; i++) {
ASSERT_EQ("ten", Get(1, "[10]"));
ASSERT_EQ("ten", Get(1, "[0xa]"));
ASSERT_EQ("twenty", Get(1, "[20]"));
ASSERT_EQ("twenty", Get(1, "[0x14]"));
ASSERT_EQ("NOT_FOUND", Get(1, "[15]"));
ASSERT_EQ("NOT_FOUND", Get(1, "[0xf]"));
Compact(1, "[0]", "[9999]");
}
for (int run = 0; run < 2; run++) {
for (int i = 0; i < 1000; i++) {
char buf[100];
snprintf(buf, sizeof(buf), "[%d]", i * 10);
ASSERT_OK(Put(1, buf, buf));
}
Compact(1, "[0]", "[1000000]");
}
} while (ChangeCompactOptions());
}
TEST_F(DBTest, DBOpen_Options) {
Options options = CurrentOptions();
std::string dbname = test::PerThreadDBPath("db_options_test");
ASSERT_OK(DestroyDB(dbname, options));
// Does not exist, and create_if_missing == false: error
DB* db = nullptr;
options.create_if_missing = false;
Status s = DB::Open(options, dbname, &db);
ASSERT_TRUE(strstr(s.ToString().c_str(), "does not exist") != nullptr);
ASSERT_TRUE(db == nullptr);
// Does not exist, and create_if_missing == true: OK
options.create_if_missing = true;
s = DB::Open(options, dbname, &db);
ASSERT_OK(s);
ASSERT_TRUE(db != nullptr);
delete db;
db = nullptr;
// Does exist, and error_if_exists == true: error
options.create_if_missing = false;
options.error_if_exists = true;
s = DB::Open(options, dbname, &db);
ASSERT_TRUE(strstr(s.ToString().c_str(), "exists") != nullptr);
ASSERT_TRUE(db == nullptr);
// Does exist, and error_if_exists == false: OK
options.create_if_missing = true;
options.error_if_exists = false;
s = DB::Open(options, dbname, &db);
ASSERT_OK(s);
ASSERT_TRUE(db != nullptr);
delete db;
db = nullptr;
}
TEST_F(DBTest, DBOpen_Change_NumLevels) {
Options options = CurrentOptions();
options.create_if_missing = true;
DestroyAndReopen(options);
ASSERT_TRUE(db_ != nullptr);
CreateAndReopenWithCF({"pikachu"}, options);
ASSERT_OK(Put(1, "a", "123"));
ASSERT_OK(Put(1, "b", "234"));
ASSERT_OK(Flush(1));
MoveFilesToLevel(3, 1);
Close();
options.create_if_missing = false;
options.num_levels = 2;
Status s = TryReopenWithColumnFamilies({"default", "pikachu"}, options);
ASSERT_TRUE(strstr(s.ToString().c_str(), "Invalid argument") != nullptr);
ASSERT_TRUE(db_ == nullptr);
}
TEST_F(DBTest, DestroyDBMetaDatabase) {
std::string dbname = test::PerThreadDBPath("db_meta");
ASSERT_OK(env_->CreateDirIfMissing(dbname));
std::string metadbname = MetaDatabaseName(dbname, 0);
ASSERT_OK(env_->CreateDirIfMissing(metadbname));
std::string metametadbname = MetaDatabaseName(metadbname, 0);
ASSERT_OK(env_->CreateDirIfMissing(metametadbname));
// Destroy previous versions if they exist. Using the long way.
Options options = CurrentOptions();
ASSERT_OK(DestroyDB(metametadbname, options));
ASSERT_OK(DestroyDB(metadbname, options));
ASSERT_OK(DestroyDB(dbname, options));
// Setup databases
DB* db = nullptr;
ASSERT_OK(DB::Open(options, dbname, &db));
delete db;
db = nullptr;
ASSERT_OK(DB::Open(options, metadbname, &db));
delete db;
db = nullptr;
ASSERT_OK(DB::Open(options, metametadbname, &db));
delete db;
db = nullptr;
// Delete databases
ASSERT_OK(DestroyDB(dbname, options));
// Check if deletion worked.
options.create_if_missing = false;
ASSERT_TRUE(!(DB::Open(options, dbname, &db)).ok());
ASSERT_TRUE(!(DB::Open(options, metadbname, &db)).ok());
ASSERT_TRUE(!(DB::Open(options, metametadbname, &db)).ok());
}
TEST_F(DBTest, SnapshotFiles) {
do {
Options options = CurrentOptions();
options.write_buffer_size = 100000000; // Large write buffer
CreateAndReopenWithCF({"pikachu"}, options);
Random rnd(301);
// Write 8MB (80 values, each 100K)
ASSERT_EQ(NumTableFilesAtLevel(0, 1), 0);
std::vector<std::string> values;
for (int i = 0; i < 80; i++) {
values.push_back(rnd.RandomString(100000));
ASSERT_OK(Put((i < 40), Key(i), values[i]));
}
// assert that nothing makes it to disk yet.
ASSERT_EQ(NumTableFilesAtLevel(0, 1), 0);
// get a file snapshot
uint64_t manifest_number = 0;
uint64_t manifest_size = 0;
std::vector<std::string> files;
ASSERT_OK(dbfull()->DisableFileDeletions());
ASSERT_OK(dbfull()->GetLiveFiles(files, &manifest_size));
// CURRENT, MANIFEST, OPTIONS, *.sst files (one for each CF)
ASSERT_EQ(files.size(), 5U);
uint64_t number = 0;
FileType type;
// copy these files to a new snapshot directory
std::string snapdir = dbname_ + ".snapdir/";
if (env_->FileExists(snapdir).ok()) {
ASSERT_OK(DestroyDir(env_, snapdir));
}
ASSERT_OK(env_->CreateDir(snapdir));
for (size_t i = 0; i < files.size(); i++) {
// our clients require that GetLiveFiles returns
// files with "/" as first character!
ASSERT_EQ(files[i][0], '/');
std::string src = dbname_ + files[i];
std::string dest = snapdir + files[i];
uint64_t size;
ASSERT_OK(env_->GetFileSize(src, &size));
// record the number and the size of the
// latest manifest file
if (ParseFileName(files[i].substr(1), &number, &type)) {
if (type == kDescriptorFile) {
ASSERT_EQ(manifest_number, 0);
manifest_number = number;
ASSERT_GE(size, manifest_size);
size = manifest_size; // copy only valid MANIFEST data
}
}
CopyFile(src, dest, size);
}
// release file snapshot
ASSERT_OK(dbfull()->EnableFileDeletions(/*force*/ false));
// overwrite one key, this key should not appear in the snapshot
std::vector<std::string> extras;
for (unsigned int i = 0; i < 1; i++) {
extras.push_back(rnd.RandomString(100000));
ASSERT_OK(Put(0, Key(i), extras[i]));
}
// verify that data in the snapshot are correct
std::vector<ColumnFamilyDescriptor> column_families;
column_families.emplace_back("default", ColumnFamilyOptions());
column_families.emplace_back("pikachu", ColumnFamilyOptions());
std::vector<ColumnFamilyHandle*> cf_handles;
DB* snapdb;
DBOptions opts;
opts.env = env_;
opts.create_if_missing = false;
Status stat =
DB::Open(opts, snapdir, column_families, &cf_handles, &snapdb);
ASSERT_OK(stat);
ReadOptions roptions;
std::string val;
for (unsigned int i = 0; i < 80; i++) {
ASSERT_OK(snapdb->Get(roptions, cf_handles[i < 40], Key(i), &val));
ASSERT_EQ(values[i].compare(val), 0);
}
for (auto cfh : cf_handles) {
delete cfh;
}
delete snapdb;
// look at the new live files after we added an 'extra' key
// and after we took the first snapshot.
uint64_t new_manifest_number = 0;
uint64_t new_manifest_size = 0;
std::vector<std::string> newfiles;
ASSERT_OK(dbfull()->DisableFileDeletions());
ASSERT_OK(dbfull()->GetLiveFiles(newfiles, &new_manifest_size));
// find the new manifest file. assert that this manifest file is
// the same one as in the previous snapshot. But its size should be
// larger because we added an extra key after taking the
// previous shapshot.
for (size_t i = 0; i < newfiles.size(); i++) {
std::string src = dbname_ + "/" + newfiles[i];
// record the lognumber and the size of the
// latest manifest file
if (ParseFileName(newfiles[i].substr(1), &number, &type)) {
if (type == kDescriptorFile) {
ASSERT_EQ(new_manifest_number, 0);
uint64_t size;
new_manifest_number = number;
ASSERT_OK(env_->GetFileSize(src, &size));
ASSERT_GE(size, new_manifest_size);
}
}
}
ASSERT_EQ(manifest_number, new_manifest_number);
ASSERT_GT(new_manifest_size, manifest_size);
// Also test GetLiveFilesStorageInfo
std::vector<LiveFileStorageInfo> new_infos;
ASSERT_OK(db_->GetLiveFilesStorageInfo(LiveFilesStorageInfoOptions(),
&new_infos));
// Close DB (while deletions disabled)
Close();
// Validate
for (auto& info : new_infos) {
std::string path = info.directory + "/" + info.relative_filename;
uint64_t size;
ASSERT_OK(env_->GetFileSize(path, &size));
if (info.trim_to_size) {
ASSERT_LE(info.size, size);
} else if (!info.replacement_contents.empty()) {
ASSERT_EQ(info.size, info.replacement_contents.size());
} else {
ASSERT_EQ(info.size, size);
}
if (info.file_type == kDescriptorFile) {
ASSERT_EQ(info.file_number, manifest_number);
}
}
} while (ChangeCompactOptions());
}
TEST_F(DBTest, ReadonlyDBGetLiveManifestSize) {
do {
Options options = CurrentOptions();
options.level0_file_num_compaction_trigger = 2;
DestroyAndReopen(options);
ASSERT_OK(Put("foo", "bar"));
ASSERT_OK(Flush());
ASSERT_OK(Put("foo", "bar"));
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
Close();
ASSERT_OK(ReadOnlyReopen(options));
uint64_t manifest_size = 0;
std::vector<std::string> files;
ASSERT_OK(dbfull()->GetLiveFiles(files, &manifest_size));
for (const std::string& f : files) {
uint64_t number = 0;
FileType type;
if (ParseFileName(f.substr(1), &number, &type)) {
if (type == kDescriptorFile) {
uint64_t size_on_disk;
ASSERT_OK(env_->GetFileSize(dbname_ + "/" + f, &size_on_disk));
ASSERT_EQ(manifest_size, size_on_disk);
break;
}
}
}
Close();
} while (ChangeCompactOptions());
}
TEST_F(DBTest, GetLiveBlobFiles) {
// Note: the following prevents an otherwise harmless data race between the
// test setup code (AddBlobFile) below and the periodic stat dumping thread.
Options options = CurrentOptions();
options.stats_dump_period_sec = 0;
constexpr uint64_t blob_file_number = 234;
constexpr uint64_t total_blob_count = 555;
constexpr uint64_t total_blob_bytes = 66666;
constexpr char checksum_method[] = "CRC32";
constexpr char checksum_value[] = "\x3d\x87\xff\x57";
constexpr uint64_t garbage_blob_count = 0;
constexpr uint64_t garbage_blob_bytes = 0;
Reopen(options);
AddBlobFile(db_->DefaultColumnFamily(), blob_file_number, total_blob_count,
total_blob_bytes, checksum_method, checksum_value,
garbage_blob_count, garbage_blob_bytes);
// Make sure it appears in the results returned by GetLiveFiles.
uint64_t manifest_size = 0;
std::vector<std::string> files;
ASSERT_OK(dbfull()->GetLiveFiles(files, &manifest_size));
ASSERT_FALSE(files.empty());
ASSERT_EQ(files[0], BlobFileName("", blob_file_number));
ColumnFamilyMetaData cfmd;
db_->GetColumnFamilyMetaData(&cfmd);
ASSERT_EQ(cfmd.blob_files.size(), 1);
const BlobMetaData& bmd = cfmd.blob_files[0];
CheckBlobMetaData(bmd, blob_file_number, total_blob_count, total_blob_bytes,
checksum_method, checksum_value, garbage_blob_count,
garbage_blob_bytes);
ASSERT_EQ(NormalizePath(bmd.blob_file_path), NormalizePath(dbname_));
ASSERT_EQ(cfmd.blob_file_count, 1U);
ASSERT_EQ(cfmd.blob_file_size, bmd.blob_file_size);
}
TEST_F(DBTest, PurgeInfoLogs) {
Options options = CurrentOptions();
options.keep_log_file_num = 5;
options.create_if_missing = true;
options.env = env_;
for (int mode = 0; mode <= 1; mode++) {
if (mode == 1) {
options.db_log_dir = dbname_ + "_logs";
ASSERT_OK(env_->CreateDirIfMissing(options.db_log_dir));
} else {
options.db_log_dir = "";
}
for (int i = 0; i < 8; i++) {
Reopen(options);
}
std::vector<std::string> files;
ASSERT_OK(env_->GetChildren(
options.db_log_dir.empty() ? dbname_ : options.db_log_dir, &files));
int info_log_count = 0;
for (std::string file : files) {
if (file.find("LOG") != std::string::npos) {
info_log_count++;
}
}
ASSERT_EQ(5, info_log_count);
Destroy(options);
// For mode (1), test DestroyDB() to delete all the logs under DB dir.
// For mode (2), no info log file should have been put under DB dir.
// Since dbname_ has no children, there is no need to loop db_files
std::vector<std::string> db_files;
ASSERT_TRUE(env_->GetChildren(dbname_, &db_files).IsNotFound());
ASSERT_TRUE(db_files.empty());
if (mode == 1) {
// Cleaning up
ASSERT_OK(env_->GetChildren(options.db_log_dir, &files));
for (std::string file : files) {
ASSERT_OK(env_->DeleteFile(options.db_log_dir + "/" + file));
}
ASSERT_OK(env_->DeleteDir(options.db_log_dir));
}
}
}
// Multi-threaded test:
namespace {
static const int kColumnFamilies = 10;
static const int kNumThreads = 10;
static const int kTestSeconds = 10;
static const int kNumKeys = 1000;
struct MTState {
DBTest* test;
std::atomic<int> counter[kNumThreads];
};
struct MTThread {
MTState* state;
int id;
bool multiget_batched;
};
static void MTThreadBody(void* arg) {
MTThread* t = reinterpret_cast<MTThread*>(arg);
int id = t->id;
DB* db = t->state->test->db_;
int counter = 0;
std::shared_ptr<SystemClock> clock = SystemClock::Default();
auto end_micros = clock->NowMicros() + kTestSeconds * 1000000U;
fprintf(stderr, "... starting thread %d\n", id);
Random rnd(1000 + id);
char valbuf[1500];
while (clock->NowMicros() < end_micros) {
t->state->counter[id].store(counter, std::memory_order_release);
int key = rnd.Uniform(kNumKeys);
char keybuf[20];
snprintf(keybuf, sizeof(keybuf), "%016d", key);
if (rnd.OneIn(2)) {
// Write values of the form <key, my id, counter, cf, unique_id>.
// into each of the CFs
// We add some padding for force compactions.
int unique_id = rnd.Uniform(1000000);
// Half of the time directly use WriteBatch. Half of the time use
// WriteBatchWithIndex.
if (rnd.OneIn(2)) {
WriteBatch batch;
for (int cf = 0; cf < kColumnFamilies; ++cf) {
snprintf(valbuf, sizeof(valbuf), "%d.%d.%d.%d.%-1000d", key, id,
static_cast<int>(counter), cf, unique_id);
ASSERT_OK(batch.Put(t->state->test->handles_[cf], Slice(keybuf),
Slice(valbuf)));
}
ASSERT_OK(db->Write(WriteOptions(), &batch));
} else {
WriteBatchWithIndex batch(db->GetOptions().comparator);
for (int cf = 0; cf < kColumnFamilies; ++cf) {
snprintf(valbuf, sizeof(valbuf), "%d.%d.%d.%d.%-1000d", key, id,
static_cast<int>(counter), cf, unique_id);
ASSERT_OK(batch.Put(t->state->test->handles_[cf], Slice(keybuf),
Slice(valbuf)));
}
ASSERT_OK(db->Write(WriteOptions(), batch.GetWriteBatch()));
}
} else {
// Read a value and verify that it matches the pattern written above
// and that writes to all column families were atomic (unique_id is the
// same)
std::vector<Slice> keys(kColumnFamilies, Slice(keybuf));
std::vector<std::string> values;
std::vector<Status> statuses;
if (!t->multiget_batched) {
statuses = db->MultiGet(ReadOptions(), t->state->test->handles_, keys,
&values);
} else {
std::vector<PinnableSlice> pin_values(keys.size());
statuses.resize(keys.size());
const Snapshot* snapshot = db->GetSnapshot();
ReadOptions ro;
ro.snapshot = snapshot;
for (int cf = 0; cf < kColumnFamilies; ++cf) {
db->MultiGet(ro, t->state->test->handles_[cf], 1, &keys[cf],
&pin_values[cf], &statuses[cf]);
}
db->ReleaseSnapshot(snapshot);
values.resize(keys.size());
for (int cf = 0; cf < kColumnFamilies; ++cf) {
if (statuses[cf].ok()) {
values[cf].assign(pin_values[cf].data(), pin_values[cf].size());
}
}
}
Status s = statuses[0];
// all statuses have to be the same
for (size_t i = 1; i < statuses.size(); ++i) {
// they are either both ok or both not-found
ASSERT_TRUE((s.ok() && statuses[i].ok()) ||
(s.IsNotFound() && statuses[i].IsNotFound()));
}
if (s.IsNotFound()) {
// Key has not yet been written
} else {
// Check that the writer thread counter is >= the counter in the value
ASSERT_OK(s);
int unique_id = -1;
for (int i = 0; i < kColumnFamilies; ++i) {
int k, w, c, cf, u;
ASSERT_EQ(5, sscanf(values[i].c_str(), "%d.%d.%d.%d.%d", &k, &w, &c,
&cf, &u))
<< values[i];
ASSERT_EQ(k, key);
ASSERT_GE(w, 0);
ASSERT_LT(w, kNumThreads);
ASSERT_LE(c, t->state->counter[w].load(std::memory_order_acquire));
ASSERT_EQ(cf, i);
if (i == 0) {
unique_id = u;
} else {
// this checks that updates across column families happened
// atomically -- all unique ids are the same
ASSERT_EQ(u, unique_id);
}
}
}
}
counter++;
}
fprintf(stderr, "... stopping thread %d after %d ops\n", id, int(counter));
}
} // anonymous namespace
class MultiThreadedDBTest
: public DBTest,
public ::testing::WithParamInterface<std::tuple<int, bool>> {
public:
void SetUp() override {
std::tie(option_config_, multiget_batched_) = GetParam();
}
static std::vector<int> GenerateOptionConfigs() {
std::vector<int> optionConfigs;
for (int optionConfig = kDefault; optionConfig < kEnd; ++optionConfig) {
optionConfigs.push_back(optionConfig);
}
return optionConfigs;
}
bool multiget_batched_;
};
TEST_P(MultiThreadedDBTest, MultiThreaded) {
if (option_config_ == kPipelinedWrite) return;
anon::OptionsOverride options_override;
options_override.skip_policy = kSkipNoSnapshot;
Options options = CurrentOptions(options_override);
std::vector<std::string> cfs;
for (int i = 1; i < kColumnFamilies; ++i) {
cfs.push_back(std::to_string(i));
}
Reopen(options);
CreateAndReopenWithCF(cfs, options);
// Initialize state
MTState mt;
mt.test = this;
for (int id = 0; id < kNumThreads; id++) {
mt.counter[id].store(0, std::memory_order_release);
}
// Start threads
MTThread thread[kNumThreads];
for (int id = 0; id < kNumThreads; id++) {
thread[id].state = &mt;
thread[id].id = id;
thread[id].multiget_batched = multiget_batched_;
env_->StartThread(MTThreadBody, &thread[id]);
}
env_->WaitForJoin();
}
INSTANTIATE_TEST_CASE_P(
MultiThreaded, MultiThreadedDBTest,
::testing::Combine(
::testing::ValuesIn(MultiThreadedDBTest::GenerateOptionConfigs()),
::testing::Bool()));
// Group commit test:
#if !defined(OS_WIN)
// Disable this test temporarily on Travis and appveyor as it fails
// intermittently. Github issue: #4151
namespace {
static const int kGCNumThreads = 4;
static const int kGCNumKeys = 1000;
struct GCThread {
DB* db;
int id;
std::atomic<bool> done;
};
static void GCThreadBody(void* arg) {
GCThread* t = reinterpret_cast<GCThread*>(arg);
int id = t->id;
DB* db = t->db;
WriteOptions wo;
for (int i = 0; i < kGCNumKeys; ++i) {
std::string kv(std::to_string(i + id * kGCNumKeys));
ASSERT_OK(db->Put(wo, kv, kv));
}
t->done = true;
}
} // anonymous namespace
TEST_F(DBTest, GroupCommitTest) {
do {
Options options = CurrentOptions();
options.env = env_;
options.statistics = ROCKSDB_NAMESPACE::CreateDBStatistics();
Reopen(options);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency(
{{"WriteThread::JoinBatchGroup:BeganWaiting",
"DBImpl::WriteImpl:BeforeLeaderEnters"},
{"WriteThread::AwaitState:BlockingWaiting",
"WriteThread::EnterAsBatchGroupLeader:End"}});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
// Start threads
GCThread thread[kGCNumThreads];
for (int id = 0; id < kGCNumThreads; id++) {
thread[id].id = id;
thread[id].db = db_;
thread[id].done = false;
env_->StartThread(GCThreadBody, &thread[id]);
}
env_->WaitForJoin();
ASSERT_GT(TestGetTickerCount(options, WRITE_DONE_BY_OTHER), 0);
std::vector<std::string> expected_db;
for (int i = 0; i < kGCNumThreads * kGCNumKeys; ++i) {
expected_db.push_back(std::to_string(i));
}
std::sort(expected_db.begin(), expected_db.end());
Iterator* itr = db_->NewIterator(ReadOptions());
itr->SeekToFirst();
for (auto x : expected_db) {
ASSERT_TRUE(itr->Valid());
ASSERT_EQ(itr->key().ToString(), x);
ASSERT_EQ(itr->value().ToString(), x);
itr->Next();
}
ASSERT_TRUE(!itr->Valid());
delete itr;
HistogramData hist_data;
options.statistics->histogramData(DB_WRITE, &hist_data);
ASSERT_GT(hist_data.average, 0.0);
} while (ChangeOptions(kSkipNoSeekToLast));
}
#endif // OS_WIN
namespace {
using KVMap = std::map<std::string, std::string>;
}
class ModelDB : public DB {
public:
class ModelSnapshot : public Snapshot {
public:
KVMap map_;
SequenceNumber GetSequenceNumber() const override {
// no need to call this
assert(false);
return 0;
}
int64_t GetUnixTime() const override {
// no need to call this
assert(false);
return 0;
}
uint64_t GetTimestamp() const override {
// no need to call this
assert(false);
return 0;
}
};
explicit ModelDB(const Options& options) : options_(options) {}
using DB::Put;
Status Put(const WriteOptions& o, ColumnFamilyHandle* cf, const Slice& k,
const Slice& v) override {
WriteBatch batch;
Status s = batch.Put(cf, k, v);
if (!s.ok()) {
return s;
}
return Write(o, &batch);
}
Status Put(const WriteOptions& /*o*/, ColumnFamilyHandle* /*cf*/,
const Slice& /*k*/, const Slice& /*ts*/,
const Slice& /*v*/) override {
return Status::NotSupported();
}
using DB::PutEntity;
Status PutEntity(const WriteOptions& /* options */,
ColumnFamilyHandle* /* column_family */,
const Slice& /* key */,
const WideColumns& /* columns */) override {
return Status::NotSupported();
}
using DB::Close;
Status Close() override { return Status::OK(); }
using DB::Delete;
Status Delete(const WriteOptions& o, ColumnFamilyHandle* cf,
const Slice& key) override {
WriteBatch batch;
Status s = batch.Delete(cf, key);
if (!s.ok()) {
return s;
}
return Write(o, &batch);
}
Status Delete(const WriteOptions& /*o*/, ColumnFamilyHandle* /*cf*/,
const Slice& /*key*/, const Slice& /*ts*/) override {
return Status::NotSupported();
}
using DB::SingleDelete;
Status SingleDelete(const WriteOptions& o, ColumnFamilyHandle* cf,
const Slice& key) override {
WriteBatch batch;
Status s = batch.SingleDelete(cf, key);
if (!s.ok()) {
return s;
}
return Write(o, &batch);
}
Status SingleDelete(const WriteOptions& /*o*/, ColumnFamilyHandle* /*cf*/,
const Slice& /*key*/, const Slice& /*ts*/) override {
return Status::NotSupported();
}
using DB::Merge;
Status Merge(const WriteOptions& o, ColumnFamilyHandle* cf, const Slice& k,
const Slice& v) override {
WriteBatch batch;
Status s = batch.Merge(cf, k, v);
if (!s.ok()) {
return s;
}
return Write(o, &batch);
}
Status Merge(const WriteOptions& /*o*/, ColumnFamilyHandle* /*cf*/,
const Slice& /*k*/, const Slice& /*ts*/,
const Slice& /*value*/) override {
return Status::NotSupported();
}
using DB::Get;
Status Get(const ReadOptions& /*options*/, ColumnFamilyHandle* /*cf*/,
const Slice& key, PinnableSlice* /*value*/) override {
return Status::NotSupported(key);
}
using DB::GetMergeOperands;
virtual Status GetMergeOperands(
const ReadOptions& /*options*/, ColumnFamilyHandle* /*column_family*/,
const Slice& key, PinnableSlice* /*slice*/,
GetMergeOperandsOptions* /*merge_operands_options*/,
int* /*number_of_operands*/) override {
return Status::NotSupported(key);
}
using DB::MultiGet;
std::vector<Status> MultiGet(
const ReadOptions& /*options*/,
const std::vector<ColumnFamilyHandle*>& /*column_family*/,
const std::vector<Slice>& keys,
std::vector<std::string>* /*values*/) override {
std::vector<Status> s(keys.size(),
Status::NotSupported("Not implemented."));
return s;
}
using DB::IngestExternalFile;
Status IngestExternalFile(
ColumnFamilyHandle* /*column_family*/,
const std::vector<std::string>& /*external_files*/,
const IngestExternalFileOptions& /*options*/) override {
return Status::NotSupported("Not implemented.");
}
using DB::IngestExternalFiles;
Status IngestExternalFiles(
const std::vector<IngestExternalFileArg>& /*args*/) override {
return Status::NotSupported("Not implemented");
}
using DB::CreateColumnFamilyWithImport;
virtual Status CreateColumnFamilyWithImport(
const ColumnFamilyOptions& /*options*/,
const std::string& /*column_family_name*/,
const ImportColumnFamilyOptions& /*import_options*/,
const std::vector<const ExportImportFilesMetaData*>& /*metadatas*/,
ColumnFamilyHandle** /*handle*/) override {
return Status::NotSupported("Not implemented.");
}
using DB::VerifyChecksum;
Status VerifyChecksum(const ReadOptions&) override {
return Status::NotSupported("Not implemented.");
}
using DB::ClipColumnFamily;
virtual Status ClipColumnFamily(ColumnFamilyHandle* /*column_family*/,
const Slice& /*begin*/,
const Slice& /*end*/) override {
return Status::NotSupported("Not implemented.");
}
using DB::GetPropertiesOfAllTables;
Status GetPropertiesOfAllTables(
ColumnFamilyHandle* /*column_family*/,
TablePropertiesCollection* /*props*/) override {
return Status();
}
Status GetPropertiesOfTablesInRange(
ColumnFamilyHandle* /*column_family*/, const Range* /*range*/,
std::size_t /*n*/, TablePropertiesCollection* /*props*/) override {
return Status();
}
using DB::KeyMayExist;
bool KeyMayExist(const ReadOptions& /*options*/,
ColumnFamilyHandle* /*column_family*/, const Slice& /*key*/,
std::string* /*value*/,
bool* value_found = nullptr) override {
if (value_found != nullptr) {
*value_found = false;
}
return true; // Not Supported directly
}
using DB::NewIterator;
Iterator* NewIterator(const ReadOptions& options,
ColumnFamilyHandle* /*column_family*/) override {
if (options.snapshot == nullptr) {
KVMap* saved = new KVMap;
*saved = map_;
return new ModelIter(saved, true);
} else {
const KVMap* snapshot_state =
&(reinterpret_cast<const ModelSnapshot*>(options.snapshot)->map_);
return new ModelIter(snapshot_state, false);
}
}
Status NewIterators(const ReadOptions& /*options*/,
const std::vector<ColumnFamilyHandle*>& /*column_family*/,
std::vector<Iterator*>* /*iterators*/) override {
return Status::NotSupported("Not supported yet");
}
const Snapshot* GetSnapshot() override {
ModelSnapshot* snapshot = new ModelSnapshot;
snapshot->map_ = map_;
return snapshot;
}
void ReleaseSnapshot(const Snapshot* snapshot) override {
delete reinterpret_cast<const ModelSnapshot*>(snapshot);
}
Status Write(const WriteOptions& /*options*/, WriteBatch* batch) override {
class Handler : public WriteBatch::Handler {
public:
KVMap* map_;
void Put(const Slice& key, const Slice& value) override {
(*map_)[key.ToString()] = value.ToString();
}
void Merge(const Slice& /*key*/, const Slice& /*value*/) override {
// ignore merge for now
// (*map_)[key.ToString()] = value.ToString();
}
void Delete(const Slice& key) override { map_->erase(key.ToString()); }
};
Handler handler;
handler.map_ = &map_;
return batch->Iterate(&handler);
}
using DB::GetProperty;
bool GetProperty(ColumnFamilyHandle* /*column_family*/,
const Slice& /*property*/, std::string* /*value*/) override {
return false;
}
using DB::GetIntProperty;
bool GetIntProperty(ColumnFamilyHandle* /*column_family*/,
const Slice& /*property*/, uint64_t* /*value*/) override {
return false;
}
using DB::GetMapProperty;
bool GetMapProperty(ColumnFamilyHandle* /*column_family*/,
const Slice& /*property*/,
std::map<std::string, std::string>* /*value*/) override {
return false;
}
using DB::GetAggregatedIntProperty;
bool GetAggregatedIntProperty(const Slice& /*property*/,
uint64_t* /*value*/) override {
return false;
}
using DB::GetApproximateSizes;
Status GetApproximateSizes(const SizeApproximationOptions& /*options*/,
ColumnFamilyHandle* /*column_family*/,
const Range* /*range*/, int n,
uint64_t* sizes) override {
for (int i = 0; i < n; i++) {
sizes[i] = 0;
}
return Status::OK();
}
using DB::GetApproximateMemTableStats;
void GetApproximateMemTableStats(ColumnFamilyHandle* /*column_family*/,
const Range& /*range*/,
uint64_t* const count,
uint64_t* const size) override {
*count = 0;
*size = 0;
}
using DB::CompactRange;
Status CompactRange(const CompactRangeOptions& /*options*/,
ColumnFamilyHandle* /*column_family*/,
const Slice* /*start*/, const Slice* /*end*/) override {
return Status::NotSupported("Not supported operation.");
}
Status SetDBOptions(
const std::unordered_map<std::string, std::string>& /*new_options*/)
override {
return Status::NotSupported("Not supported operation.");
}
using DB::CompactFiles;
Status CompactFiles(
const CompactionOptions& /*compact_options*/,
ColumnFamilyHandle* /*column_family*/,
const std::vector<std::string>& /*input_file_names*/,
const int /*output_level*/, const int /*output_path_id*/ = -1,
std::vector<std::string>* const /*output_file_names*/ = nullptr,
CompactionJobInfo* /*compaction_job_info*/ = nullptr) override {
return Status::NotSupported("Not supported operation.");
}
Status PauseBackgroundWork() override {
return Status::NotSupported("Not supported operation.");
}
Status ContinueBackgroundWork() override {
return Status::NotSupported("Not supported operation.");
}
Status EnableAutoCompaction(
const std::vector<ColumnFamilyHandle*>& /*column_family_handles*/)
override {
return Status::NotSupported("Not supported operation.");
}
void EnableManualCompaction() override { return; }
void DisableManualCompaction() override { return; }
virtual Status WaitForCompact(
const WaitForCompactOptions& /* wait_for_compact_options */) override {
return Status::OK();
}
using DB::NumberLevels;
int NumberLevels(ColumnFamilyHandle* /*column_family*/) override { return 1; }
using DB::MaxMemCompactionLevel;
int MaxMemCompactionLevel(ColumnFamilyHandle* /*column_family*/) override {
return 1;
}
using DB::Level0StopWriteTrigger;
int Level0StopWriteTrigger(ColumnFamilyHandle* /*column_family*/) override {
return -1;
}
const std::string& GetName() const override { return name_; }
Env* GetEnv() const override { return nullptr; }
using DB::GetOptions;
Options GetOptions(ColumnFamilyHandle* /*column_family*/) const override {
return options_;
}
using DB::GetDBOptions;
DBOptions GetDBOptions() const override { return options_; }
using DB::Flush;
Status Flush(const ROCKSDB_NAMESPACE::FlushOptions& /*options*/,
ColumnFamilyHandle* /*column_family*/) override {
Status ret;
return ret;
}
Status Flush(
const ROCKSDB_NAMESPACE::FlushOptions& /*options*/,
const std::vector<ColumnFamilyHandle*>& /*column_families*/) override {
return Status::OK();
}
Status SyncWAL() override { return Status::OK(); }
Status DisableFileDeletions() override { return Status::OK(); }
Status EnableFileDeletions(bool /*force*/) override { return Status::OK(); }
Status GetLiveFiles(std::vector<std::string>&, uint64_t* /*size*/,
bool /*flush_memtable*/ = true) override {
return Status::OK();
}
Status GetLiveFilesChecksumInfo(
FileChecksumList* /*checksum_list*/) override {
return Status::OK();
}
Status GetLiveFilesStorageInfo(
const LiveFilesStorageInfoOptions& /*opts*/,
std::vector<LiveFileStorageInfo>* /*files*/) override {
return Status::OK();
}
Status GetSortedWalFiles(VectorLogPtr& /*files*/) override {
return Status::OK();
}
Status GetCurrentWalFile(
std::unique_ptr<LogFile>* /*current_log_file*/) override {
return Status::OK();
}
virtual Status GetCreationTimeOfOldestFile(
uint64_t* /*creation_time*/) override {
return Status::NotSupported();
}
Status DeleteFile(std::string /*name*/) override { return Status::OK(); }
Status GetUpdatesSince(
ROCKSDB_NAMESPACE::SequenceNumber,
std::unique_ptr<ROCKSDB_NAMESPACE::TransactionLogIterator>*,
const TransactionLogIterator::ReadOptions& /*read_options*/ =
TransactionLogIterator::ReadOptions()) override {
return Status::NotSupported("Not supported in Model DB");
}
void GetColumnFamilyMetaData(ColumnFamilyHandle* /*column_family*/,
ColumnFamilyMetaData* /*metadata*/) override {}
Status GetDbIdentity(std::string& /*identity*/) const override {
return Status::OK();
}
Status GetDbSessionId(std::string& /*session_id*/) const override {
return Status::OK();
}
SequenceNumber GetLatestSequenceNumber() const override { return 0; }
Status IncreaseFullHistoryTsLow(ColumnFamilyHandle* /*cf*/,
std::string /*ts_low*/) override {
return Status::OK();
}
Status GetFullHistoryTsLow(ColumnFamilyHandle* /*cf*/,
std::string* /*ts_low*/) override {
return Status::OK();
}
ColumnFamilyHandle* DefaultColumnFamily() const override { return nullptr; }
private:
class ModelIter : public Iterator {
public:
ModelIter(const KVMap* map, bool owned)
: map_(map), owned_(owned), iter_(map_->end()) {}
~ModelIter() override {
if (owned_) delete map_;
}
bool Valid() const override { return iter_ != map_->end(); }
void SeekToFirst() override { iter_ = map_->begin(); }
void SeekToLast() override {
if (map_->empty()) {
iter_ = map_->end();
} else {
iter_ = map_->find(map_->rbegin()->first);
}
}
void Seek(const Slice& k) override {
iter_ = map_->lower_bound(k.ToString());
}
void SeekForPrev(const Slice& k) override {
iter_ = map_->upper_bound(k.ToString());
Prev();
}
void Next() override { ++iter_; }
void Prev() override {
if (iter_ == map_->begin()) {
iter_ = map_->end();
return;
}
--iter_;
}
Slice key() const override { return iter_->first; }
Slice value() const override { return iter_->second; }
Status status() const override { return Status::OK(); }
private:
const KVMap* const map_;
const bool owned_; // Do we own map_
KVMap::const_iterator iter_;
};
const Options options_;
KVMap map_;
std::string name_ = "";
};
#if !defined(ROCKSDB_VALGRIND_RUN) || defined(ROCKSDB_FULL_VALGRIND_RUN)
static std::string RandomKey(Random* rnd, int minimum = 0) {
int len;
do {
len = (rnd->OneIn(3)
? 1 // Short sometimes to encourage collisions
: (rnd->OneIn(100) ? rnd->Skewed(10) : rnd->Uniform(10)));
} while (len < minimum);
return test::RandomKey(rnd, len);
}
static bool CompareIterators(int step, DB* model, DB* db,
const Snapshot* model_snap,
const Snapshot* db_snap) {
ReadOptions options;
options.snapshot = model_snap;
Iterator* miter = model->NewIterator(options);
options.snapshot = db_snap;
Iterator* dbiter = db->NewIterator(options);
bool ok = true;
int count = 0;
for (miter->SeekToFirst(), dbiter->SeekToFirst();
ok && miter->Valid() && dbiter->Valid(); miter->Next(), dbiter->Next()) {
count++;
if (miter->key().compare(dbiter->key()) != 0) {
fprintf(stderr, "step %d: Key mismatch: '%s' vs. '%s'\n", step,
EscapeString(miter->key()).c_str(),
EscapeString(dbiter->key()).c_str());
ok = false;
break;
}
if (miter->value().compare(dbiter->value()) != 0) {
fprintf(stderr, "step %d: Value mismatch for key '%s': '%s' vs. '%s'\n",
step, EscapeString(miter->key()).c_str(),
EscapeString(miter->value()).c_str(),
EscapeString(dbiter->value()).c_str());
ok = false;
}
}
if (ok) {
if (miter->Valid() != dbiter->Valid()) {
fprintf(stderr, "step %d: Mismatch at end of iterators: %d vs. %d\n",
step, miter->Valid(), dbiter->Valid());
ok = false;
}
}
(void)count;
delete miter;
delete dbiter;
return ok;
}
class DBTestRandomized : public DBTest,
public ::testing::WithParamInterface<int> {
public:
void SetUp() override { option_config_ = GetParam(); }
static std::vector<int> GenerateOptionConfigs() {
std::vector<int> option_configs;
// skip cuckoo hash as it does not support snapshot.
for (int option_config = kDefault; option_config < kEnd; ++option_config) {
if (!ShouldSkipOptions(option_config,
kSkipDeletesFilterFirst | kSkipNoSeekToLast)) {
option_configs.push_back(option_config);
}
}
option_configs.push_back(kBlockBasedTableWithIndexRestartInterval);
return option_configs;
}
};
INSTANTIATE_TEST_CASE_P(
DBTestRandomized, DBTestRandomized,
::testing::ValuesIn(DBTestRandomized::GenerateOptionConfigs()));
TEST_P(DBTestRandomized, Randomized) {
anon::OptionsOverride options_override;
options_override.skip_policy = kSkipNoSnapshot;
Options options = CurrentOptions(options_override);
DestroyAndReopen(options);
Random rnd(test::RandomSeed() + GetParam());
ModelDB model(options);
const int N = 10000;
const Snapshot* model_snap = nullptr;
const Snapshot* db_snap = nullptr;
std::string k, v;
for (int step = 0; step < N; step++) {
// TODO(sanjay): Test Get() works
int p = rnd.Uniform(100);
int minimum = 0;
if (option_config_ == kHashSkipList || option_config_ == kHashLinkList ||
option_config_ == kPlainTableFirstBytePrefix ||
option_config_ == kBlockBasedTableWithWholeKeyHashIndex ||
option_config_ == kBlockBasedTableWithPrefixHashIndex) {
minimum = 1;
}
if (p < 45) { // Put
k = RandomKey(&rnd, minimum);
v = rnd.RandomString(rnd.OneIn(20) ? 100 + rnd.Uniform(100)
: rnd.Uniform(8));
ASSERT_OK(model.Put(WriteOptions(), k, v));
ASSERT_OK(db_->Put(WriteOptions(), k, v));
} else if (p < 90) { // Delete
k = RandomKey(&rnd, minimum);
ASSERT_OK(model.Delete(WriteOptions(), k));
ASSERT_OK(db_->Delete(WriteOptions(), k));
} else { // Multi-element batch
WriteBatch b;
const int num = rnd.Uniform(8);
for (int i = 0; i < num; i++) {
if (i == 0 || !rnd.OneIn(10)) {
k = RandomKey(&rnd, minimum);
} else {
// Periodically re-use the same key from the previous iter, so
// we have multiple entries in the write batch for the same key
}
if (rnd.OneIn(2)) {
v = rnd.RandomString(rnd.Uniform(10));
ASSERT_OK(b.Put(k, v));
} else {
ASSERT_OK(b.Delete(k));
}
}
ASSERT_OK(model.Write(WriteOptions(), &b));
ASSERT_OK(db_->Write(WriteOptions(), &b));
}
if ((step % 100) == 0) {
// For DB instances that use the hash index + block-based table, the
// iterator will be invalid right when seeking a non-existent key, right
// than return a key that is close to it.
if (option_config_ != kBlockBasedTableWithWholeKeyHashIndex &&
option_config_ != kBlockBasedTableWithPrefixHashIndex) {
ASSERT_TRUE(CompareIterators(step, &model, db_, nullptr, nullptr));
ASSERT_TRUE(CompareIterators(step, &model, db_, model_snap, db_snap));
}
// Save a snapshot from each DB this time that we'll use next
// time we compare things, to make sure the current state is
// preserved with the snapshot
if (model_snap != nullptr) model.ReleaseSnapshot(model_snap);
if (db_snap != nullptr) db_->ReleaseSnapshot(db_snap);
Reopen(options);
ASSERT_TRUE(CompareIterators(step, &model, db_, nullptr, nullptr));
model_snap = model.GetSnapshot();
db_snap = db_->GetSnapshot();
}
}
if (model_snap != nullptr) model.ReleaseSnapshot(model_snap);
if (db_snap != nullptr) db_->ReleaseSnapshot(db_snap);
}
#endif // !defined(ROCKSDB_VALGRIND_RUN) || defined(ROCKSDB_FULL_VALGRIND_RUN)
TEST_F(DBTest, BlockBasedTablePrefixIndexTest) {
// create a DB with block prefix index
BlockBasedTableOptions table_options;
Options options = CurrentOptions();
table_options.index_type = BlockBasedTableOptions::kHashSearch;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
options.prefix_extractor.reset(NewFixedPrefixTransform(1));
Reopen(options);
ASSERT_OK(Put("k1", "v1"));
ASSERT_OK(Flush());
ASSERT_OK(Put("k2", "v2"));
// Reopen with different prefix extractor, make sure everything still works.
// RocksDB should just fall back to the binary index.
options.prefix_extractor.reset(NewFixedPrefixTransform(2));
Reopen(options);
ASSERT_EQ("v1", Get("k1"));
ASSERT_EQ("v2", Get("k2"));
// Back to original
ASSERT_OK(dbfull()->SetOptions({{"prefix_extractor", "fixed:1"}}));
ASSERT_EQ("v1", Get("k1"));
ASSERT_EQ("v2", Get("k2"));
// Same if there's a problem initally loading prefix transform
options.prefix_extractor.reset(NewFixedPrefixTransform(1));
SyncPoint::GetInstance()->SetCallBack(
"BlockBasedTable::Open::ForceNullTablePrefixExtractor",
[&](void* arg) { *static_cast<bool*>(arg) = true; });
SyncPoint::GetInstance()->EnableProcessing();
Reopen(options);
ASSERT_EQ("v1", Get("k1"));
ASSERT_EQ("v2", Get("k2"));
// Change again
ASSERT_OK(dbfull()->SetOptions({{"prefix_extractor", "fixed:2"}}));
ASSERT_EQ("v1", Get("k1"));
ASSERT_EQ("v2", Get("k2"));
SyncPoint::GetInstance()->DisableProcessing();
// Reopen with no prefix extractor, make sure everything still works.
// RocksDB should just fall back to the binary index.
table_options.index_type = BlockBasedTableOptions::kBinarySearch;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
options.prefix_extractor.reset();
Reopen(options);
ASSERT_EQ("v1", Get("k1"));
ASSERT_EQ("v2", Get("k2"));
}
TEST_F(DBTest, BlockBasedTablePrefixHashIndexTest) {
// create a DB with block prefix index
BlockBasedTableOptions table_options;
Options options = CurrentOptions();
table_options.index_type = BlockBasedTableOptions::kHashSearch;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
options.prefix_extractor.reset(NewCappedPrefixTransform(2));
Reopen(options);
ASSERT_OK(Put("kk1", "v1"));
ASSERT_OK(Put("kk2", "v2"));
ASSERT_OK(Put("kk", "v3"));
ASSERT_OK(Put("k", "v4"));
Flush();
ASSERT_EQ("v1", Get("kk1"));
ASSERT_EQ("v2", Get("kk2"));
ASSERT_EQ("v3", Get("kk"));
ASSERT_EQ("v4", Get("k"));
}
TEST_F(DBTest, BlockBasedTablePrefixIndexTotalOrderSeek) {
// create a DB with block prefix index
BlockBasedTableOptions table_options;
Options options = CurrentOptions();
options.max_open_files = 10;
table_options.index_type = BlockBasedTableOptions::kHashSearch;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
options.prefix_extractor.reset(NewFixedPrefixTransform(1));
// RocksDB sanitize max open files to at least 20. Modify it back.
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"SanitizeOptions::AfterChangeMaxOpenFiles", [&](void* arg) {
int* max_open_files = static_cast<int*>(arg);
*max_open_files = 11;
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
Reopen(options);
ASSERT_OK(Put("k1", "v1"));
ASSERT_OK(Flush());
CompactRangeOptions cro;
cro.change_level = true;
cro.target_level = 1;
ASSERT_OK(db_->CompactRange(cro, nullptr, nullptr));
// Force evict tables
dbfull()->TEST_table_cache()->SetCapacity(0);
// Make table cache to keep one entry.
dbfull()->TEST_table_cache()->SetCapacity(1);
ReadOptions read_options;
read_options.total_order_seek = true;
{
std::unique_ptr<Iterator> iter(db_->NewIterator(read_options));
iter->Seek("k1");
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("k1", iter->key().ToString());
}
// After total order seek, prefix index should still be used.
read_options.total_order_seek = false;
{
std::unique_ptr<Iterator> iter(db_->NewIterator(read_options));
iter->Seek("k1");
ASSERT_TRUE(iter->Valid());
ASSERT_EQ("k1", iter->key().ToString());
}
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
}
TEST_F(DBTest, ChecksumTest) {
BlockBasedTableOptions table_options;
Options options = CurrentOptions();
table_options.checksum = kCRC32c;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
Reopen(options);
ASSERT_OK(Put("a", "b"));
ASSERT_OK(Put("c", "d"));
ASSERT_OK(Flush()); // table with crc checksum
table_options.checksum = kxxHash;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
Reopen(options);
ASSERT_OK(Put("e", "f"));
ASSERT_OK(Put("g", "h"));
ASSERT_OK(Flush()); // table with xxhash checksum
table_options.checksum = kCRC32c;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
Reopen(options);
ASSERT_EQ("b", Get("a"));
ASSERT_EQ("d", Get("c"));
ASSERT_EQ("f", Get("e"));
ASSERT_EQ("h", Get("g"));
table_options.checksum = kCRC32c;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
Reopen(options);
ASSERT_EQ("b", Get("a"));
ASSERT_EQ("d", Get("c"));
ASSERT_EQ("f", Get("e"));
ASSERT_EQ("h", Get("g"));
}
TEST_P(DBTestWithParam, FIFOCompactionTest) {
for (int iter = 0; iter < 2; ++iter) {
// first iteration -- auto compaction
// second iteration -- manual compaction
Options options;
options.compaction_style = kCompactionStyleFIFO;
options.write_buffer_size = 100 << 10; // 100KB
options.arena_block_size = 4096;
options.compaction_options_fifo.max_table_files_size = 500 << 10; // 500KB
options.compression = kNoCompression;
options.create_if_missing = true;
options.max_subcompactions = max_subcompactions_;
if (iter == 1) {
options.disable_auto_compactions = true;
}
options = CurrentOptions(options);
DestroyAndReopen(options);
Random rnd(301);
for (int i = 0; i < 6; ++i) {
for (int j = 0; j < 110; ++j) {
ASSERT_OK(Put(std::to_string(i * 100 + j), rnd.RandomString(980)));
}
// flush should happen here
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable());
}
if (iter == 0) {
ASSERT_OK(dbfull()->TEST_WaitForCompact());
} else {
CompactRangeOptions cro;
cro.exclusive_manual_compaction = exclusive_manual_compaction_;
ASSERT_OK(db_->CompactRange(cro, nullptr, nullptr));
}
// only 5 files should survive
ASSERT_EQ(NumTableFilesAtLevel(0), 5);
for (int i = 0; i < 50; ++i) {
// these keys should be deleted in previous compaction
ASSERT_EQ("NOT_FOUND", Get(std::to_string(i)));
}
}
}
TEST_F(DBTest, FIFOCompactionTestWithCompaction) {
Options options;
options.compaction_style = kCompactionStyleFIFO;
options.write_buffer_size = 20 << 10; // 20K
options.arena_block_size = 4096;
options.compaction_options_fifo.max_table_files_size = 1500 << 10; // 1MB
options.compaction_options_fifo.allow_compaction = true;
options.level0_file_num_compaction_trigger = 6;
options.compression = kNoCompression;
options.create_if_missing = true;
options = CurrentOptions(options);
DestroyAndReopen(options);
Random rnd(301);
for (int i = 0; i < 60; i++) {
// Generate and flush a file about 20KB.
for (int j = 0; j < 20; j++) {
ASSERT_OK(Put(std::to_string(i * 20 + j), rnd.RandomString(980)));
}
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
}
// It should be compacted to 10 files.
ASSERT_EQ(NumTableFilesAtLevel(0), 10);
for (int i = 0; i < 60; i++) {
// Generate and flush a file about 20KB.
for (int j = 0; j < 20; j++) {
ASSERT_OK(Put(std::to_string(i * 20 + j + 2000), rnd.RandomString(980)));
}
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
}
// It should be compacted to no more than 20 files.
ASSERT_GT(NumTableFilesAtLevel(0), 10);
ASSERT_LT(NumTableFilesAtLevel(0), 18);
// Size limit is still guaranteed.
ASSERT_LE(SizeAtLevel(0),
options.compaction_options_fifo.max_table_files_size);
}
TEST_F(DBTest, FIFOCompactionStyleWithCompactionAndDelete) {
Options options;
options.compaction_style = kCompactionStyleFIFO;
options.write_buffer_size = 20 << 10; // 20K
options.arena_block_size = 4096;
options.compaction_options_fifo.max_table_files_size = 1500 << 10; // 1MB
options.compaction_options_fifo.allow_compaction = true;
options.level0_file_num_compaction_trigger = 3;
options.compression = kNoCompression;
options.create_if_missing = true;
options = CurrentOptions(options);
DestroyAndReopen(options);
Random rnd(301);
for (int i = 0; i < 3; i++) {
// Each file contains a different key which will be dropped later.
ASSERT_OK(Put("a" + std::to_string(i), rnd.RandomString(500)));
ASSERT_OK(Put("key" + std::to_string(i), ""));
ASSERT_OK(Put("z" + std::to_string(i), rnd.RandomString(500)));
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
}
ASSERT_EQ(NumTableFilesAtLevel(0), 1);
for (int i = 0; i < 3; i++) {
ASSERT_EQ("", Get("key" + std::to_string(i)));
}
for (int i = 0; i < 3; i++) {
// Each file contains a different key which will be dropped later.
ASSERT_OK(Put("a" + std::to_string(i), rnd.RandomString(500)));
ASSERT_OK(Delete("key" + std::to_string(i)));
ASSERT_OK(Put("z" + std::to_string(i), rnd.RandomString(500)));
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
}
ASSERT_EQ(NumTableFilesAtLevel(0), 2);
for (int i = 0; i < 3; i++) {
ASSERT_EQ("NOT_FOUND", Get("key" + std::to_string(i)));
}
}
// Check that FIFO-with-TTL is not supported with max_open_files != -1.
// Github issue #8014
TEST_F(DBTest, FIFOCompactionWithTTLAndMaxOpenFilesTest) {
Options options = CurrentOptions();
options.compaction_style = kCompactionStyleFIFO;
options.create_if_missing = true;
options.ttl = 600; // seconds
// TTL is not supported with max_open_files != -1.
options.max_open_files = 0;
ASSERT_TRUE(TryReopen(options).IsNotSupported());
options.max_open_files = 100;
ASSERT_TRUE(TryReopen(options).IsNotSupported());
// TTL is supported with unlimited max_open_files
options.max_open_files = -1;
ASSERT_OK(TryReopen(options));
}
// Check that FIFO-with-TTL is supported only with BlockBasedTableFactory.
TEST_F(DBTest, FIFOCompactionWithTTLAndVariousTableFormatsTest) {
Options options;
options.compaction_style = kCompactionStyleFIFO;
options.create_if_missing = true;
options.ttl = 600; // seconds
options = CurrentOptions(options);
options.table_factory.reset(NewBlockBasedTableFactory());
ASSERT_OK(TryReopen(options));
Destroy(options);
options.table_factory.reset(NewPlainTableFactory());
ASSERT_TRUE(TryReopen(options).IsNotSupported());
Destroy(options);
options.table_factory.reset(NewAdaptiveTableFactory());
ASSERT_TRUE(TryReopen(options).IsNotSupported());
}
TEST_F(DBTest, FIFOCompactionWithTTLTest) {
Options options;
options.compaction_style = kCompactionStyleFIFO;
options.write_buffer_size = 10 << 10; // 10KB
options.arena_block_size = 4096;
options.compression = kNoCompression;
options.create_if_missing = true;
env_->SetMockSleep();
options.env = env_;
// Test to make sure that all files with expired ttl are deleted on next
// manual compaction.
{
// NOTE: Presumed unnecessary and removed: resetting mock time in env
options.compaction_options_fifo.max_table_files_size = 150 << 10; // 150KB
options.compaction_options_fifo.allow_compaction = false;
options.ttl = 1 * 60 * 60; // 1 hour
options = CurrentOptions(options);
DestroyAndReopen(options);
Random rnd(301);
for (int i = 0; i < 10; i++) {
// Generate and flush a file about 10KB.
for (int j = 0; j < 10; j++) {
ASSERT_OK(Put(std::to_string(i * 20 + j), rnd.RandomString(980)));
}
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
}
ASSERT_EQ(NumTableFilesAtLevel(0), 10);
// Sleep for 2 hours -- which is much greater than TTL.
env_->MockSleepForSeconds(2 * 60 * 60);
// Since no flushes and compactions have run, the db should still be in
// the same state even after considerable time has passed.
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_EQ(NumTableFilesAtLevel(0), 10);
ASSERT_OK(dbfull()->CompactRange(CompactRangeOptions(), nullptr, nullptr));
ASSERT_EQ(NumTableFilesAtLevel(0), 0);
}
// Test to make sure that all files with expired ttl are deleted on next
// automatic compaction.
{
options.compaction_options_fifo.max_table_files_size = 150 << 10; // 150KB
options.compaction_options_fifo.allow_compaction = false;
options.ttl = 1 * 60 * 60; // 1 hour
options = CurrentOptions(options);
DestroyAndReopen(options);
Random rnd(301);
for (int i = 0; i < 10; i++) {
// Generate and flush a file about 10KB.
for (int j = 0; j < 10; j++) {
ASSERT_OK(Put(std::to_string(i * 20 + j), rnd.RandomString(980)));
}
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
}
ASSERT_EQ(NumTableFilesAtLevel(0), 10);
// Sleep for 2 hours -- which is much greater than TTL.
env_->MockSleepForSeconds(2 * 60 * 60);
// Just to make sure that we are in the same state even after sleeping.
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_EQ(NumTableFilesAtLevel(0), 10);
// Create 1 more file to trigger TTL compaction. The old files are dropped.
for (int i = 0; i < 1; i++) {
for (int j = 0; j < 10; j++) {
ASSERT_OK(Put(std::to_string(i * 20 + j), rnd.RandomString(980)));
}
ASSERT_OK(Flush());
}
ASSERT_OK(dbfull()->TEST_WaitForCompact());
// Only the new 10 files remain.
ASSERT_EQ(NumTableFilesAtLevel(0), 1);
ASSERT_LE(SizeAtLevel(0),
options.compaction_options_fifo.max_table_files_size);
}
// Test that shows the fall back to size-based FIFO compaction if TTL-based
// deletion doesn't move the total size to be less than max_table_files_size.
{
options.write_buffer_size = 10 << 10; // 10KB
options.compaction_options_fifo.max_table_files_size = 150 << 10; // 150KB
options.compaction_options_fifo.allow_compaction = false;
options.ttl = 1 * 60 * 60; // 1 hour
options = CurrentOptions(options);
DestroyAndReopen(options);
Random rnd(301);
for (int i = 0; i < 3; i++) {
// Generate and flush a file about 10KB.
for (int j = 0; j < 10; j++) {
ASSERT_OK(Put(std::to_string(i * 20 + j), rnd.RandomString(980)));
}
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
}
ASSERT_EQ(NumTableFilesAtLevel(0), 3);
// Sleep for 2 hours -- which is much greater than TTL.
env_->MockSleepForSeconds(2 * 60 * 60);
// Just to make sure that we are in the same state even after sleeping.
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_EQ(NumTableFilesAtLevel(0), 3);
for (int i = 0; i < 5; i++) {
for (int j = 0; j < 140; j++) {
ASSERT_OK(Put(std::to_string(i * 20 + j), rnd.RandomString(980)));
}
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
}
// Size limit is still guaranteed.
ASSERT_LE(SizeAtLevel(0),
options.compaction_options_fifo.max_table_files_size);
}
// Test with TTL + Intra-L0 compactions.
{
options.compaction_options_fifo.max_table_files_size = 150 << 10; // 150KB
options.compaction_options_fifo.allow_compaction = true;
options.ttl = 1 * 60 * 60; // 1 hour
options.level0_file_num_compaction_trigger = 6;
options = CurrentOptions(options);
DestroyAndReopen(options);
Random rnd(301);
for (int i = 0; i < 10; i++) {
// Generate and flush a file about 10KB.
for (int j = 0; j < 10; j++) {
ASSERT_OK(Put(std::to_string(i * 20 + j), rnd.RandomString(980)));
}
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
}
// With Intra-L0 compaction, out of 10 files, 6 files will be compacted to 1
// (due to level0_file_num_compaction_trigger = 6).
// So total files = 1 + remaining 4 = 5.
ASSERT_EQ(NumTableFilesAtLevel(0), 5);
// Sleep for 2 hours -- which is much greater than TTL.
env_->MockSleepForSeconds(2 * 60 * 60);
// Just to make sure that we are in the same state even after sleeping.
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_EQ(NumTableFilesAtLevel(0), 5);
// Create 10 more files. The old 5 files are dropped as their ttl expired.
for (int i = 0; i < 10; i++) {
for (int j = 0; j < 10; j++) {
ASSERT_OK(Put(std::to_string(i * 20 + j), rnd.RandomString(980)));
}
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
}
ASSERT_EQ(NumTableFilesAtLevel(0), 5);
ASSERT_LE(SizeAtLevel(0),
options.compaction_options_fifo.max_table_files_size);
}
// Test with large TTL + Intra-L0 compactions.
// Files dropped based on size, as ttl doesn't kick in.
{
options.write_buffer_size = 20 << 10; // 20K
options.compaction_options_fifo.max_table_files_size = 1500 << 10; // 1.5MB
options.compaction_options_fifo.allow_compaction = true;
options.ttl = 1 * 60 * 60; // 1 hour
options.level0_file_num_compaction_trigger = 6;
options = CurrentOptions(options);
DestroyAndReopen(options);
Random rnd(301);
for (int i = 0; i < 60; i++) {
// Generate and flush a file about 20KB.
for (int j = 0; j < 20; j++) {
ASSERT_OK(Put(std::to_string(i * 20 + j), rnd.RandomString(980)));
}
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
}
// It should be compacted to 10 files.
ASSERT_EQ(NumTableFilesAtLevel(0), 10);
for (int i = 0; i < 60; i++) {
// Generate and flush a file about 20KB.
for (int j = 0; j < 20; j++) {
ASSERT_OK(
Put(std::to_string(i * 20 + j + 2000), rnd.RandomString(980)));
}
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
}
// It should be compacted to no more than 20 files.
ASSERT_GT(NumTableFilesAtLevel(0), 10);
ASSERT_LT(NumTableFilesAtLevel(0), 18);
// Size limit is still guaranteed.
ASSERT_LE(SizeAtLevel(0),
options.compaction_options_fifo.max_table_files_size);
}
}
/*
* This test is not reliable enough as it heavily depends on disk behavior.
* Disable as it is flaky.
*/
TEST_F(DBTest, DISABLED_RateLimitingTest) {
Options options = CurrentOptions();
options.write_buffer_size = 1 << 20; // 1MB
options.level0_file_num_compaction_trigger = 2;
options.target_file_size_base = 1 << 20; // 1MB
options.max_bytes_for_level_base = 4 << 20; // 4MB
options.max_bytes_for_level_multiplier = 4;
options.compression = kNoCompression;
options.create_if_missing = true;
options.env = env_;
options.statistics = ROCKSDB_NAMESPACE::CreateDBStatistics();
options.IncreaseParallelism(4);
DestroyAndReopen(options);
WriteOptions wo;
wo.disableWAL = true;
// # no rate limiting
Random rnd(301);
uint64_t start = env_->NowMicros();
// Write ~96M data
for (int64_t i = 0; i < (96 << 10); ++i) {
ASSERT_OK(Put(rnd.RandomString(32), rnd.RandomString((1 << 10) + 1), wo));
}
uint64_t elapsed = env_->NowMicros() - start;
double raw_rate = env_->bytes_written_ * 1000000.0 / elapsed;
uint64_t rate_limiter_drains =
TestGetTickerCount(options, NUMBER_RATE_LIMITER_DRAINS);
ASSERT_EQ(0, rate_limiter_drains);
Close();
// # rate limiting with 0.7 x threshold
options.rate_limiter.reset(
NewGenericRateLimiter(static_cast<int64_t>(0.7 * raw_rate)));
env_->bytes_written_ = 0;
DestroyAndReopen(options);
start = env_->NowMicros();
// Write ~96M data
for (int64_t i = 0; i < (96 << 10); ++i) {
ASSERT_OK(Put(rnd.RandomString(32), rnd.RandomString((1 << 10) + 1), wo));
}
rate_limiter_drains =
TestGetTickerCount(options, NUMBER_RATE_LIMITER_DRAINS) -
rate_limiter_drains;
elapsed = env_->NowMicros() - start;
Close();
ASSERT_EQ(options.rate_limiter->GetTotalBytesThrough(), env_->bytes_written_);
// Most intervals should've been drained (interval time is 100ms, elapsed is
// micros)
ASSERT_GT(rate_limiter_drains, 0);
ASSERT_LE(rate_limiter_drains, elapsed / 100000 + 1);
double ratio = env_->bytes_written_ * 1000000 / elapsed / raw_rate;
fprintf(stderr, "write rate ratio = %.2lf, expected 0.7\n", ratio);
ASSERT_TRUE(ratio < 0.8);
// # rate limiting with half of the raw_rate
options.rate_limiter.reset(
NewGenericRateLimiter(static_cast<int64_t>(raw_rate / 2)));
env_->bytes_written_ = 0;
DestroyAndReopen(options);
start = env_->NowMicros();
// Write ~96M data
for (int64_t i = 0; i < (96 << 10); ++i) {
ASSERT_OK(Put(rnd.RandomString(32), rnd.RandomString((1 << 10) + 1), wo));
}
elapsed = env_->NowMicros() - start;
rate_limiter_drains =
TestGetTickerCount(options, NUMBER_RATE_LIMITER_DRAINS) -
rate_limiter_drains;
Close();
ASSERT_EQ(options.rate_limiter->GetTotalBytesThrough(), env_->bytes_written_);
// Most intervals should've been drained (interval time is 100ms, elapsed is
// micros)
ASSERT_GT(rate_limiter_drains, elapsed / 100000 / 2);
ASSERT_LE(rate_limiter_drains, elapsed / 100000 + 1);
ratio = env_->bytes_written_ * 1000000 / elapsed / raw_rate;
fprintf(stderr, "write rate ratio = %.2lf, expected 0.5\n", ratio);
ASSERT_LT(ratio, 0.6);
}
// This is a mocked customed rate limiter without implementing optional APIs
// (e.g, RateLimiter::GetTotalPendingRequests())
class MockedRateLimiterWithNoOptionalAPIImpl : public RateLimiter {
public:
MockedRateLimiterWithNoOptionalAPIImpl() {}
~MockedRateLimiterWithNoOptionalAPIImpl() override {}
void SetBytesPerSecond(int64_t bytes_per_second) override {
(void)bytes_per_second;
}
using RateLimiter::Request;
void Request(const int64_t bytes, const Env::IOPriority pri,
Statistics* stats) override {
(void)bytes;
(void)pri;
(void)stats;
}
int64_t GetSingleBurstBytes() const override { return 200; }
int64_t GetTotalBytesThrough(
const Env::IOPriority pri = Env::IO_TOTAL) const override {
(void)pri;
return 0;
}
int64_t GetTotalRequests(
const Env::IOPriority pri = Env::IO_TOTAL) const override {
(void)pri;
return 0;
}
int64_t GetBytesPerSecond() const override { return 0; }
};
// To test that customed rate limiter not implementing optional APIs (e.g,
// RateLimiter::GetTotalPendingRequests()) works fine with RocksDB basic
// operations (e.g, Put, Get, Flush)
TEST_F(DBTest, CustomedRateLimiterWithNoOptionalAPIImplTest) {
Options options = CurrentOptions();
options.rate_limiter.reset(new MockedRateLimiterWithNoOptionalAPIImpl());
DestroyAndReopen(options);
ASSERT_OK(Put("abc", "def"));
ASSERT_EQ(Get("abc"), "def");
ASSERT_OK(Flush());
ASSERT_EQ(Get("abc"), "def");
}
TEST_F(DBTest, TableOptionsSanitizeTest) {
Options options = CurrentOptions();
options.create_if_missing = true;
DestroyAndReopen(options);
ASSERT_EQ(db_->GetOptions().allow_mmap_reads, false);
options.table_factory.reset(NewPlainTableFactory());
options.prefix_extractor.reset(NewNoopTransform());
Destroy(options);
ASSERT_TRUE(!TryReopen(options).IsNotSupported());
// Test for check of prefix_extractor when hash index is used for
// block-based table
BlockBasedTableOptions to;
to.index_type = BlockBasedTableOptions::kHashSearch;
options = CurrentOptions();
options.create_if_missing = true;
options.table_factory.reset(NewBlockBasedTableFactory(to));
ASSERT_TRUE(TryReopen(options).IsInvalidArgument());
options.prefix_extractor.reset(NewFixedPrefixTransform(1));
ASSERT_OK(TryReopen(options));
}
TEST_F(DBTest, ConcurrentMemtableNotSupported) {
Options options = CurrentOptions();
options.allow_concurrent_memtable_write = true;
options.soft_pending_compaction_bytes_limit = 0;
options.hard_pending_compaction_bytes_limit = 100;
options.create_if_missing = true;
DestroyDB(dbname_, options);
options.memtable_factory.reset(NewHashLinkListRepFactory(4, 0, 3, true, 4));
ASSERT_NOK(TryReopen(options));
options.memtable_factory.reset(new SkipListFactory);
ASSERT_OK(TryReopen(options));
ColumnFamilyOptions cf_options(options);
cf_options.memtable_factory.reset(
NewHashLinkListRepFactory(4, 0, 3, true, 4));
ColumnFamilyHandle* handle;
ASSERT_NOK(db_->CreateColumnFamily(cf_options, "name", &handle));
}
TEST_F(DBTest, SanitizeNumThreads) {
for (int attempt = 0; attempt < 2; attempt++) {
const size_t kTotalTasks = 8;
test::SleepingBackgroundTask sleeping_tasks[kTotalTasks];
Options options = CurrentOptions();
if (attempt == 0) {
options.max_background_compactions = 3;
options.max_background_flushes = 2;
}
options.create_if_missing = true;
DestroyAndReopen(options);
for (size_t i = 0; i < kTotalTasks; i++) {
// Insert 5 tasks to low priority queue and 5 tasks to high priority queue
env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask,
&sleeping_tasks[i],
(i < 4) ? Env::Priority::LOW : Env::Priority::HIGH);
}
// Wait until 10s for they are scheduled.
for (int i = 0; i < 10000; i++) {
if (options.env->GetThreadPoolQueueLen(Env::Priority::LOW) <= 1 &&
options.env->GetThreadPoolQueueLen(Env::Priority::HIGH) <= 2) {
break;
}
env_->SleepForMicroseconds(1000);
}
// pool size 3, total task 4. Queue size should be 1.
ASSERT_EQ(1U, options.env->GetThreadPoolQueueLen(Env::Priority::LOW));
// pool size 2, total task 4. Queue size should be 2.
ASSERT_EQ(2U, options.env->GetThreadPoolQueueLen(Env::Priority::HIGH));
for (size_t i = 0; i < kTotalTasks; i++) {
sleeping_tasks[i].WakeUp();
sleeping_tasks[i].WaitUntilDone();
}
ASSERT_OK(Put("abc", "def"));
ASSERT_EQ("def", Get("abc"));
ASSERT_OK(Flush());
ASSERT_EQ("def", Get("abc"));
}
}
TEST_F(DBTest, WriteSingleThreadEntry) {
std::vector<port::Thread> threads;
dbfull()->TEST_LockMutex();
auto w = dbfull()->TEST_BeginWrite();
threads.emplace_back([&] { ASSERT_OK(Put("a", "b")); });
env_->SleepForMicroseconds(10000);
threads.emplace_back([&] { ASSERT_OK(Flush()); });
env_->SleepForMicroseconds(10000);
dbfull()->TEST_UnlockMutex();
dbfull()->TEST_LockMutex();
dbfull()->TEST_EndWrite(w);
dbfull()->TEST_UnlockMutex();
for (auto& t : threads) {
t.join();
}
}
TEST_F(DBTest, ConcurrentFlushWAL) {
const size_t cnt = 100;
Options options;
options.env = env_;
WriteOptions wopt;
ReadOptions ropt;
for (bool two_write_queues : {false, true}) {
for (bool manual_wal_flush : {false, true}) {
options.two_write_queues = two_write_queues;
options.manual_wal_flush = manual_wal_flush;
options.create_if_missing = true;
DestroyAndReopen(options);
std::vector<port::Thread> threads;
threads.emplace_back([&] {
for (size_t i = 0; i < cnt; i++) {
auto istr = std::to_string(i);
ASSERT_OK(db_->Put(wopt, db_->DefaultColumnFamily(), "a" + istr,
"b" + istr));
}
});
if (two_write_queues) {
threads.emplace_back([&] {
for (size_t i = cnt; i < 2 * cnt; i++) {
auto istr = std::to_string(i);
WriteBatch batch(0 /* reserved_bytes */, 0 /* max_bytes */,
wopt.protection_bytes_per_key,
0 /* default_cf_ts_sz */);
ASSERT_OK(batch.Put("a" + istr, "b" + istr));
ASSERT_OK(
dbfull()->WriteImpl(wopt, &batch, nullptr, nullptr, 0, true));
}
});
}
threads.emplace_back([&] {
for (size_t i = 0; i < cnt * 100; i++) { // FlushWAL is faster than Put
ASSERT_OK(db_->FlushWAL(false));
}
});
for (auto& t : threads) {
t.join();
}
options.create_if_missing = false;
// Recover from the wal and make sure that it is not corrupted
Reopen(options);
for (size_t i = 0; i < cnt; i++) {
PinnableSlice pval;
auto istr = std::to_string(i);
ASSERT_OK(
db_->Get(ropt, db_->DefaultColumnFamily(), "a" + istr, &pval));
ASSERT_TRUE(pval == ("b" + istr));
}
}
}
}
// This test failure will be caught with a probability
TEST_F(DBTest, ManualFlushWalAndWriteRace) {
Options options;
options.env = env_;
options.manual_wal_flush = true;
options.create_if_missing = true;
DestroyAndReopen(options);
WriteOptions wopts;
wopts.sync = true;
port::Thread writeThread([&]() {
for (int i = 0; i < 100; i++) {
auto istr = std::to_string(i);
ASSERT_OK(dbfull()->Put(wopts, "key_" + istr, "value_" + istr));
}
});
port::Thread flushThread([&]() {
for (int i = 0; i < 100; i++) {
ASSERT_OK(dbfull()->FlushWAL(false));
}
});
writeThread.join();
flushThread.join();
ASSERT_OK(dbfull()->Put(wopts, "foo1", "value1"));
ASSERT_OK(dbfull()->Put(wopts, "foo2", "value2"));
Reopen(options);
ASSERT_EQ("value1", Get("foo1"));
ASSERT_EQ("value2", Get("foo2"));
}
TEST_F(DBTest, DynamicMemtableOptions) {
const uint64_t k64KB = 1 << 16;
const uint64_t k128KB = 1 << 17;
const uint64_t k5KB = 5 * 1024;
Options options;
options.env = env_;
options.create_if_missing = true;
options.compression = kNoCompression;
options.max_background_compactions = 1;
options.write_buffer_size = k64KB;
options.arena_block_size = 16 * 1024;
options.max_write_buffer_number = 2;
// Don't trigger compact/slowdown/stop
options.level0_file_num_compaction_trigger = 1024;
options.level0_slowdown_writes_trigger = 1024;
options.level0_stop_writes_trigger = 1024;
DestroyAndReopen(options);
auto gen_l0_kb = [this](int size) {
const int kNumPutsBeforeWaitForFlush = 64;
Random rnd(301);
for (int i = 0; i < size; i++) {
ASSERT_OK(Put(Key(i), rnd.RandomString(1024)));
// The following condition prevents a race condition between flush jobs
// acquiring work and this thread filling up multiple memtables. Without
// this, the flush might produce less files than expected because
// multiple memtables are flushed into a single L0 file. This race
// condition affects assertion (A).
if (i % kNumPutsBeforeWaitForFlush == kNumPutsBeforeWaitForFlush - 1) {
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable());
}
}
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable());
};
// Test write_buffer_size
gen_l0_kb(64);
ASSERT_EQ(NumTableFilesAtLevel(0), 1);
ASSERT_LT(SizeAtLevel(0), k64KB + k5KB);
ASSERT_GT(SizeAtLevel(0), k64KB - k5KB * 2);
// Clean up L0
ASSERT_OK(dbfull()->CompactRange(CompactRangeOptions(), nullptr, nullptr));
ASSERT_EQ(NumTableFilesAtLevel(0), 0);
// Increase buffer size
ASSERT_OK(dbfull()->SetOptions({
{"write_buffer_size", "131072"},
}));
// The existing memtable inflated 64KB->128KB when we invoked SetOptions().
// Write 192KB, we should have a 128KB L0 file and a memtable with 64KB data.
gen_l0_kb(192);
ASSERT_EQ(NumTableFilesAtLevel(0), 1); // (A)
ASSERT_LT(SizeAtLevel(0), k128KB + 2 * k5KB);
ASSERT_GT(SizeAtLevel(0), k128KB - 4 * k5KB);
// Decrease buffer size below current usage
ASSERT_OK(dbfull()->SetOptions({
{"write_buffer_size", "65536"},
}));
// The existing memtable became eligible for flush when we reduced its
// capacity to 64KB. Two keys need to be added to trigger flush: first causes
// memtable to be marked full, second schedules the flush. Then we should have
// a 128KB L0 file, a 64KB L0 file, and a memtable with just one key.
gen_l0_kb(2);
ASSERT_EQ(NumTableFilesAtLevel(0), 2);
ASSERT_LT(SizeAtLevel(0), k128KB + k64KB + 2 * k5KB);
ASSERT_GT(SizeAtLevel(0), k128KB + k64KB - 4 * k5KB);
// Test max_write_buffer_number
// Block compaction thread, which will also block the flushes because
// max_background_flushes == 0, so flushes are getting executed by the
// compaction thread
env_->SetBackgroundThreads(1, Env::LOW);
test::SleepingBackgroundTask sleeping_task_low;
env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &sleeping_task_low,
Env::Priority::LOW);
// Start from scratch and disable compaction/flush. Flush can only happen
// during compaction but trigger is pretty high
options.disable_auto_compactions = true;
DestroyAndReopen(options);
env_->SetBackgroundThreads(0, Env::HIGH);
// Put until writes are stopped, bounded by 256 puts. We should see stop at
// ~128KB
int count = 0;
Random rnd(301);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"DBImpl::DelayWrite:Wait",
[&](void* /*arg*/) { sleeping_task_low.WakeUp(); });
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
while (!sleeping_task_low.WokenUp() && count < 256) {
ASSERT_OK(Put(Key(count), rnd.RandomString(1024), WriteOptions()));
count++;
}
ASSERT_GT(static_cast<double>(count), 128 * 0.8);
ASSERT_LT(static_cast<double>(count), 128 * 1.2);
sleeping_task_low.WaitUntilDone();
// Increase
ASSERT_OK(dbfull()->SetOptions({
{"max_write_buffer_number", "8"},
}));
// Clean up memtable and L0
ASSERT_OK(dbfull()->CompactRange(CompactRangeOptions(), nullptr, nullptr));
sleeping_task_low.Reset();
env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &sleeping_task_low,
Env::Priority::LOW);
count = 0;
while (!sleeping_task_low.WokenUp() && count < 1024) {
ASSERT_OK(Put(Key(count), rnd.RandomString(1024), WriteOptions()));
count++;
}
// Windows fails this test. Will tune in the future and figure out
// approp number
#ifndef OS_WIN
ASSERT_GT(static_cast<double>(count), 512 * 0.8);
ASSERT_LT(static_cast<double>(count), 512 * 1.2);
#endif
sleeping_task_low.WaitUntilDone();
// Decrease
ASSERT_OK(dbfull()->SetOptions({
{"max_write_buffer_number", "4"},
}));
// Clean up memtable and L0
ASSERT_OK(dbfull()->CompactRange(CompactRangeOptions(), nullptr, nullptr));
sleeping_task_low.Reset();
env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &sleeping_task_low,
Env::Priority::LOW);
count = 0;
while (!sleeping_task_low.WokenUp() && count < 1024) {
ASSERT_OK(Put(Key(count), rnd.RandomString(1024), WriteOptions()));
count++;
}
// Windows fails this test. Will tune in the future and figure out
// approp number
#ifndef OS_WIN
ASSERT_GT(static_cast<double>(count), 256 * 0.8);
ASSERT_LT(static_cast<double>(count), 266 * 1.2);
#endif
sleeping_task_low.WaitUntilDone();
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
}
#ifdef ROCKSDB_USING_THREAD_STATUS
namespace {
void VerifyOperationCount(Env* env, ThreadStatus::OperationType op_type,
int expected_count) {
int op_count = 0;
std::vector<ThreadStatus> thread_list;
ASSERT_OK(env->GetThreadList(&thread_list));
for (auto thread : thread_list) {
if (thread.operation_type == op_type) {
op_count++;
}
}
ASSERT_EQ(op_count, expected_count);
}
} // anonymous namespace
TEST_F(DBTest, GetThreadStatus) {
Options options;
options.env = env_;
options.enable_thread_tracking = true;
TryReopen(options);
std::vector<ThreadStatus> thread_list;
Status s = env_->GetThreadList(&thread_list);
for (int i = 0; i < 2; ++i) {
// repeat the test with differet number of high / low priority threads
const int kTestCount = 3;
const unsigned int kHighPriCounts[kTestCount] = {3, 2, 5};
const unsigned int kLowPriCounts[kTestCount] = {10, 15, 3};
const unsigned int kBottomPriCounts[kTestCount] = {2, 1, 4};
for (int test = 0; test < kTestCount; ++test) {
// Change the number of threads in high / low priority pool.
env_->SetBackgroundThreads(kHighPriCounts[test], Env::HIGH);
env_->SetBackgroundThreads(kLowPriCounts[test], Env::LOW);
env_->SetBackgroundThreads(kBottomPriCounts[test], Env::BOTTOM);
// Wait to ensure the all threads has been registered
unsigned int thread_type_counts[ThreadStatus::NUM_THREAD_TYPES];
// TODO(ajkr): it'd be better if SetBackgroundThreads returned only after
// all threads have been registered.
// Try up to 60 seconds.
for (int num_try = 0; num_try < 60000; num_try++) {
env_->SleepForMicroseconds(1000);
thread_list.clear();
s = env_->GetThreadList(&thread_list);
ASSERT_OK(s);
memset(thread_type_counts, 0, sizeof(thread_type_counts));
for (auto thread : thread_list) {
ASSERT_LT(thread.thread_type, ThreadStatus::NUM_THREAD_TYPES);
thread_type_counts[thread.thread_type]++;
}
if (thread_type_counts[ThreadStatus::HIGH_PRIORITY] ==
kHighPriCounts[test] &&
thread_type_counts[ThreadStatus::LOW_PRIORITY] ==
kLowPriCounts[test] &&
thread_type_counts[ThreadStatus::BOTTOM_PRIORITY] ==
kBottomPriCounts[test]) {
break;
}
}
// Verify the number of high-priority threads
ASSERT_EQ(thread_type_counts[ThreadStatus::HIGH_PRIORITY],
kHighPriCounts[test]);
// Verify the number of low-priority threads
ASSERT_EQ(thread_type_counts[ThreadStatus::LOW_PRIORITY],
kLowPriCounts[test]);
// Verify the number of bottom-priority threads
ASSERT_EQ(thread_type_counts[ThreadStatus::BOTTOM_PRIORITY],
kBottomPriCounts[test]);
}
if (i == 0) {
// repeat the test with multiple column families
CreateAndReopenWithCF({"pikachu", "about-to-remove"}, options);
env_->GetThreadStatusUpdater()->TEST_VerifyColumnFamilyInfoMap(handles_,
true);
}
}
ASSERT_OK(db_->DropColumnFamily(handles_[2]));
delete handles_[2];
handles_.erase(handles_.begin() + 2);
env_->GetThreadStatusUpdater()->TEST_VerifyColumnFamilyInfoMap(handles_,
true);
Close();
env_->GetThreadStatusUpdater()->TEST_VerifyColumnFamilyInfoMap(handles_,
true);
}
TEST_F(DBTest, DisableThreadStatus) {
Options options;
options.env = env_;
options.enable_thread_tracking = false;
TryReopen(options);
CreateAndReopenWithCF({"pikachu", "about-to-remove"}, options);
// Verify non of the column family info exists
env_->GetThreadStatusUpdater()->TEST_VerifyColumnFamilyInfoMap(handles_,
false);
}
TEST_F(DBTest, ThreadStatusFlush) {
Options options;
options.env = env_;
options.write_buffer_size = 100000; // Small write buffer
options.enable_thread_tracking = true;
options = CurrentOptions(options);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency({
{"FlushJob::FlushJob()", "DBTest::ThreadStatusFlush:1"},
{"DBTest::ThreadStatusFlush:2", "FlushJob::WriteLevel0Table"},
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
CreateAndReopenWithCF({"pikachu"}, options);
VerifyOperationCount(env_, ThreadStatus::OP_FLUSH, 0);
ASSERT_OK(Put(1, "foo", "v1"));
ASSERT_EQ("v1", Get(1, "foo"));
VerifyOperationCount(env_, ThreadStatus::OP_FLUSH, 0);
uint64_t num_running_flushes = 0;
ASSERT_TRUE(db_->GetIntProperty(DB::Properties::kNumRunningFlushes,
&num_running_flushes));
ASSERT_EQ(num_running_flushes, 0);
ASSERT_OK(Put(1, "k1", std::string(100000, 'x'))); // Fill memtable
ASSERT_OK(Put(1, "k2", std::string(100000, 'y'))); // Trigger flush
// The first sync point is to make sure there's one flush job
// running when we perform VerifyOperationCount().
TEST_SYNC_POINT("DBTest::ThreadStatusFlush:1");
VerifyOperationCount(env_, ThreadStatus::OP_FLUSH, 1);
ASSERT_TRUE(db_->GetIntProperty(DB::Properties::kNumRunningFlushes,
&num_running_flushes));
ASSERT_EQ(num_running_flushes, 1);
// This second sync point is to ensure the flush job will not
// be completed until we already perform VerifyOperationCount().
TEST_SYNC_POINT("DBTest::ThreadStatusFlush:2");
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
}
TEST_P(DBTestWithParam, ThreadStatusSingleCompaction) {
const int kTestKeySize = 16;
const int kTestValueSize = 984;
const int kEntrySize = kTestKeySize + kTestValueSize;
const int kEntriesPerBuffer = 100;
Options options;
options.create_if_missing = true;
options.write_buffer_size = kEntrySize * kEntriesPerBuffer;
options.compaction_style = kCompactionStyleLevel;
options.target_file_size_base = options.write_buffer_size;
options.max_bytes_for_level_base = options.target_file_size_base * 2;
options.max_bytes_for_level_multiplier = 2;
options.compression = kNoCompression;
options = CurrentOptions(options);
options.env = env_;
options.enable_thread_tracking = true;
const int kNumL0Files = 4;
options.level0_file_num_compaction_trigger = kNumL0Files;
options.max_subcompactions = max_subcompactions_;
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency({
{"DBTest::ThreadStatusSingleCompaction:0", "DBImpl::BGWorkCompaction"},
{"CompactionJob::Run():Start", "DBTest::ThreadStatusSingleCompaction:1"},
{"DBTest::ThreadStatusSingleCompaction:2", "CompactionJob::Run():End"},
});
for (int tests = 0; tests < 2; ++tests) {
DestroyAndReopen(options);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->ClearTrace();
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
Random rnd(301);
// The Put Phase.
for (int file = 0; file < kNumL0Files; ++file) {
for (int key = 0; key < kEntriesPerBuffer; ++key) {
ASSERT_OK(Put(std::to_string(key + file * kEntriesPerBuffer),
rnd.RandomString(kTestValueSize)));
}
ASSERT_OK(Flush());
}
// This makes sure a compaction won't be scheduled until
// we have done with the above Put Phase.
uint64_t num_running_compactions = 0;
ASSERT_TRUE(db_->GetIntProperty(DB::Properties::kNumRunningCompactions,
&num_running_compactions));
ASSERT_EQ(num_running_compactions, 0);
TEST_SYNC_POINT("DBTest::ThreadStatusSingleCompaction:0");
ASSERT_GE(NumTableFilesAtLevel(0),
options.level0_file_num_compaction_trigger);
// This makes sure at least one compaction is running.
TEST_SYNC_POINT("DBTest::ThreadStatusSingleCompaction:1");
if (options.enable_thread_tracking) {
// expecting one single L0 to L1 compaction
VerifyOperationCount(env_, ThreadStatus::OP_COMPACTION, 1);
} else {
// If thread tracking is not enabled, compaction count should be 0.
VerifyOperationCount(env_, ThreadStatus::OP_COMPACTION, 0);
}
ASSERT_TRUE(db_->GetIntProperty(DB::Properties::kNumRunningCompactions,
&num_running_compactions));
ASSERT_EQ(num_running_compactions, 1);
// TODO(yhchiang): adding assert to verify each compaction stage.
TEST_SYNC_POINT("DBTest::ThreadStatusSingleCompaction:2");
// repeat the test with disabling thread tracking.
options.enable_thread_tracking = false;
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
}
}
TEST_P(DBTestWithParam, PreShutdownManualCompaction) {
Options options = CurrentOptions();
options.max_subcompactions = max_subcompactions_;
CreateAndReopenWithCF({"pikachu"}, options);
// iter - 0 with 7 levels
// iter - 1 with 3 levels
for (int iter = 0; iter < 2; ++iter) {
MakeTables(3, "p", "q", 1);
ASSERT_EQ("1,1,1", FilesPerLevel(1));
// Compaction range falls before files
Compact(1, "", "c");
ASSERT_EQ("1,1,1", FilesPerLevel(1));
// Compaction range falls after files
Compact(1, "r", "z");
ASSERT_EQ("1,1,1", FilesPerLevel(1));
// Compaction range overlaps files
Compact(1, "p", "q");
ASSERT_EQ("0,0,1", FilesPerLevel(1));
// Populate a different range
MakeTables(3, "c", "e", 1);
ASSERT_EQ("1,1,2", FilesPerLevel(1));
// Compact just the new range
Compact(1, "b", "f");
ASSERT_EQ("0,0,2", FilesPerLevel(1));
// Compact all
MakeTables(1, "a", "z", 1);
ASSERT_EQ("1,0,2", FilesPerLevel(1));
CancelAllBackgroundWork(db_);
ASSERT_TRUE(
db_->CompactRange(CompactRangeOptions(), handles_[1], nullptr, nullptr)
.IsShutdownInProgress());
ASSERT_EQ("1,0,2", FilesPerLevel(1));
if (iter == 0) {
options = CurrentOptions();
options.num_levels = 3;
options.create_if_missing = true;
DestroyAndReopen(options);
CreateAndReopenWithCF({"pikachu"}, options);
}
}
}
TEST_F(DBTest, PreShutdownFlush) {
Options options = CurrentOptions();
CreateAndReopenWithCF({"pikachu"}, options);
ASSERT_OK(Put(1, "key", "value"));
CancelAllBackgroundWork(db_);
Status s =
db_->CompactRange(CompactRangeOptions(), handles_[1], nullptr, nullptr);
ASSERT_TRUE(s.IsShutdownInProgress());
}
TEST_P(DBTestWithParam, PreShutdownMultipleCompaction) {
const int kTestKeySize = 16;
const int kTestValueSize = 984;
const int kEntrySize = kTestKeySize + kTestValueSize;
const int kEntriesPerBuffer = 40;
const int kNumL0Files = 4;
const int kHighPriCount = 3;
const int kLowPriCount = 5;
env_->SetBackgroundThreads(kHighPriCount, Env::HIGH);
env_->SetBackgroundThreads(kLowPriCount, Env::LOW);
Options options;
options.create_if_missing = true;
options.write_buffer_size = kEntrySize * kEntriesPerBuffer;
options.compaction_style = kCompactionStyleLevel;
options.target_file_size_base = options.write_buffer_size;
options.max_bytes_for_level_base =
options.target_file_size_base * kNumL0Files;
options.compression = kNoCompression;
options = CurrentOptions(options);
options.env = env_;
options.enable_thread_tracking = true;
options.level0_file_num_compaction_trigger = kNumL0Files;
options.max_bytes_for_level_multiplier = 2;
options.max_background_compactions = kLowPriCount;
options.level0_stop_writes_trigger = 1 << 10;
options.level0_slowdown_writes_trigger = 1 << 10;
options.max_subcompactions = max_subcompactions_;
TryReopen(options);
Random rnd(301);
std::vector<ThreadStatus> thread_list;
// Delay both flush and compaction
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency(
{{"FlushJob::FlushJob()", "CompactionJob::Run():Start"},
{"CompactionJob::Run():Start",
"DBTest::PreShutdownMultipleCompaction:Preshutdown"},
{"CompactionJob::Run():Start",
"DBTest::PreShutdownMultipleCompaction:VerifyCompaction"},
{"DBTest::PreShutdownMultipleCompaction:Preshutdown",
"CompactionJob::Run():End"},
{"CompactionJob::Run():End",
"DBTest::PreShutdownMultipleCompaction:VerifyPreshutdown"}});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
// Make rocksdb busy
int key = 0;
// check how many threads are doing compaction using GetThreadList
int operation_count[ThreadStatus::NUM_OP_TYPES] = {0};
for (int file = 0; file < 16 * kNumL0Files; ++file) {
for (int k = 0; k < kEntriesPerBuffer; ++k) {
ASSERT_OK(Put(std::to_string(key++), rnd.RandomString(kTestValueSize)));
}
ASSERT_OK(env_->GetThreadList(&thread_list));
for (auto thread : thread_list) {
operation_count[thread.operation_type]++;
}
// Speed up the test
if (operation_count[ThreadStatus::OP_FLUSH] > 1 &&
operation_count[ThreadStatus::OP_COMPACTION] >
0.6 * options.max_background_compactions) {
break;
}
if (file == 15 * kNumL0Files) {
TEST_SYNC_POINT("DBTest::PreShutdownMultipleCompaction:Preshutdown");
}
}
TEST_SYNC_POINT("DBTest::PreShutdownMultipleCompaction:Preshutdown");
ASSERT_GE(operation_count[ThreadStatus::OP_COMPACTION], 1);
CancelAllBackgroundWork(db_);
TEST_SYNC_POINT("DBTest::PreShutdownMultipleCompaction:VerifyPreshutdown");
ASSERT_OK(dbfull()->TEST_WaitForBackgroundWork());
// Record the number of compactions at a time.
for (int i = 0; i < ThreadStatus::NUM_OP_TYPES; ++i) {
operation_count[i] = 0;
}
ASSERT_OK(env_->GetThreadList(&thread_list));
for (auto thread : thread_list) {
operation_count[thread.operation_type]++;
}
ASSERT_EQ(operation_count[ThreadStatus::OP_COMPACTION], 0);
}
TEST_P(DBTestWithParam, PreShutdownCompactionMiddle) {
const int kTestKeySize = 16;
const int kTestValueSize = 984;
const int kEntrySize = kTestKeySize + kTestValueSize;
const int kEntriesPerBuffer = 40;
const int kNumL0Files = 4;
const int kHighPriCount = 3;
const int kLowPriCount = 5;
env_->SetBackgroundThreads(kHighPriCount, Env::HIGH);
env_->SetBackgroundThreads(kLowPriCount, Env::LOW);
Options options;
options.create_if_missing = true;
options.write_buffer_size = kEntrySize * kEntriesPerBuffer;
options.compaction_style = kCompactionStyleLevel;
options.target_file_size_base = options.write_buffer_size;
options.max_bytes_for_level_base =
options.target_file_size_base * kNumL0Files;
options.compression = kNoCompression;
options = CurrentOptions(options);
options.env = env_;
options.enable_thread_tracking = true;
options.level0_file_num_compaction_trigger = kNumL0Files;
options.max_bytes_for_level_multiplier = 2;
options.max_background_compactions = kLowPriCount;
options.level0_stop_writes_trigger = 1 << 10;
options.level0_slowdown_writes_trigger = 1 << 10;
options.max_subcompactions = max_subcompactions_;
TryReopen(options);
Random rnd(301);
std::vector<ThreadStatus> thread_list;
// Delay both flush and compaction
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency(
{{"DBTest::PreShutdownCompactionMiddle:Preshutdown",
"CompactionJob::Run():Inprogress"},
{"CompactionJob::Run():Start",
"DBTest::PreShutdownCompactionMiddle:VerifyCompaction"},
{"CompactionJob::Run():Inprogress", "CompactionJob::Run():End"},
{"CompactionJob::Run():End",
"DBTest::PreShutdownCompactionMiddle:VerifyPreshutdown"}});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
// Make rocksdb busy
int key = 0;
// check how many threads are doing compaction using GetThreadList
int operation_count[ThreadStatus::NUM_OP_TYPES] = {0};
for (int file = 0; file < 16 * kNumL0Files; ++file) {
for (int k = 0; k < kEntriesPerBuffer; ++k) {
ASSERT_OK(Put(std::to_string(key++), rnd.RandomString(kTestValueSize)));
}
ASSERT_OK(env_->GetThreadList(&thread_list));
for (auto thread : thread_list) {
operation_count[thread.operation_type]++;
}
// Speed up the test
if (operation_count[ThreadStatus::OP_FLUSH] > 1 &&
operation_count[ThreadStatus::OP_COMPACTION] >
0.6 * options.max_background_compactions) {
break;
}
if (file == 15 * kNumL0Files) {
TEST_SYNC_POINT("DBTest::PreShutdownCompactionMiddle:VerifyCompaction");
}
}
ASSERT_GE(operation_count[ThreadStatus::OP_COMPACTION], 1);
CancelAllBackgroundWork(db_);
TEST_SYNC_POINT("DBTest::PreShutdownCompactionMiddle:Preshutdown");
TEST_SYNC_POINT("DBTest::PreShutdownCompactionMiddle:VerifyPreshutdown");
ASSERT_OK(dbfull()->TEST_WaitForBackgroundWork());
// Record the number of compactions at a time.
for (int i = 0; i < ThreadStatus::NUM_OP_TYPES; ++i) {
operation_count[i] = 0;
}
ASSERT_OK(env_->GetThreadList(&thread_list));
for (auto thread : thread_list) {
operation_count[thread.operation_type]++;
}
ASSERT_EQ(operation_count[ThreadStatus::OP_COMPACTION], 0);
}
#endif // ROCKSDB_USING_THREAD_STATUS
TEST_F(DBTest, FlushOnDestroy) {
WriteOptions wo;
wo.disableWAL = true;
ASSERT_OK(Put("foo", "v1", wo));
CancelAllBackgroundWork(db_);
}
TEST_F(DBTest, DynamicLevelCompressionPerLevel) {
if (!Snappy_Supported()) {
return;
}
const int kNKeys = 120;
int keys[kNKeys];
for (int i = 0; i < kNKeys; i++) {
keys[i] = i;
}
RandomShuffle(std::begin(keys), std::end(keys));
Random rnd(301);
Options options;
options.env = env_;
options.create_if_missing = true;
options.db_write_buffer_size = 20480;
options.write_buffer_size = 20480;
options.max_write_buffer_number = 2;
options.level0_file_num_compaction_trigger = 2;
options.level0_slowdown_writes_trigger = 2;
options.level0_stop_writes_trigger = 2;
options.target_file_size_base = 20480;
options.level_compaction_dynamic_level_bytes = true;
options.max_bytes_for_level_base = 102400;
options.max_bytes_for_level_multiplier = 4;
options.max_background_compactions = 1;
options.num_levels = 5;
options.compression_per_level.resize(3);
options.compression_per_level[0] = kNoCompression;
options.compression_per_level[1] = kNoCompression;
options.compression_per_level[2] = kSnappyCompression;
OnFileDeletionListener* listener = new OnFileDeletionListener();
options.listeners.emplace_back(listener);
DestroyAndReopen(options);
// Insert more than 80K. L4 should be base level. Neither L0 nor L4 should
// be compressed, so total data size should be more than 80K.
for (int i = 0; i < 20; i++) {
ASSERT_OK(Put(Key(keys[i]), CompressibleString(&rnd, 4000)));
}
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_EQ(NumTableFilesAtLevel(1), 0);
ASSERT_EQ(NumTableFilesAtLevel(2), 0);
ASSERT_EQ(NumTableFilesAtLevel(3), 0);
// Assuming each files' metadata is at least 50 bytes/
ASSERT_GT(SizeAtLevel(0) + SizeAtLevel(4), 20U * 4000U + 50U * 4);
// Insert 400KB. Some data will be compressed
for (int i = 21; i < 120; i++) {
ASSERT_OK(Put(Key(keys[i]), CompressibleString(&rnd, 4000)));
}
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_EQ(NumTableFilesAtLevel(1), 0);
ASSERT_EQ(NumTableFilesAtLevel(2), 0);
ASSERT_LT(SizeAtLevel(0) + SizeAtLevel(3) + SizeAtLevel(4),
120U * 4000U + 50U * 24);
// Make sure data in files in L3 is not compacted by removing all files
// in L4 and calculate number of rows
ASSERT_OK(dbfull()->SetOptions({
{"disable_auto_compactions", "true"},
}));
ColumnFamilyMetaData cf_meta;
db_->GetColumnFamilyMetaData(&cf_meta);
for (auto file : cf_meta.levels[4].files) {
listener->SetExpectedFileName(dbname_ + file.name);
ASSERT_OK(dbfull()->DeleteFile(file.name));
}
listener->VerifyMatchedCount(cf_meta.levels[4].files.size());
int num_keys = 0;
std::unique_ptr<Iterator> iter(db_->NewIterator(ReadOptions()));
for (iter->SeekToFirst(); iter->Valid(); iter->Next()) {
num_keys++;
}
ASSERT_OK(iter->status());
ASSERT_GT(SizeAtLevel(0) + SizeAtLevel(3), num_keys * 4000U + num_keys * 10U);
}
TEST_F(DBTest, DynamicLevelCompressionPerLevel2) {
if (!Snappy_Supported() || !LZ4_Supported() || !Zlib_Supported()) {
return;
}
const int kNKeys = 500;
int keys[kNKeys];
for (int i = 0; i < kNKeys; i++) {
keys[i] = i;
}
RandomShuffle(std::begin(keys), std::end(keys));
Random rnd(301);
Options options;
options.create_if_missing = true;
options.db_write_buffer_size = 6000000;
options.write_buffer_size = 600000;
options.max_write_buffer_number = 2;
options.level0_file_num_compaction_trigger = 2;
options.level0_slowdown_writes_trigger = 2;
options.level0_stop_writes_trigger = 2;
options.soft_pending_compaction_bytes_limit = 1024 * 1024;
options.target_file_size_base = 20;
options.env = env_;
options.level_compaction_dynamic_level_bytes = true;
options.max_bytes_for_level_base = 200;
options.max_bytes_for_level_multiplier = 8;
options.max_background_compactions = 1;
options.num_levels = 5;
std::shared_ptr<mock::MockTableFactory> mtf(new mock::MockTableFactory);
options.table_factory = mtf;
options.compression_per_level.resize(3);
options.compression_per_level[0] = kNoCompression;
options.compression_per_level[1] = kLZ4Compression;
options.compression_per_level[2] = kZlibCompression;
DestroyAndReopen(options);
// When base level is L4, L4 is LZ4.
std::atomic<int> num_zlib(0);
std::atomic<int> num_lz4(0);
std::atomic<int> num_no(0);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"LevelCompactionPicker::PickCompaction:Return", [&](void* arg) {
Compaction* compaction = reinterpret_cast<Compaction*>(arg);
if (compaction->output_level() == 4) {
ASSERT_TRUE(compaction->output_compression() == kLZ4Compression);
num_lz4.fetch_add(1);
}
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"FlushJob::WriteLevel0Table:output_compression", [&](void* arg) {
auto* compression = reinterpret_cast<CompressionType*>(arg);
ASSERT_TRUE(*compression == kNoCompression);
num_no.fetch_add(1);
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
for (int i = 0; i < 100; i++) {
std::string value = rnd.RandomString(200);
ASSERT_OK(Put(Key(keys[i]), value));
if (i % 25 == 24) {
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
}
}
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->ClearAllCallBacks();
ASSERT_EQ(NumTableFilesAtLevel(1), 0);
ASSERT_EQ(NumTableFilesAtLevel(2), 0);
ASSERT_EQ(NumTableFilesAtLevel(3), 0);
ASSERT_GT(NumTableFilesAtLevel(4), 0);
ASSERT_GT(num_no.load(), 2);
ASSERT_GT(num_lz4.load(), 0);
int prev_num_files_l4 = NumTableFilesAtLevel(4);
// After base level turn L4->L3, L3 becomes LZ4 and L4 becomes Zlib
num_lz4.store(0);
num_no.store(0);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"LevelCompactionPicker::PickCompaction:Return", [&](void* arg) {
Compaction* compaction = reinterpret_cast<Compaction*>(arg);
if (compaction->output_level() == 4 && compaction->start_level() == 3) {
ASSERT_TRUE(compaction->output_compression() == kZlibCompression);
num_zlib.fetch_add(1);
} else {
ASSERT_TRUE(compaction->output_compression() == kLZ4Compression);
num_lz4.fetch_add(1);
}
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"FlushJob::WriteLevel0Table:output_compression", [&](void* arg) {
auto* compression = reinterpret_cast<CompressionType*>(arg);
ASSERT_TRUE(*compression == kNoCompression);
num_no.fetch_add(1);
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
for (int i = 101; i < 500; i++) {
std::string value = rnd.RandomString(200);
ASSERT_OK(Put(Key(keys[i]), value));
if (i % 100 == 99) {
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
}
}
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->ClearAllCallBacks();
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
ASSERT_EQ(NumTableFilesAtLevel(1), 0);
ASSERT_EQ(NumTableFilesAtLevel(2), 0);
ASSERT_GT(NumTableFilesAtLevel(3), 0);
ASSERT_GT(NumTableFilesAtLevel(4), prev_num_files_l4);
ASSERT_GT(num_no.load(), 2);
ASSERT_GT(num_lz4.load(), 0);
ASSERT_GT(num_zlib.load(), 0);
}
TEST_F(DBTest, DynamicCompactionOptions) {
// minimum write buffer size is enforced at 64KB
const uint64_t k32KB = 1 << 15;
const uint64_t k64KB = 1 << 16;
const uint64_t k128KB = 1 << 17;
const uint64_t k1MB = 1 << 20;
const uint64_t k4KB = 1 << 12;
Options options;
options.level_compaction_dynamic_level_bytes = false;
options.env = env_;
options.create_if_missing = true;
options.compression = kNoCompression;
options.soft_pending_compaction_bytes_limit = 1024 * 1024;
options.write_buffer_size = k64KB;
options.arena_block_size = 4 * k4KB;
options.max_write_buffer_number = 2;
// Compaction related options
options.level0_file_num_compaction_trigger = 3;
options.level0_slowdown_writes_trigger = 4;
options.level0_stop_writes_trigger = 8;
options.target_file_size_base = k64KB;
options.max_compaction_bytes = options.target_file_size_base * 10;
options.target_file_size_multiplier = 1;
options.max_bytes_for_level_base = k128KB;
options.max_bytes_for_level_multiplier = 4;
// Block flush thread and disable compaction thread
env_->SetBackgroundThreads(1, Env::LOW);
env_->SetBackgroundThreads(1, Env::HIGH);
DestroyAndReopen(options);
auto gen_l0_kb = [this](int start, int size, int stride) {
Random rnd(301);
for (int i = 0; i < size; i++) {
ASSERT_OK(Put(Key(start + stride * i), rnd.RandomString(1024)));
}
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable());
};
// Write 3 files that have the same key range.
// Since level0_file_num_compaction_trigger is 3, compaction should be
// triggered. The compaction should result in one L1 file
gen_l0_kb(0, 64, 1);
ASSERT_EQ(NumTableFilesAtLevel(0), 1);
gen_l0_kb(0, 64, 1);
ASSERT_EQ(NumTableFilesAtLevel(0), 2);
gen_l0_kb(0, 64, 1);
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_EQ("0,1", FilesPerLevel());
std::vector<LiveFileMetaData> metadata;
db_->GetLiveFilesMetaData(&metadata);
ASSERT_EQ(1U, metadata.size());
ASSERT_LE(metadata[0].size, k64KB + k4KB);
ASSERT_GE(metadata[0].size, k64KB - k4KB);
// Test compaction trigger and target_file_size_base
// Reduce compaction trigger to 2, and reduce L1 file size to 32KB.
// Writing to 64KB L0 files should trigger a compaction. Since these
// 2 L0 files have the same key range, compaction merge them and should
// result in 2 32KB L1 files.
ASSERT_OK(
dbfull()->SetOptions({{"level0_file_num_compaction_trigger", "2"},
{"target_file_size_base", std::to_string(k32KB)}}));
gen_l0_kb(0, 64, 1);
ASSERT_EQ("1,1", FilesPerLevel());
gen_l0_kb(0, 64, 1);
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_EQ("0,2", FilesPerLevel());
metadata.clear();
db_->GetLiveFilesMetaData(&metadata);
ASSERT_EQ(2U, metadata.size());
ASSERT_LE(metadata[0].size, k32KB + k4KB);
ASSERT_GE(metadata[0].size, k32KB - k4KB);
ASSERT_LE(metadata[1].size, k32KB + k4KB);
ASSERT_GE(metadata[1].size, k32KB - k4KB);
// Test max_bytes_for_level_base
// Increase level base size to 256KB and write enough data that will
// fill L1 and L2. L1 size should be around 256KB while L2 size should be
// around 256KB x 4.
ASSERT_OK(dbfull()->SetOptions(
{{"max_bytes_for_level_base", std::to_string(k1MB)}}));
// writing 96 x 64KB => 6 * 1024KB
// (L1 + L2) = (1 + 4) * 1024KB
for (int i = 0; i < 96; ++i) {
gen_l0_kb(i, 64, 96);
}
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_GT(SizeAtLevel(1), k1MB / 2);
ASSERT_LT(SizeAtLevel(1), k1MB + k1MB / 2);
// Within (0.5, 1.5) of 4MB.
ASSERT_GT(SizeAtLevel(2), 2 * k1MB);
ASSERT_LT(SizeAtLevel(2), 6 * k1MB);
// Test max_bytes_for_level_multiplier and
// max_bytes_for_level_base. Now, reduce both mulitplier and level base,
// After filling enough data that can fit in L1 - L3, we should see L1 size
// reduces to 128KB from 256KB which was asserted previously. Same for L2.
ASSERT_OK(dbfull()->SetOptions(
{{"max_bytes_for_level_multiplier", "2"},
{"max_bytes_for_level_base", std::to_string(k128KB)}}));
// writing 20 x 64KB = 10 x 128KB
// (L1 + L2 + L3) = (1 + 2 + 4) * 128KB
for (int i = 0; i < 20; ++i) {
gen_l0_kb(i, 64, 32);
}
ASSERT_OK(dbfull()->TEST_WaitForCompact());
uint64_t total_size = SizeAtLevel(1) + SizeAtLevel(2) + SizeAtLevel(3);
ASSERT_TRUE(total_size < k128KB * 7 * 1.5);
// Test level0_stop_writes_trigger.
// Clean up memtable and L0. Block compaction threads. If continue to write
// and flush memtables. We should see put stop after 8 memtable flushes
// since level0_stop_writes_trigger = 8
ASSERT_OK(dbfull()->TEST_FlushMemTable(true, true));
ASSERT_OK(dbfull()->CompactRange(CompactRangeOptions(), nullptr, nullptr));
// Block compaction
test::SleepingBackgroundTask sleeping_task_low;
env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &sleeping_task_low,
Env::Priority::LOW);
sleeping_task_low.WaitUntilSleeping();
ASSERT_EQ(NumTableFilesAtLevel(0), 0);
int count = 0;
Random rnd(301);
WriteOptions wo;
while (count < 64) {
ASSERT_OK(Put(Key(count), rnd.RandomString(1024), wo));
ASSERT_OK(dbfull()->TEST_FlushMemTable(true, true));
count++;
if (dbfull()->TEST_write_controler().IsStopped()) {
sleeping_task_low.WakeUp();
break;
}
}
// Stop trigger = 8
ASSERT_EQ(count, 8);
// Unblock
sleeping_task_low.WaitUntilDone();
// Now reduce level0_stop_writes_trigger to 6. Clear up memtables and L0.
// Block compaction thread again. Perform the put and memtable flushes
// until we see the stop after 6 memtable flushes.
ASSERT_OK(dbfull()->SetOptions({{"level0_stop_writes_trigger", "6"}}));
ASSERT_OK(dbfull()->TEST_FlushMemTable(true));
ASSERT_OK(dbfull()->CompactRange(CompactRangeOptions(), nullptr, nullptr));
ASSERT_EQ(NumTableFilesAtLevel(0), 0);
// Block compaction again
sleeping_task_low.Reset();
env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &sleeping_task_low,
Env::Priority::LOW);
sleeping_task_low.WaitUntilSleeping();
count = 0;
while (count < 64) {
ASSERT_OK(Put(Key(count), rnd.RandomString(1024), wo));
ASSERT_OK(dbfull()->TEST_FlushMemTable(true, true));
count++;
if (dbfull()->TEST_write_controler().IsStopped()) {
sleeping_task_low.WakeUp();
break;
}
}
ASSERT_EQ(count, 6);
// Unblock
sleeping_task_low.WaitUntilDone();
// Test disable_auto_compactions
// Compaction thread is unblocked but auto compaction is disabled. Write
// 4 L0 files and compaction should be triggered. If auto compaction is
// disabled, then TEST_WaitForCompact will be waiting for nothing. Number of
// L0 files do not change after the call.
ASSERT_OK(dbfull()->SetOptions({{"disable_auto_compactions", "true"}}));
ASSERT_OK(dbfull()->CompactRange(CompactRangeOptions(), nullptr, nullptr));
ASSERT_EQ(NumTableFilesAtLevel(0), 0);
for (int i = 0; i < 4; ++i) {
ASSERT_OK(Put(Key(i), rnd.RandomString(1024)));
// Wait for compaction so that put won't stop
ASSERT_OK(dbfull()->TEST_FlushMemTable(true));
}
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_EQ(NumTableFilesAtLevel(0), 4);
// Enable auto compaction and perform the same test, # of L0 files should be
// reduced after compaction.
ASSERT_OK(dbfull()->SetOptions({{"disable_auto_compactions", "false"}}));
ASSERT_OK(dbfull()->CompactRange(CompactRangeOptions(), nullptr, nullptr));
ASSERT_EQ(NumTableFilesAtLevel(0), 0);
for (int i = 0; i < 4; ++i) {
ASSERT_OK(Put(Key(i), rnd.RandomString(1024)));
// Wait for compaction so that put won't stop
ASSERT_OK(dbfull()->TEST_FlushMemTable(true));
}
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ASSERT_LT(NumTableFilesAtLevel(0), 4);
}
// Test dynamic FIFO compaction options.
// This test covers just option parsing and makes sure that the options are
// correctly assigned. Also look at DBOptionsTest.SetFIFOCompactionOptions
// test which makes sure that the FIFO compaction funcionality is working
// as expected on dynamically changing the options.
// Even more FIFOCompactionTests are at DBTest.FIFOCompaction* .
TEST_F(DBTest, DynamicFIFOCompactionOptions) {
Options options;
options.ttl = 0;
options.create_if_missing = true;
options.env = env_;
DestroyAndReopen(options);
// Initial defaults
ASSERT_EQ(dbfull()->GetOptions().compaction_options_fifo.max_table_files_size,
1024 * 1024 * 1024);
ASSERT_EQ(dbfull()->GetOptions().ttl, 0);
ASSERT_EQ(dbfull()->GetOptions().compaction_options_fifo.allow_compaction,
false);
ASSERT_OK(dbfull()->SetOptions(
{{"compaction_options_fifo", "{max_table_files_size=23;}"}}));
ASSERT_EQ(dbfull()->GetOptions().compaction_options_fifo.max_table_files_size,
23);
ASSERT_EQ(dbfull()->GetOptions().ttl, 0);
ASSERT_EQ(dbfull()->GetOptions().compaction_options_fifo.allow_compaction,
false);
ASSERT_OK(dbfull()->SetOptions({{"ttl", "97"}}));
ASSERT_EQ(dbfull()->GetOptions().compaction_options_fifo.max_table_files_size,
23);
ASSERT_EQ(dbfull()->GetOptions().ttl, 97);
ASSERT_EQ(dbfull()->GetOptions().compaction_options_fifo.allow_compaction,
false);
ASSERT_OK(dbfull()->SetOptions({{"ttl", "203"}}));
ASSERT_EQ(dbfull()->GetOptions().compaction_options_fifo.max_table_files_size,
23);
ASSERT_EQ(dbfull()->GetOptions().ttl, 203);
ASSERT_EQ(dbfull()->GetOptions().compaction_options_fifo.allow_compaction,
false);
ASSERT_OK(dbfull()->SetOptions(
{{"compaction_options_fifo", "{allow_compaction=true;}"}}));
ASSERT_EQ(dbfull()->GetOptions().compaction_options_fifo.max_table_files_size,
23);
ASSERT_EQ(dbfull()->GetOptions().ttl, 203);
ASSERT_EQ(dbfull()->GetOptions().compaction_options_fifo.allow_compaction,
true);
ASSERT_OK(dbfull()->SetOptions(
{{"compaction_options_fifo", "{max_table_files_size=31;}"}}));
ASSERT_EQ(dbfull()->GetOptions().compaction_options_fifo.max_table_files_size,
31);
ASSERT_EQ(dbfull()->GetOptions().ttl, 203);
ASSERT_EQ(dbfull()->GetOptions().compaction_options_fifo.allow_compaction,
true);
ASSERT_OK(dbfull()->SetOptions(
{{"compaction_options_fifo",
"{max_table_files_size=51;allow_compaction=true;}"}}));
ASSERT_OK(dbfull()->SetOptions({{"ttl", "49"}}));
ASSERT_EQ(dbfull()->GetOptions().compaction_options_fifo.max_table_files_size,
51);
ASSERT_EQ(dbfull()->GetOptions().ttl, 49);
ASSERT_EQ(dbfull()->GetOptions().compaction_options_fifo.allow_compaction,
true);
}
TEST_F(DBTest, DynamicUniversalCompactionOptions) {
Options options;
options.create_if_missing = true;
options.env = env_;
DestroyAndReopen(options);
// Initial defaults
ASSERT_EQ(dbfull()->GetOptions().compaction_options_universal.size_ratio, 1U);
ASSERT_EQ(dbfull()->GetOptions().compaction_options_universal.min_merge_width,
2u);
ASSERT_EQ(dbfull()->GetOptions().compaction_options_universal.max_merge_width,
UINT_MAX);
ASSERT_EQ(dbfull()
->GetOptions()
.compaction_options_universal.max_size_amplification_percent,
200u);
ASSERT_EQ(dbfull()
->GetOptions()
.compaction_options_universal.compression_size_percent,
-1);
ASSERT_EQ(dbfull()->GetOptions().compaction_options_universal.stop_style,
kCompactionStopStyleTotalSize);
ASSERT_EQ(
dbfull()->GetOptions().compaction_options_universal.allow_trivial_move,
false);
ASSERT_OK(dbfull()->SetOptions(
{{"compaction_options_universal", "{size_ratio=7;}"}}));
ASSERT_EQ(dbfull()->GetOptions().compaction_options_universal.size_ratio, 7u);
ASSERT_EQ(dbfull()->GetOptions().compaction_options_universal.min_merge_width,
2u);
ASSERT_EQ(dbfull()->GetOptions().compaction_options_universal.max_merge_width,
UINT_MAX);
ASSERT_EQ(dbfull()
->GetOptions()
.compaction_options_universal.max_size_amplification_percent,
200u);
ASSERT_EQ(dbfull()
->GetOptions()
.compaction_options_universal.compression_size_percent,
-1);
ASSERT_EQ(dbfull()->GetOptions().compaction_options_universal.stop_style,
kCompactionStopStyleTotalSize);
ASSERT_EQ(
dbfull()->GetOptions().compaction_options_universal.allow_trivial_move,
false);
ASSERT_OK(dbfull()->SetOptions(
{{"compaction_options_universal", "{min_merge_width=11;}"}}));
ASSERT_EQ(dbfull()->GetOptions().compaction_options_universal.size_ratio, 7u);
ASSERT_EQ(dbfull()->GetOptions().compaction_options_universal.min_merge_width,
11u);
ASSERT_EQ(dbfull()->GetOptions().compaction_options_universal.max_merge_width,
UINT_MAX);
ASSERT_EQ(dbfull()
->GetOptions()
.compaction_options_universal.max_size_amplification_percent,
200u);
ASSERT_EQ(dbfull()
->GetOptions()
.compaction_options_universal.compression_size_percent,
-1);
ASSERT_EQ(dbfull()->GetOptions().compaction_options_universal.stop_style,
kCompactionStopStyleTotalSize);
ASSERT_EQ(
dbfull()->GetOptions().compaction_options_universal.allow_trivial_move,
false);
}
TEST_F(DBTest, FileCreationRandomFailure) {
Options options;
options.env = env_;
options.create_if_missing = true;
options.write_buffer_size = 100000; // Small write buffer
options.target_file_size_base = 200000;
options.max_bytes_for_level_base = 1000000;
options.max_bytes_for_level_multiplier = 2;
DestroyAndReopen(options);
Random rnd(301);
constexpr int kCDTKeysPerBuffer = 4;
constexpr int kTestSize = kCDTKeysPerBuffer * 4096;
constexpr int kTotalIteration = 20;
// the second half of the test involves in random failure
// of file creation.
constexpr int kRandomFailureTest = kTotalIteration / 2;
std::vector<std::string> values;
for (int i = 0; i < kTestSize; ++i) {
values.push_back("NOT_FOUND");
}
for (int j = 0; j < kTotalIteration; ++j) {
if (j == kRandomFailureTest) {
env_->non_writeable_rate_.store(90);
}
for (int k = 0; k < kTestSize; ++k) {
// here we expect some of the Put fails.
std::string value = rnd.RandomString(100);
Status s = Put(Key(k), Slice(value));
if (s.ok()) {
// update the latest successful put
values[k] = value;
}
// But everything before we simulate the failure-test should succeed.
if (j < kRandomFailureTest) {
ASSERT_OK(s);
}
}
}
// If rocksdb does not do the correct job, internal assert will fail here.
ASSERT_TRUE(dbfull()->TEST_WaitForFlushMemTable().IsIOError());
ASSERT_TRUE(dbfull()->TEST_WaitForCompact().IsIOError());
// verify we have the latest successful update
for (int k = 0; k < kTestSize; ++k) {
auto v = Get(Key(k));
ASSERT_EQ(v, values[k]);
}
// reopen and reverify we have the latest successful update
env_->non_writeable_rate_.store(0);
Reopen(options);
for (int k = 0; k < kTestSize; ++k) {
auto v = Get(Key(k));
ASSERT_EQ(v, values[k]);
}
}
TEST_F(DBTest, DynamicMiscOptions) {
// Test max_sequential_skip_in_iterations
Options options;
options.env = env_;
options.create_if_missing = true;
options.max_sequential_skip_in_iterations = 16;
options.compression = kNoCompression;
options.statistics = ROCKSDB_NAMESPACE::CreateDBStatistics();
DestroyAndReopen(options);
auto assert_reseek_count = [this, &options](int key_start, int num_reseek) {
int key0 = key_start;
int key1 = key_start + 1;
int key2 = key_start + 2;
Random rnd(301);
ASSERT_OK(Put(Key(key0), rnd.RandomString(8)));
for (int i = 0; i < 10; ++i) {
ASSERT_OK(Put(Key(key1), rnd.RandomString(8)));
}
ASSERT_OK(Put(Key(key2), rnd.RandomString(8)));
std::unique_ptr<Iterator> iter(db_->NewIterator(ReadOptions()));
iter->Seek(Key(key1));
ASSERT_TRUE(iter->Valid());
ASSERT_EQ(iter->key().compare(Key(key1)), 0);
iter->Next();
ASSERT_TRUE(iter->Valid());
ASSERT_EQ(iter->key().compare(Key(key2)), 0);
ASSERT_EQ(num_reseek,
TestGetTickerCount(options, NUMBER_OF_RESEEKS_IN_ITERATION));
};
// No reseek
assert_reseek_count(100, 0);
ASSERT_OK(dbfull()->SetOptions({{"max_sequential_skip_in_iterations", "4"}}));
// Clear memtable and make new option effective
ASSERT_OK(dbfull()->TEST_FlushMemTable(true));
// Trigger reseek
assert_reseek_count(200, 1);
ASSERT_OK(
dbfull()->SetOptions({{"max_sequential_skip_in_iterations", "16"}}));
// Clear memtable and make new option effective
ASSERT_OK(dbfull()->TEST_FlushMemTable(true));
// No reseek
assert_reseek_count(300, 1);
MutableCFOptions mutable_cf_options;
CreateAndReopenWithCF({"pikachu"}, options);
// Test soft_pending_compaction_bytes_limit,
// hard_pending_compaction_bytes_limit
ASSERT_OK(dbfull()->SetOptions(
handles_[1], {{"soft_pending_compaction_bytes_limit", "200"},
{"hard_pending_compaction_bytes_limit", "300"}}));
ASSERT_OK(dbfull()->TEST_GetLatestMutableCFOptions(handles_[1],
&mutable_cf_options));
ASSERT_EQ(200, mutable_cf_options.soft_pending_compaction_bytes_limit);
ASSERT_EQ(300, mutable_cf_options.hard_pending_compaction_bytes_limit);
// Test report_bg_io_stats
ASSERT_OK(
dbfull()->SetOptions(handles_[1], {{"report_bg_io_stats", "true"}}));
// sanity check
ASSERT_OK(dbfull()->TEST_GetLatestMutableCFOptions(handles_[1],
&mutable_cf_options));
ASSERT_TRUE(mutable_cf_options.report_bg_io_stats);
// Test compression
// sanity check
ASSERT_OK(dbfull()->SetOptions({{"compression", "kNoCompression"}}));
ASSERT_OK(dbfull()->TEST_GetLatestMutableCFOptions(handles_[0],
&mutable_cf_options));
ASSERT_EQ(CompressionType::kNoCompression, mutable_cf_options.compression);
if (Snappy_Supported()) {
ASSERT_OK(dbfull()->SetOptions({{"compression", "kSnappyCompression"}}));
ASSERT_OK(dbfull()->TEST_GetLatestMutableCFOptions(handles_[0],
&mutable_cf_options));
ASSERT_EQ(CompressionType::kSnappyCompression,
mutable_cf_options.compression);
}
// Test paranoid_file_checks already done in db_block_cache_test
ASSERT_OK(
dbfull()->SetOptions(handles_[1], {{"paranoid_file_checks", "true"}}));
ASSERT_OK(dbfull()->TEST_GetLatestMutableCFOptions(handles_[1],
&mutable_cf_options));
ASSERT_TRUE(mutable_cf_options.report_bg_io_stats);
ASSERT_TRUE(mutable_cf_options.check_flush_compaction_key_order);
ASSERT_OK(dbfull()->SetOptions(
handles_[1], {{"check_flush_compaction_key_order", "false"}}));
ASSERT_OK(dbfull()->TEST_GetLatestMutableCFOptions(handles_[1],
&mutable_cf_options));
ASSERT_FALSE(mutable_cf_options.check_flush_compaction_key_order);
}
TEST_F(DBTest, L0L1L2AndUpHitCounter) {
const int kNumLevels = 3;
const int kNumKeysPerLevel = 10000;
const int kNumKeysPerDb = kNumLevels * kNumKeysPerLevel;
Options options = CurrentOptions();
options.statistics = ROCKSDB_NAMESPACE::CreateDBStatistics();
Reopen(options);
// After the below loop there will be one file on each of L0, L1, and L2.
int key = 0;
for (int output_level = kNumLevels - 1; output_level >= 0; --output_level) {
for (int i = 0; i < kNumKeysPerLevel; ++i) {
ASSERT_OK(Put(Key(key), "val"));
key++;
}
ASSERT_OK(Flush());
for (int input_level = 0; input_level < output_level; ++input_level) {
// `TEST_CompactRange(input_level, ...)` compacts from `input_level` to
// `input_level + 1`.
ASSERT_OK(dbfull()->TEST_CompactRange(input_level, nullptr, nullptr));
}
}
assert(key == kNumKeysPerDb);
ASSERT_EQ(0, TestGetTickerCount(options, GET_HIT_L0));
ASSERT_EQ(0, TestGetTickerCount(options, GET_HIT_L1));
ASSERT_EQ(0, TestGetTickerCount(options, GET_HIT_L2_AND_UP));
for (int i = 0; i < kNumKeysPerDb; i++) {
ASSERT_EQ(Get(Key(i)), "val");
}
ASSERT_EQ(kNumKeysPerLevel, TestGetTickerCount(options, GET_HIT_L0));
ASSERT_EQ(kNumKeysPerLevel, TestGetTickerCount(options, GET_HIT_L1));
ASSERT_EQ(kNumKeysPerLevel, TestGetTickerCount(options, GET_HIT_L2_AND_UP));
ASSERT_EQ(kNumKeysPerDb, TestGetTickerCount(options, GET_HIT_L0) +
TestGetTickerCount(options, GET_HIT_L1) +
TestGetTickerCount(options, GET_HIT_L2_AND_UP));
}
TEST_F(DBTest, EncodeDecompressedBlockSizeTest) {
// iter 0 -- zlib
// iter 1 -- bzip2
// iter 2 -- lz4
// iter 3 -- lz4HC
// iter 4 -- xpress
CompressionType compressions[] = {kZlibCompression, kBZip2Compression,
kLZ4Compression, kLZ4HCCompression,
kXpressCompression};
for (auto comp : compressions) {
if (!CompressionTypeSupported(comp)) {
continue;
}
// first_table_version 1 -- generate with table_version == 1, read with
// table_version == 2
// first_table_version 2 -- generate with table_version == 2, read with
// table_version == 1
for (int first_table_version = 1; first_table_version <= 2;
++first_table_version) {
BlockBasedTableOptions table_options;
table_options.format_version = first_table_version;
table_options.filter_policy.reset(NewBloomFilterPolicy(10));
Options options = CurrentOptions();
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
options.create_if_missing = true;
options.compression = comp;
DestroyAndReopen(options);
int kNumKeysWritten = 1000;
Random rnd(301);
for (int i = 0; i < kNumKeysWritten; ++i) {
// compressible string
ASSERT_OK(Put(Key(i), rnd.RandomString(128) + std::string(128, 'a')));
}
table_options.format_version = first_table_version == 1 ? 2 : 1;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
Reopen(options);
for (int i = 0; i < kNumKeysWritten; ++i) {
auto r = Get(Key(i));
ASSERT_EQ(r.substr(128), std::string(128, 'a'));
}
}
}
}
TEST_F(DBTest, CloseSpeedup) {
Options options = CurrentOptions();
options.compaction_style = kCompactionStyleLevel;
options.write_buffer_size = 110 << 10; // 110KB
options.arena_block_size = 4 << 10;
options.level0_file_num_compaction_trigger = 2;
options.num_levels = 4;
options.max_bytes_for_level_base = 400 * 1024;
options.max_write_buffer_number = 16;
// Block background threads
env_->SetBackgroundThreads(1, Env::LOW);
env_->SetBackgroundThreads(1, Env::HIGH);
test::SleepingBackgroundTask sleeping_task_low;
env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &sleeping_task_low,
Env::Priority::LOW);
test::SleepingBackgroundTask sleeping_task_high;
env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask,
&sleeping_task_high, Env::Priority::HIGH);
std::vector<std::string> filenames;
ASSERT_OK(env_->GetChildren(dbname_, &filenames));
// In Windows, LOCK file cannot be deleted because it is locked by db_test
// After closing db_test, the LOCK file is unlocked and can be deleted
// Delete archival files.
bool deleteDir = true;
for (size_t i = 0; i < filenames.size(); ++i) {
Status s = env_->DeleteFile(dbname_ + "/" + filenames[i]);
if (!s.ok()) {
deleteDir = false;
}
}
if (deleteDir) {
ASSERT_OK(env_->DeleteDir(dbname_));
}
DestroyAndReopen(options);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
env_->SetBackgroundThreads(1, Env::LOW);
env_->SetBackgroundThreads(1, Env::HIGH);
Random rnd(301);
int key_idx = 0;
// First three 110KB files are not going to level 2
// After that, (100K, 200K)
for (int num = 0; num < 5; num++) {
GenerateNewFile(&rnd, &key_idx, true);
}
ASSERT_EQ(0, GetSstFileCount(dbname_));
Close();
ASSERT_EQ(0, GetSstFileCount(dbname_));
// Unblock background threads
sleeping_task_high.WakeUp();
sleeping_task_high.WaitUntilDone();
sleeping_task_low.WakeUp();
sleeping_task_low.WaitUntilDone();
Destroy(options);
}
class DelayedMergeOperator : public MergeOperator {
private:
DBTest* db_test_;
public:
explicit DelayedMergeOperator(DBTest* d) : db_test_(d) {}
bool FullMergeV2(const MergeOperationInput& merge_in,
MergeOperationOutput* merge_out) const override {
db_test_->env_->MockSleepForMicroseconds(1000 *
merge_in.operand_list.size());
merge_out->new_value = "";
return true;
}
const char* Name() const override { return "DelayedMergeOperator"; }
};
TEST_F(DBTest, MergeTestTime) {
std::string one, two, three;
PutFixed64(&one, 1);
PutFixed64(&two, 2);
PutFixed64(&three, 3);
// Enable time profiling
SetPerfLevel(kEnableTime);
Options options = CurrentOptions();
options.statistics = ROCKSDB_NAMESPACE::CreateDBStatistics();
options.merge_operator.reset(new DelayedMergeOperator(this));
SetTimeElapseOnlySleepOnReopen(&options);
DestroyAndReopen(options);
// NOTE: Presumed unnecessary and removed: resetting mock time in env
ASSERT_EQ(TestGetTickerCount(options, MERGE_OPERATION_TOTAL_TIME), 0);
ASSERT_OK(db_->Put(WriteOptions(), "foo", one));
ASSERT_OK(Flush());
ASSERT_OK(db_->Merge(WriteOptions(), "foo", two));
ASSERT_OK(Flush());
ASSERT_OK(db_->Merge(WriteOptions(), "foo", three));
ASSERT_OK(Flush());
ReadOptions opt;
opt.verify_checksums = true;
opt.snapshot = nullptr;
std::string result;
ASSERT_OK(db_->Get(opt, "foo", &result));
ASSERT_EQ(2000000, TestGetTickerCount(options, MERGE_OPERATION_TOTAL_TIME));
ReadOptions read_options;
std::unique_ptr<Iterator> iter(db_->NewIterator(read_options));
int count = 0;
for (iter->SeekToFirst(); iter->Valid(); iter->Next()) {
ASSERT_OK(iter->status());
++count;
}
ASSERT_EQ(1, count);
ASSERT_EQ(4000000, TestGetTickerCount(options, MERGE_OPERATION_TOTAL_TIME));
#ifdef ROCKSDB_USING_THREAD_STATUS
ASSERT_GT(TestGetTickerCount(options, FLUSH_WRITE_BYTES), 0);
#endif // ROCKSDB_USING_THREAD_STATUS
}
TEST_P(DBTestWithParam, MergeCompactionTimeTest) {
SetPerfLevel(kEnableTime);
Options options = CurrentOptions();
options.compaction_filter_factory = std::make_shared<KeepFilterFactory>();
options.statistics = ROCKSDB_NAMESPACE::CreateDBStatistics();
options.merge_operator.reset(new DelayedMergeOperator(this));
options.disable_auto_compactions = true;
options.max_subcompactions = max_subcompactions_;
SetTimeElapseOnlySleepOnReopen(&options);
DestroyAndReopen(options);
constexpr unsigned n = 1000;
for (unsigned i = 0; i < n; i++) {
ASSERT_OK(db_->Merge(WriteOptions(), "foo", "TEST"));
ASSERT_OK(Flush());
}
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable());
CompactRangeOptions cro;
cro.exclusive_manual_compaction = exclusive_manual_compaction_;
ASSERT_OK(db_->CompactRange(cro, nullptr, nullptr));
ASSERT_EQ(uint64_t{n} * 1000000U,
TestGetTickerCount(options, MERGE_OPERATION_TOTAL_TIME));
}
TEST_P(DBTestWithParam, FilterCompactionTimeTest) {
Options options = CurrentOptions();
options.compaction_filter_factory =
std::make_shared<DelayFilterFactory>(this);
options.disable_auto_compactions = true;
options.create_if_missing = true;
options.statistics = ROCKSDB_NAMESPACE::CreateDBStatistics();
options.statistics->set_stats_level(kExceptTimeForMutex);
options.max_subcompactions = max_subcompactions_;
SetTimeElapseOnlySleepOnReopen(&options);
DestroyAndReopen(options);
unsigned n = 0;
// put some data
for (int table = 0; table < 4; ++table) {
for (int i = 0; i < 10 + table; ++i) {
ASSERT_OK(Put(std::to_string(table * 100 + i), "val"));
++n;
}
ASSERT_OK(Flush());
}
CompactRangeOptions cro;
cro.exclusive_manual_compaction = exclusive_manual_compaction_;
ASSERT_OK(db_->CompactRange(cro, nullptr, nullptr));
ASSERT_EQ(0U, CountLiveFiles());
Reopen(options);
Iterator* itr = db_->NewIterator(ReadOptions());
itr->SeekToFirst();
ASSERT_OK(itr->status());
ASSERT_EQ(uint64_t{n} * 1000000U,
TestGetTickerCount(options, FILTER_OPERATION_TOTAL_TIME));
delete itr;
}
TEST_F(DBTest, TestLogCleanup) {
Options options = CurrentOptions();
options.write_buffer_size = 64 * 1024; // very small
// only two memtables allowed ==> only two log files
options.max_write_buffer_number = 2;
Reopen(options);
for (int i = 0; i < 100000; ++i) {
ASSERT_OK(Put(Key(i), "val"));
// only 2 memtables will be alive, so logs_to_free needs to always be below
// 2
ASSERT_LT(dbfull()->TEST_LogsToFreeSize(), static_cast<size_t>(3));
}
}
TEST_F(DBTest, EmptyCompactedDB) {
Options options = CurrentOptions();
options.max_open_files = -1;
Close();
ASSERT_OK(ReadOnlyReopen(options));
Status s = Put("new", "value");
ASSERT_TRUE(s.IsNotSupported());
Close();
}
TEST_F(DBTest, SuggestCompactRangeTest) {
class CompactionFilterFactoryGetContext : public CompactionFilterFactory {
public:
std::unique_ptr<CompactionFilter> CreateCompactionFilter(
const CompactionFilter::Context& context) override {
saved_context = context;
std::unique_ptr<CompactionFilter> empty_filter;
return empty_filter;
}
const char* Name() const override {
return "CompactionFilterFactoryGetContext";
}
static bool IsManual(CompactionFilterFactory* compaction_filter_factory) {
return reinterpret_cast<CompactionFilterFactoryGetContext*>(
compaction_filter_factory)
->saved_context.is_manual_compaction;
}
CompactionFilter::Context saved_context;
};
Options options = CurrentOptions();
options.memtable_factory.reset(test::NewSpecialSkipListFactory(
DBTestBase::kNumKeysByGenerateNewRandomFile));
options.compaction_style = kCompactionStyleLevel;
options.compaction_filter_factory.reset(
new CompactionFilterFactoryGetContext());
options.write_buffer_size = 200 << 10;
options.arena_block_size = 4 << 10;
options.level0_file_num_compaction_trigger = 4;
options.num_levels = 4;
options.compression = kNoCompression;
options.max_bytes_for_level_base = 450 << 10;
options.target_file_size_base = 98 << 10;
options.max_compaction_bytes = static_cast<uint64_t>(1) << 60; // inf
Reopen(options);
Random rnd(301);
for (int num = 0; num < 10; num++) {
GenerateNewRandomFile(&rnd);
}
ASSERT_TRUE(!CompactionFilterFactoryGetContext::IsManual(
options.compaction_filter_factory.get()));
// make sure either L0 or L1 has file
while (NumTableFilesAtLevel(0) == 0 && NumTableFilesAtLevel(1) == 0) {
GenerateNewRandomFile(&rnd);
}
// compact it three times
for (int i = 0; i < 3; ++i) {
ASSERT_OK(experimental::SuggestCompactRange(db_, nullptr, nullptr));
ASSERT_OK(dbfull()->TEST_WaitForCompact());
}
// All files are compacted
ASSERT_EQ(0, NumTableFilesAtLevel(0));
ASSERT_EQ(0, NumTableFilesAtLevel(1));
GenerateNewRandomFile(&rnd);
ASSERT_EQ(1, NumTableFilesAtLevel(0));
// nonoverlapping with the file on level 0
Slice start("a"), end("b");
ASSERT_OK(experimental::SuggestCompactRange(db_, &start, &end));
ASSERT_OK(dbfull()->TEST_WaitForCompact());
// should not compact the level 0 file
ASSERT_EQ(1, NumTableFilesAtLevel(0));
start = Slice("j");
end = Slice("m");
ASSERT_OK(experimental::SuggestCompactRange(db_, &start, &end));
ASSERT_OK(dbfull()->TEST_WaitForCompact());
// SuggestCompactRange() is not going to be reported as manual compaction
ASSERT_TRUE(!CompactionFilterFactoryGetContext::IsManual(
options.compaction_filter_factory.get()));
// now it should compact the level 0 file
// as it's a trivial move to L1, it triggers another one to compact to L2
ASSERT_EQ(0, NumTableFilesAtLevel(0));
ASSERT_EQ(0, NumTableFilesAtLevel(1));
}
TEST_F(DBTest, SuggestCompactRangeUniversal) {
Options options = CurrentOptions();
options.memtable_factory.reset(test::NewSpecialSkipListFactory(
DBTestBase::kNumKeysByGenerateNewRandomFile));
options.compaction_style = kCompactionStyleUniversal;
options.write_buffer_size = 200 << 10;
options.arena_block_size = 4 << 10;
options.level0_file_num_compaction_trigger = 4;
options.num_levels = 4;
options.compression = kNoCompression;
options.max_bytes_for_level_base = 450 << 10;
options.target_file_size_base = 98 << 10;
options.max_compaction_bytes = static_cast<uint64_t>(1) << 60; // inf
Reopen(options);
Random rnd(301);
for (int num = 0; num < 10; num++) {
GenerateNewRandomFile(&rnd);
}
ASSERT_EQ("1,2,3,4", FilesPerLevel());
for (int i = 0; i < 3; i++) {
ASSERT_OK(
db_->SuggestCompactRange(db_->DefaultColumnFamily(), nullptr, nullptr));
ASSERT_OK(dbfull()->TEST_WaitForCompact());
}
// All files are compacted
ASSERT_EQ(0, NumTableFilesAtLevel(0));
ASSERT_EQ(0, NumTableFilesAtLevel(1));
ASSERT_EQ(0, NumTableFilesAtLevel(2));
GenerateNewRandomFile(&rnd);
ASSERT_EQ(1, NumTableFilesAtLevel(0));
// nonoverlapping with the file on level 0
Slice start("a"), end("b");
ASSERT_OK(experimental::SuggestCompactRange(db_, &start, &end));
ASSERT_OK(dbfull()->TEST_WaitForCompact());
// should not compact the level 0 file
ASSERT_EQ(1, NumTableFilesAtLevel(0));
start = Slice("j");
end = Slice("m");
ASSERT_OK(experimental::SuggestCompactRange(db_, &start, &end));
ASSERT_OK(dbfull()->TEST_WaitForCompact());
// now it should compact the level 0 file to the last level
ASSERT_EQ(0, NumTableFilesAtLevel(0));
ASSERT_EQ(0, NumTableFilesAtLevel(1));
}
TEST_F(DBTest, PromoteL0) {
Options options = CurrentOptions();
options.disable_auto_compactions = true;
options.write_buffer_size = 10 * 1024 * 1024;
DestroyAndReopen(options);
// non overlapping ranges
std::vector<std::pair<int32_t, int32_t>> ranges = {
{81, 160}, {0, 80}, {161, 240}, {241, 320}};
int32_t value_size = 10 * 1024; // 10 KB
Random rnd(301);
std::map<int32_t, std::string> values;
for (const auto& range : ranges) {
for (int32_t j = range.first; j < range.second; j++) {
values[j] = rnd.RandomString(value_size);
ASSERT_OK(Put(Key(j), values[j]));
}
ASSERT_OK(Flush());
}
int32_t level0_files = NumTableFilesAtLevel(0, 0);
ASSERT_EQ(level0_files, ranges.size());
ASSERT_EQ(NumTableFilesAtLevel(1, 0), 0); // No files in L1
// Promote L0 level to L2.
ASSERT_OK(experimental::PromoteL0(db_, db_->DefaultColumnFamily(), 2));
// We expect that all the files were trivially moved from L0 to L2
ASSERT_EQ(NumTableFilesAtLevel(0, 0), 0);
ASSERT_EQ(NumTableFilesAtLevel(2, 0), level0_files);
for (const auto& kv : values) {
ASSERT_EQ(Get(Key(kv.first)), kv.second);
}
}
TEST_F(DBTest, PromoteL0Failure) {
Options options = CurrentOptions();
options.disable_auto_compactions = true;
options.write_buffer_size = 10 * 1024 * 1024;
DestroyAndReopen(options);
// Produce two L0 files with overlapping ranges.
ASSERT_OK(Put(Key(0), ""));
ASSERT_OK(Put(Key(3), ""));
ASSERT_OK(Flush());
ASSERT_OK(Put(Key(1), ""));
ASSERT_OK(Flush());
Status status;
// Fails because L0 has overlapping files.
status = experimental::PromoteL0(db_, db_->DefaultColumnFamily());
ASSERT_TRUE(status.IsInvalidArgument());
ASSERT_OK(db_->CompactRange(CompactRangeOptions(), nullptr, nullptr));
// Now there is a file in L1.
ASSERT_GE(NumTableFilesAtLevel(1, 0), 1);
ASSERT_OK(Put(Key(5), ""));
ASSERT_OK(Flush());
// Fails because L1 is non-empty.
status = experimental::PromoteL0(db_, db_->DefaultColumnFamily());
ASSERT_TRUE(status.IsInvalidArgument());
}
// Github issue #596
TEST_F(DBTest, CompactRangeWithEmptyBottomLevel) {
const int kNumLevels = 2;
const int kNumL0Files = 2;
Options options = CurrentOptions();
options.disable_auto_compactions = true;
options.num_levels = kNumLevels;
DestroyAndReopen(options);
Random rnd(301);
for (int i = 0; i < kNumL0Files; ++i) {
ASSERT_OK(Put(Key(0), rnd.RandomString(1024)));
ASSERT_OK(Flush());
}
ASSERT_EQ(NumTableFilesAtLevel(0), kNumL0Files);
ASSERT_EQ(NumTableFilesAtLevel(1), 0);
ASSERT_OK(db_->CompactRange(CompactRangeOptions(), nullptr, nullptr));
ASSERT_EQ(NumTableFilesAtLevel(0), 0);
ASSERT_EQ(NumTableFilesAtLevel(1), kNumL0Files);
}
TEST_F(DBTest, AutomaticConflictsWithManualCompaction) {
const int kNumL0Files = 50;
Options options = CurrentOptions();
options.level0_file_num_compaction_trigger = 4;
// never slowdown / stop
options.level0_slowdown_writes_trigger = 999999;
options.level0_stop_writes_trigger = 999999;
options.max_background_compactions = 10;
DestroyAndReopen(options);
// schedule automatic compactions after the manual one starts, but before it
// finishes to ensure conflict.
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency(
{{"DBImpl::BackgroundCompaction:Start",
"DBTest::AutomaticConflictsWithManualCompaction:PrePuts"},
{"DBTest::AutomaticConflictsWithManualCompaction:PostPuts",
"DBImpl::BackgroundCompaction:NonTrivial:AfterRun"}});
std::atomic<int> callback_count(0);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"DBImpl::MaybeScheduleFlushOrCompaction:Conflict",
[&](void* /*arg*/) { callback_count.fetch_add(1); });
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
Random rnd(301);
for (int i = 0; i < 2; ++i) {
// put two keys to ensure no trivial move
for (int j = 0; j < 2; ++j) {
ASSERT_OK(Put(Key(j), rnd.RandomString(1024)));
}
ASSERT_OK(Flush());
}
port::Thread manual_compaction_thread([this]() {
CompactRangeOptions croptions;
croptions.exclusive_manual_compaction = true;
ASSERT_OK(db_->CompactRange(croptions, nullptr, nullptr));
});
TEST_SYNC_POINT("DBTest::AutomaticConflictsWithManualCompaction:PrePuts");
for (int i = 0; i < kNumL0Files; ++i) {
// put two keys to ensure no trivial move
for (int j = 0; j < 2; ++j) {
ASSERT_OK(Put(Key(j), rnd.RandomString(1024)));
}
ASSERT_OK(Flush());
}
TEST_SYNC_POINT("DBTest::AutomaticConflictsWithManualCompaction:PostPuts");
ASSERT_GE(callback_count.load(), 1);
for (int i = 0; i < 2; ++i) {
ASSERT_NE("NOT_FOUND", Get(Key(i)));
}
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
manual_compaction_thread.join();
ASSERT_OK(dbfull()->TEST_WaitForCompact());
}
TEST_F(DBTest, CompactFilesShouldTriggerAutoCompaction) {
Options options = CurrentOptions();
options.max_background_compactions = 1;
options.level0_file_num_compaction_trigger = 4;
options.level0_slowdown_writes_trigger = 36;
options.level0_stop_writes_trigger = 36;
DestroyAndReopen(options);
// generate files for manual compaction
Random rnd(301);
for (int i = 0; i < 2; ++i) {
// put two keys to ensure no trivial move
for (int j = 0; j < 2; ++j) {
ASSERT_OK(Put(Key(j), rnd.RandomString(1024)));
}
ASSERT_OK(Flush());
}
ROCKSDB_NAMESPACE::ColumnFamilyMetaData cf_meta_data;
db_->GetColumnFamilyMetaData(db_->DefaultColumnFamily(), &cf_meta_data);
std::vector<std::string> input_files;
input_files.push_back(cf_meta_data.levels[0].files[0].name);
SyncPoint::GetInstance()->LoadDependency({
{"CompactFilesImpl:0",
"DBTest::CompactFilesShouldTriggerAutoCompaction:Begin"},
{"DBTest::CompactFilesShouldTriggerAutoCompaction:End",
"CompactFilesImpl:1"},
});
SyncPoint::GetInstance()->EnableProcessing();
port::Thread manual_compaction_thread([&]() {
auto s = db_->CompactFiles(CompactionOptions(), db_->DefaultColumnFamily(),
input_files, 0);
ASSERT_OK(s);
});
TEST_SYNC_POINT("DBTest::CompactFilesShouldTriggerAutoCompaction:Begin");
// generate enough files to trigger compaction
for (int i = 0; i < 20; ++i) {
for (int j = 0; j < 2; ++j) {
ASSERT_OK(Put(Key(j), rnd.RandomString(1024)));
}
ASSERT_OK(Flush());
}
db_->GetColumnFamilyMetaData(db_->DefaultColumnFamily(), &cf_meta_data);
ASSERT_GT(cf_meta_data.levels[0].files.size(),
options.level0_file_num_compaction_trigger);
TEST_SYNC_POINT("DBTest::CompactFilesShouldTriggerAutoCompaction:End");
manual_compaction_thread.join();
ASSERT_OK(dbfull()->TEST_WaitForCompact());
db_->GetColumnFamilyMetaData(db_->DefaultColumnFamily(), &cf_meta_data);
ASSERT_LE(cf_meta_data.levels[0].files.size(),
options.level0_file_num_compaction_trigger);
}
// Github issue #595
// Large write batch with column families
TEST_F(DBTest, LargeBatchWithColumnFamilies) {
Options options = CurrentOptions();
options.env = env_;
options.write_buffer_size = 100000; // Small write buffer
CreateAndReopenWithCF({"pikachu"}, options);
int64_t j = 0;
for (int i = 0; i < 5; i++) {
for (int pass = 1; pass <= 3; pass++) {
WriteBatch batch;
size_t write_size = 1024 * 1024 * (5 + i);
fprintf(stderr, "prepare: %" ROCKSDB_PRIszt " MB, pass:%d\n",
(write_size / 1024 / 1024), pass);
for (;;) {
std::string data(3000, j++ % 127 + 20);
data += std::to_string(j);
ASSERT_OK(batch.Put(handles_[0], Slice(data), Slice(data)));
if (batch.GetDataSize() > write_size) {
break;
}
}
fprintf(stderr, "write: %" ROCKSDB_PRIszt " MB\n",
(batch.GetDataSize() / 1024 / 1024));
ASSERT_OK(dbfull()->Write(WriteOptions(), &batch));
fprintf(stderr, "done\n");
}
}
// make sure we can re-open it.
ASSERT_OK(TryReopenWithColumnFamilies({"default", "pikachu"}, options));
}
// Make sure that Flushes can proceed in parallel with CompactRange()
TEST_F(DBTest, FlushesInParallelWithCompactRange) {
// iter == 0 -- leveled
// iter == 1 -- leveled, but throw in a flush between two levels compacting
// iter == 2 -- universal
for (int iter = 0; iter < 3; ++iter) {
Options options = CurrentOptions();
if (iter < 2) {
options.compaction_style = kCompactionStyleLevel;
} else {
options.compaction_style = kCompactionStyleUniversal;
}
options.write_buffer_size = 110 << 10;
options.level0_file_num_compaction_trigger = 4;
options.num_levels = 4;
options.compression = kNoCompression;
options.max_bytes_for_level_base = 450 << 10;
options.target_file_size_base = 98 << 10;
options.max_write_buffer_number = 2;
DestroyAndReopen(options);
Random rnd(301);
for (int num = 0; num < 14; num++) {
GenerateNewRandomFile(&rnd);
}
if (iter == 1) {
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency(
{{"DBImpl::RunManualCompaction()::1",
"DBTest::FlushesInParallelWithCompactRange:1"},
{"DBTest::FlushesInParallelWithCompactRange:2",
"DBImpl::RunManualCompaction()::2"}});
} else {
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency(
{{"CompactionJob::Run():Start",
"DBTest::FlushesInParallelWithCompactRange:1"},
{"DBTest::FlushesInParallelWithCompactRange:2",
"CompactionJob::Run():End"}});
}
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
std::vector<port::Thread> threads;
threads.emplace_back([&]() { Compact("a", "z"); });
TEST_SYNC_POINT("DBTest::FlushesInParallelWithCompactRange:1");
// this has to start a flush. if flushes are blocked, this will try to
// create
// 3 memtables, and that will fail because max_write_buffer_number is 2
for (int num = 0; num < 3; num++) {
GenerateNewRandomFile(&rnd, /* nowait */ true);
}
TEST_SYNC_POINT("DBTest::FlushesInParallelWithCompactRange:2");
for (auto& t : threads) {
t.join();
}
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
}
}
TEST_F(DBTest, DelayedWriteRate) {
const int kEntriesPerMemTable = 100;
const int kTotalFlushes = 12;
Options options = CurrentOptions();
env_->SetBackgroundThreads(1, Env::LOW);
options.env = env_;
options.write_buffer_size = 100000000;
options.max_write_buffer_number = 256;
options.max_background_compactions = 1;
options.level0_file_num_compaction_trigger = 3;
options.level0_slowdown_writes_trigger = 3;
options.level0_stop_writes_trigger = 999999;
options.delayed_write_rate = 20000000; // Start with 200MB/s
options.memtable_factory.reset(
test::NewSpecialSkipListFactory(kEntriesPerMemTable));
SetTimeElapseOnlySleepOnReopen(&options);
CreateAndReopenWithCF({"pikachu"}, options);
// Block compactions
test::SleepingBackgroundTask sleeping_task_low;
env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &sleeping_task_low,
Env::Priority::LOW);
for (int i = 0; i < 3; i++) {
ASSERT_OK(Put(Key(i), std::string(10000, 'x')));
ASSERT_OK(Flush());
}
// These writes will be slowed down to 1KB/s
uint64_t estimated_sleep_time = 0;
Random rnd(301);
ASSERT_OK(Put("", ""));
uint64_t cur_rate = options.delayed_write_rate;
for (int i = 0; i < kTotalFlushes; i++) {
uint64_t size_memtable = 0;
for (int j = 0; j < kEntriesPerMemTable; j++) {
auto rand_num = rnd.Uniform(20);
// Spread the size range to more.
size_t entry_size = rand_num * rand_num * rand_num;
WriteOptions wo;
ASSERT_OK(Put(Key(i), std::string(entry_size, 'x'), wo));
size_memtable += entry_size + 18;
// Occasionally sleep a while
if (rnd.Uniform(20) == 6) {
env_->SleepForMicroseconds(2666);
}
}
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable());
estimated_sleep_time += size_memtable * 1000000u / cur_rate;
// Slow down twice. One for memtable switch and one for flush finishes.
cur_rate = static_cast<uint64_t>(static_cast<double>(cur_rate) *
kIncSlowdownRatio * kIncSlowdownRatio);
}
// Estimate the total sleep time fall into the rough range.
ASSERT_GT(env_->NowMicros(), estimated_sleep_time / 2);
ASSERT_LT(env_->NowMicros(), estimated_sleep_time * 2);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
sleeping_task_low.WakeUp();
sleeping_task_low.WaitUntilDone();
}
TEST_F(DBTest, HardLimit) {
Options options = CurrentOptions();
options.env = env_;
env_->SetBackgroundThreads(1, Env::LOW);
options.max_write_buffer_number = 256;
options.write_buffer_size = 110 << 10; // 110KB
options.arena_block_size = 4 * 1024;
options.level0_file_num_compaction_trigger = 4;
options.level0_slowdown_writes_trigger = 999999;
options.level0_stop_writes_trigger = 999999;
options.hard_pending_compaction_bytes_limit = 800 << 10;
options.max_bytes_for_level_base = 10000000000u;
options.max_background_compactions = 1;
options.memtable_factory.reset(
test::NewSpecialSkipListFactory(KNumKeysByGenerateNewFile - 1));
env_->SetBackgroundThreads(1, Env::LOW);
test::SleepingBackgroundTask sleeping_task_low;
env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &sleeping_task_low,
Env::Priority::LOW);
CreateAndReopenWithCF({"pikachu"}, options);
std::atomic<int> callback_count(0);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"DBImpl::DelayWrite:Wait", [&](void* /*arg*/) {
callback_count.fetch_add(1);
sleeping_task_low.WakeUp();
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
Random rnd(301);
int key_idx = 0;
for (int num = 0; num < 5; num++) {
GenerateNewFile(&rnd, &key_idx, true);
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable());
}
ASSERT_EQ(0, callback_count.load());
for (int num = 0; num < 5; num++) {
GenerateNewFile(&rnd, &key_idx, true);
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable());
}
ASSERT_GE(callback_count.load(), 1);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
sleeping_task_low.WaitUntilDone();
}
#if !defined(ROCKSDB_DISABLE_STALL_NOTIFICATION)
class WriteStallListener : public EventListener {
public:
WriteStallListener() : condition_(WriteStallCondition::kNormal) {}
void OnStallConditionsChanged(const WriteStallInfo& info) override {
MutexLock l(&mutex_);
condition_ = info.condition.cur;
}
bool CheckCondition(WriteStallCondition expected) {
MutexLock l(&mutex_);
return expected == condition_;
}
private:
port::Mutex mutex_;
WriteStallCondition condition_;
};
TEST_F(DBTest, SoftLimit) {
Options options = CurrentOptions();
options.env = env_;
options.write_buffer_size = 100000; // Small write buffer
options.max_write_buffer_number = 256;
options.level0_file_num_compaction_trigger = 1;
options.level0_slowdown_writes_trigger = 3;
options.level0_stop_writes_trigger = 999999;
options.delayed_write_rate = 20000; // About 200KB/s limited rate
options.soft_pending_compaction_bytes_limit = 160000;
options.target_file_size_base = 99999999; // All into one file
options.max_bytes_for_level_base = 50000;
options.max_bytes_for_level_multiplier = 10;
options.max_background_compactions = 1;
options.compression = kNoCompression;
WriteStallListener* listener = new WriteStallListener();
options.listeners.emplace_back(listener);
// FlushMemtable with opt.wait=true does not wait for
// `OnStallConditionsChanged` being called. The event listener is triggered
// on `JobContext::Clean`, which happens after flush result is installed.
// We use sync point to create a custom WaitForFlush that waits for
// context cleanup.
port::Mutex flush_mutex;
port::CondVar flush_cv(&flush_mutex);
bool flush_finished = false;
auto InstallFlushCallback = [&]() {
{
MutexLock l(&flush_mutex);
flush_finished = false;
}
SyncPoint::GetInstance()->SetCallBack(
"DBImpl::BackgroundCallFlush:ContextCleanedUp", [&](void*) {
{
MutexLock l(&flush_mutex);
flush_finished = true;
}
flush_cv.SignalAll();
});
};
auto WaitForFlush = [&]() {
{
MutexLock l(&flush_mutex);
while (!flush_finished) {
flush_cv.Wait();
}
}
SyncPoint::GetInstance()->ClearCallBack(
"DBImpl::BackgroundCallFlush:ContextCleanedUp");
};
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
Reopen(options);
// Generating 360KB in Level 3
for (int i = 0; i < 72; i++) {
ASSERT_OK(Put(Key(i), std::string(5000, 'x')));
if (i % 10 == 0) {
ASSERT_OK(dbfull()->TEST_FlushMemTable(true, true));
}
}
ASSERT_OK(dbfull()->TEST_WaitForCompact());
MoveFilesToLevel(3);
// Generating 360KB in Level 2
for (int i = 0; i < 72; i++) {
ASSERT_OK(Put(Key(i), std::string(5000, 'x')));
if (i % 10 == 0) {
ASSERT_OK(dbfull()->TEST_FlushMemTable(true, true));
}
}
ASSERT_OK(dbfull()->TEST_WaitForCompact());
MoveFilesToLevel(2);
ASSERT_OK(Put(Key(0), ""));
test::SleepingBackgroundTask sleeping_task_low;
// Block compactions
env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &sleeping_task_low,
Env::Priority::LOW);
sleeping_task_low.WaitUntilSleeping();
// Create 3 L0 files, making score of L0 to be 3.
for (int i = 0; i < 3; i++) {
ASSERT_OK(Put(Key(i), std::string(5000, 'x')));
ASSERT_OK(Put(Key(100 - i), std::string(5000, 'x')));
// Flush the file. File size is around 30KB.
InstallFlushCallback();
ASSERT_OK(dbfull()->TEST_FlushMemTable(true, true));
WaitForFlush();
}
ASSERT_TRUE(dbfull()->TEST_write_controler().NeedsDelay());
ASSERT_TRUE(listener->CheckCondition(WriteStallCondition::kDelayed));
sleeping_task_low.WakeUp();
sleeping_task_low.WaitUntilDone();
sleeping_task_low.Reset();
ASSERT_OK(dbfull()->TEST_WaitForCompact());
// Now there is one L1 file but doesn't trigger soft_rate_limit
//
// TODO: soft_rate_limit is depreciated. If this test
// relies on soft_rate_limit, then we need to change the test.
//
// The L1 file size is around 30KB.
ASSERT_EQ(NumTableFilesAtLevel(1), 1);
ASSERT_TRUE(!dbfull()->TEST_write_controler().NeedsDelay());
ASSERT_TRUE(listener->CheckCondition(WriteStallCondition::kNormal));
// Only allow one compactin going through.
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"BackgroundCallCompaction:0", [&](void* /*arg*/) {
// Schedule a sleeping task.
sleeping_task_low.Reset();
env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask,
&sleeping_task_low, Env::Priority::LOW);
});
env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &sleeping_task_low,
Env::Priority::LOW);
sleeping_task_low.WaitUntilSleeping();
// Create 3 L0 files, making score of L0 to be 3
for (int i = 0; i < 3; i++) {
ASSERT_OK(Put(Key(10 + i), std::string(5000, 'x')));
ASSERT_OK(Put(Key(90 - i), std::string(5000, 'x')));
// Flush the file. File size is around 30KB.
InstallFlushCallback();
ASSERT_OK(dbfull()->TEST_FlushMemTable(true, true));
WaitForFlush();
}
// Wake up sleep task to enable compaction to run and waits
// for it to go to sleep state again to make sure one compaction
// goes through.
sleeping_task_low.WakeUp();
sleeping_task_low.WaitUntilSleeping();
// Now there is one L1 file (around 60KB) which exceeds 50KB base by 10KB
// Given level multiplier 10, estimated pending compaction is around 100KB
// doesn't trigger soft_pending_compaction_bytes_limit
ASSERT_EQ(NumTableFilesAtLevel(1), 1);
ASSERT_TRUE(!dbfull()->TEST_write_controler().NeedsDelay());
ASSERT_TRUE(listener->CheckCondition(WriteStallCondition::kNormal));
// Create 3 L0 files, making score of L0 to be 3, higher than L0.
for (int i = 0; i < 3; i++) {
ASSERT_OK(Put(Key(20 + i), std::string(5000, 'x')));
ASSERT_OK(Put(Key(80 - i), std::string(5000, 'x')));
// Flush the file. File size is around 30KB.
InstallFlushCallback();
ASSERT_OK(dbfull()->TEST_FlushMemTable(true, true));
WaitForFlush();
}
// Wake up sleep task to enable compaction to run and waits
// for it to go to sleep state again to make sure one compaction
// goes through.
sleeping_task_low.WakeUp();
sleeping_task_low.WaitUntilSleeping();
// Now there is one L1 file (around 90KB) which exceeds 50KB base by 40KB
// L2 size is 360KB, so the estimated level fanout 4, estimated pending
// compaction is around 200KB
// triggerring soft_pending_compaction_bytes_limit
ASSERT_EQ(NumTableFilesAtLevel(1), 1);
ASSERT_TRUE(dbfull()->TEST_write_controler().NeedsDelay());
ASSERT_TRUE(listener->CheckCondition(WriteStallCondition::kDelayed));
sleeping_task_low.WakeUp();
sleeping_task_low.WaitUntilSleeping();
ASSERT_TRUE(!dbfull()->TEST_write_controler().NeedsDelay());
ASSERT_TRUE(listener->CheckCondition(WriteStallCondition::kNormal));
// shrink level base so L2 will hit soft limit easier.
ASSERT_OK(dbfull()->SetOptions({
{"max_bytes_for_level_base", "5000"},
}));
ASSERT_OK(Put("", ""));
ASSERT_OK(Flush());
ASSERT_TRUE(dbfull()->TEST_write_controler().NeedsDelay());
ASSERT_TRUE(listener->CheckCondition(WriteStallCondition::kDelayed));
sleeping_task_low.WaitUntilSleeping();
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
sleeping_task_low.WakeUp();
sleeping_task_low.WaitUntilDone();
}
TEST_F(DBTest, LastWriteBufferDelay) {
Options options = CurrentOptions();
options.env = env_;
options.write_buffer_size = 100000;
options.max_write_buffer_number = 4;
options.delayed_write_rate = 20000;
options.compression = kNoCompression;
options.disable_auto_compactions = true;
int kNumKeysPerMemtable = 3;
options.memtable_factory.reset(
test::NewSpecialSkipListFactory(kNumKeysPerMemtable));
Reopen(options);
test::SleepingBackgroundTask sleeping_task;
// Block flushes
env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &sleeping_task,
Env::Priority::HIGH);
sleeping_task.WaitUntilSleeping();
// Create 3 L0 files, making score of L0 to be 3.
for (int i = 0; i < 3; i++) {
// Fill one mem table
for (int j = 0; j < kNumKeysPerMemtable; j++) {
ASSERT_OK(Put(Key(j), ""));
}
ASSERT_TRUE(!dbfull()->TEST_write_controler().NeedsDelay());
}
// Inserting a new entry would create a new mem table, triggering slow down.
ASSERT_OK(Put(Key(0), ""));
ASSERT_TRUE(dbfull()->TEST_write_controler().NeedsDelay());
sleeping_task.WakeUp();
sleeping_task.WaitUntilDone();
}
#endif // !defined(ROCKSDB_DISABLE_STALL_NOTIFICATION)
TEST_F(DBTest, FailWhenCompressionNotSupportedTest) {
CompressionType compressions[] = {kZlibCompression, kBZip2Compression,
kLZ4Compression, kLZ4HCCompression,
kXpressCompression};
for (auto comp : compressions) {
if (!CompressionTypeSupported(comp)) {
// not supported, we should fail the Open()
Options options = CurrentOptions();
options.compression = comp;
ASSERT_TRUE(!TryReopen(options).ok());
// Try if CreateColumnFamily also fails
options.compression = kNoCompression;
ASSERT_OK(TryReopen(options));
ColumnFamilyOptions cf_options(options);
cf_options.compression = comp;
ColumnFamilyHandle* handle;
ASSERT_TRUE(!db_->CreateColumnFamily(cf_options, "name", &handle).ok());
}
}
}
TEST_F(DBTest, CreateColumnFamilyShouldFailOnIncompatibleOptions) {
Options options = CurrentOptions();
options.max_open_files = 100;
Reopen(options);
ColumnFamilyOptions cf_options(options);
// ttl is now supported when max_open_files is -1.
cf_options.ttl = 3600;
ColumnFamilyHandle* handle;
ASSERT_OK(db_->CreateColumnFamily(cf_options, "pikachu", &handle));
delete handle;
}
TEST_F(DBTest, RowCache) {
Options options = CurrentOptions();
options.statistics = ROCKSDB_NAMESPACE::CreateDBStatistics();
LRUCacheOptions cache_options;
cache_options.capacity = 8192;
options.row_cache = cache_options.MakeSharedRowCache();
// BEGIN check that Cache classes as aliases of each other.
// Currently, RowCache and BlockCache are aliases for Cache.
// This is expected to change (carefully, intentionally)
std::shared_ptr<RowCache> row_cache = options.row_cache;
std::shared_ptr<Cache> cache = row_cache;
std::shared_ptr<BlockCache> block_cache = row_cache;
row_cache = cache;
block_cache = cache;
row_cache = block_cache;
cache = block_cache;
// END check that Cache classes as aliases of each other.
DestroyAndReopen(options);
ASSERT_OK(Put("foo", "bar"));
ASSERT_OK(Flush());
ASSERT_EQ(TestGetTickerCount(options, ROW_CACHE_HIT), 0);
ASSERT_EQ(TestGetTickerCount(options, ROW_CACHE_MISS), 0);
ASSERT_EQ(Get("foo"), "bar");
ASSERT_EQ(TestGetTickerCount(options, ROW_CACHE_HIT), 0);
ASSERT_EQ(TestGetTickerCount(options, ROW_CACHE_MISS), 1);
ASSERT_EQ(Get("foo"), "bar");
ASSERT_EQ(TestGetTickerCount(options, ROW_CACHE_HIT), 1);
ASSERT_EQ(TestGetTickerCount(options, ROW_CACHE_MISS), 1);
}
TEST_F(DBTest, PinnableSliceAndRowCache) {
Options options = CurrentOptions();
options.statistics = ROCKSDB_NAMESPACE::CreateDBStatistics();
options.row_cache = NewLRUCache(8192);
DestroyAndReopen(options);
ASSERT_OK(Put("foo", "bar"));
ASSERT_OK(Flush());
ASSERT_EQ(Get("foo"), "bar");
ASSERT_EQ(
reinterpret_cast<LRUCache*>(options.row_cache.get())->TEST_GetLRUSize(),
1);
{
PinnableSlice pin_slice;
ASSERT_EQ(Get("foo", &pin_slice), Status::OK());
ASSERT_EQ(pin_slice.ToString(), "bar");
// Entry is already in cache, lookup will remove the element from lru
ASSERT_EQ(
reinterpret_cast<LRUCache*>(options.row_cache.get())->TEST_GetLRUSize(),
0);
}
// After PinnableSlice destruction element is added back in LRU
ASSERT_EQ(
reinterpret_cast<LRUCache*>(options.row_cache.get())->TEST_GetLRUSize(),
1);
}
TEST_F(DBTest, ReusePinnableSlice) {
Options options = CurrentOptions();
options.statistics = ROCKSDB_NAMESPACE::CreateDBStatistics();
options.row_cache = NewLRUCache(8192);
DestroyAndReopen(options);
ASSERT_OK(Put("foo", "bar"));
ASSERT_OK(Flush());
ASSERT_EQ(Get("foo"), "bar");
ASSERT_EQ(
reinterpret_cast<LRUCache*>(options.row_cache.get())->TEST_GetLRUSize(),
1);
{
PinnableSlice pin_slice;
ASSERT_EQ(Get("foo", &pin_slice), Status::OK());
ASSERT_EQ(Get("foo", &pin_slice), Status::OK());
ASSERT_EQ(pin_slice.ToString(), "bar");
// Entry is already in cache, lookup will remove the element from lru
ASSERT_EQ(
reinterpret_cast<LRUCache*>(options.row_cache.get())->TEST_GetLRUSize(),
0);
}
// After PinnableSlice destruction element is added back in LRU
ASSERT_EQ(
reinterpret_cast<LRUCache*>(options.row_cache.get())->TEST_GetLRUSize(),
1);
{
std::vector<Slice> multiget_keys;
multiget_keys.push_back("foo");
std::vector<PinnableSlice> multiget_values(1);
std::vector<Status> statuses({Status::NotFound()});
ReadOptions ropt;
dbfull()->MultiGet(ropt, dbfull()->DefaultColumnFamily(),
multiget_keys.size(), multiget_keys.data(),
multiget_values.data(), statuses.data());
ASSERT_EQ(Status::OK(), statuses[0]);
dbfull()->MultiGet(ropt, dbfull()->DefaultColumnFamily(),
multiget_keys.size(), multiget_keys.data(),
multiget_values.data(), statuses.data());
ASSERT_EQ(Status::OK(), statuses[0]);
// Entry is already in cache, lookup will remove the element from lru
ASSERT_EQ(
reinterpret_cast<LRUCache*>(options.row_cache.get())->TEST_GetLRUSize(),
0);
}
// After PinnableSlice destruction element is added back in LRU
ASSERT_EQ(
reinterpret_cast<LRUCache*>(options.row_cache.get())->TEST_GetLRUSize(),
1);
{
std::vector<ColumnFamilyHandle*> multiget_cfs;
multiget_cfs.push_back(dbfull()->DefaultColumnFamily());
std::vector<Slice> multiget_keys;
multiget_keys.push_back("foo");
std::vector<PinnableSlice> multiget_values(1);
std::vector<Status> statuses({Status::NotFound()});
ReadOptions ropt;
dbfull()->MultiGet(ropt, multiget_keys.size(), multiget_cfs.data(),
multiget_keys.data(), multiget_values.data(),
statuses.data());
ASSERT_EQ(Status::OK(), statuses[0]);
dbfull()->MultiGet(ropt, multiget_keys.size(), multiget_cfs.data(),
multiget_keys.data(), multiget_values.data(),
statuses.data());
ASSERT_EQ(Status::OK(), statuses[0]);
// Entry is already in cache, lookup will remove the element from lru
ASSERT_EQ(
reinterpret_cast<LRUCache*>(options.row_cache.get())->TEST_GetLRUSize(),
0);
}
// After PinnableSlice destruction element is added back in LRU
ASSERT_EQ(
reinterpret_cast<LRUCache*>(options.row_cache.get())->TEST_GetLRUSize(),
1);
}
TEST_F(DBTest, DeletingOldWalAfterDrop) {
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency(
{{"Test:AllowFlushes", "DBImpl::BGWorkFlush"},
{"DBImpl::BGWorkFlush:done", "Test:WaitForFlush"}});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->ClearTrace();
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
Options options = CurrentOptions();
options.max_total_wal_size = 8192;
options.compression = kNoCompression;
options.write_buffer_size = 1 << 20;
options.level0_file_num_compaction_trigger = (1 << 30);
options.level0_slowdown_writes_trigger = (1 << 30);
options.level0_stop_writes_trigger = (1 << 30);
options.disable_auto_compactions = true;
DestroyAndReopen(options);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
CreateColumnFamilies({"cf1", "cf2"}, options);
ASSERT_OK(Put(0, "key1", DummyString(8192)));
ASSERT_OK(Put(0, "key2", DummyString(8192)));
// the oldest wal should now be getting_flushed
ASSERT_OK(db_->DropColumnFamily(handles_[0]));
// all flushes should now do nothing because their CF is dropped
TEST_SYNC_POINT("Test:AllowFlushes");
TEST_SYNC_POINT("Test:WaitForFlush");
uint64_t lognum1 = dbfull()->TEST_LogfileNumber();
ASSERT_OK(Put(1, "key3", DummyString(8192)));
ASSERT_OK(Put(1, "key4", DummyString(8192)));
// new wal should have been created
uint64_t lognum2 = dbfull()->TEST_LogfileNumber();
EXPECT_GT(lognum2, lognum1);
}
TEST_F(DBTest, UnsupportedManualSync) {
DestroyAndReopen(CurrentOptions());
env_->is_wal_sync_thread_safe_.store(false);
Status s = db_->SyncWAL();
ASSERT_TRUE(s.IsNotSupported());
}
INSTANTIATE_TEST_CASE_P(DBTestWithParam, DBTestWithParam,
::testing::Combine(::testing::Values(1, 4),
::testing::Bool()));
TEST_F(DBTest, PauseBackgroundWorkTest) {
Options options = CurrentOptions();
options.write_buffer_size = 100000; // Small write buffer
Reopen(options);
std::vector<port::Thread> threads;
std::atomic<bool> done(false);
ASSERT_OK(db_->PauseBackgroundWork());
threads.emplace_back([&]() {
Random rnd(301);
for (int i = 0; i < 10000; ++i) {
ASSERT_OK(Put(rnd.RandomString(10), rnd.RandomString(10)));
}
done.store(true);
});
env_->SleepForMicroseconds(200000);
// make sure the thread is not done
ASSERT_FALSE(done.load());
ASSERT_OK(db_->ContinueBackgroundWork());
for (auto& t : threads) {
t.join();
}
// now it's done
ASSERT_TRUE(done.load());
}
// Keep spawning short-living threads that create an iterator and quit.
// Meanwhile in another thread keep flushing memtables.
// This used to cause a deadlock.
TEST_F(DBTest, ThreadLocalPtrDeadlock) {
std::atomic<int> flushes_done{0};
std::atomic<int> threads_destroyed{0};
auto done = [&] { return flushes_done.load() > 10; };
port::Thread flushing_thread([&] {
for (int i = 0; !done(); ++i) {
ASSERT_OK(db_->Put(WriteOptions(), Slice("hi"),
Slice(std::to_string(i).c_str())));
ASSERT_OK(db_->Flush(FlushOptions()));
int cnt = ++flushes_done;
fprintf(stderr, "Flushed %d times\n", cnt);
}
});
std::vector<port::Thread> thread_spawning_threads(10);
for (auto& t : thread_spawning_threads) {
t = port::Thread([&] {
while (!done()) {
{
port::Thread tmp_thread([&] {
auto it = db_->NewIterator(ReadOptions());
ASSERT_OK(it->status());
delete it;
});
tmp_thread.join();
}
++threads_destroyed;
}
});
}
for (auto& t : thread_spawning_threads) {
t.join();
}
flushing_thread.join();
fprintf(stderr, "Done. Flushed %d times, destroyed %d threads\n",
flushes_done.load(), threads_destroyed.load());
}
TEST_F(DBTest, LargeBlockSizeTest) {
Options options = CurrentOptions();
CreateAndReopenWithCF({"pikachu"}, options);
ASSERT_OK(Put(0, "foo", "bar"));
BlockBasedTableOptions table_options;
table_options.block_size = 8LL * 1024 * 1024 * 1024LL;
options.table_factory.reset(NewBlockBasedTableFactory(table_options));
ASSERT_NOK(TryReopenWithColumnFamilies({"default", "pikachu"}, options));
}
TEST_F(DBTest, CreationTimeOfOldestFile) {
const int kNumKeysPerFile = 32;
const int kNumLevelFiles = 2;
const int kValueSize = 100;
Options options = CurrentOptions();
options.max_open_files = -1;
env_->SetMockSleep();
options.env = env_;
// NOTE: Presumed unnecessary and removed: resetting mock time in env
DestroyAndReopen(options);
bool set_file_creation_time_to_zero = true;
int idx = 0;
int64_t time_1 = 0;
env_->GetCurrentTime(&time_1);
const uint64_t uint_time_1 = static_cast<uint64_t>(time_1);
// Add 50 hours
env_->MockSleepForSeconds(50 * 60 * 60);
int64_t time_2 = 0;
env_->GetCurrentTime(&time_2);
const uint64_t uint_time_2 = static_cast<uint64_t>(time_2);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"PropertyBlockBuilder::AddTableProperty:Start", [&](void* arg) {
TableProperties* props = reinterpret_cast<TableProperties*>(arg);
if (set_file_creation_time_to_zero) {
if (idx == 0) {
props->file_creation_time = 0;
idx++;
} else if (idx == 1) {
props->file_creation_time = uint_time_1;
idx = 0;
}
} else {
if (idx == 0) {
props->file_creation_time = uint_time_1;
idx++;
} else if (idx == 1) {
props->file_creation_time = uint_time_2;
}
}
});
// Set file creation time in manifest all to 0.
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"FileMetaData::FileMetaData", [&](void* arg) {
FileMetaData* meta = static_cast<FileMetaData*>(arg);
meta->file_creation_time = 0;
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
Random rnd(301);
for (int i = 0; i < kNumLevelFiles; ++i) {
for (int j = 0; j < kNumKeysPerFile; ++j) {
ASSERT_OK(
Put(Key(i * kNumKeysPerFile + j), rnd.RandomString(kValueSize)));
}
ASSERT_OK(Flush());
}
// At this point there should be 2 files, one with file_creation_time = 0 and
// the other non-zero. GetCreationTimeOfOldestFile API should return 0.
uint64_t creation_time;
Status s1 = dbfull()->GetCreationTimeOfOldestFile(&creation_time);
ASSERT_EQ(0, creation_time);
ASSERT_EQ(s1, Status::OK());
// Testing with non-zero file creation time.
set_file_creation_time_to_zero = false;
options = CurrentOptions();
options.max_open_files = -1;
options.env = env_;
// NOTE: Presumed unnecessary and removed: resetting mock time in env
DestroyAndReopen(options);
for (int i = 0; i < kNumLevelFiles; ++i) {
for (int j = 0; j < kNumKeysPerFile; ++j) {
ASSERT_OK(
Put(Key(i * kNumKeysPerFile + j), rnd.RandomString(kValueSize)));
}
ASSERT_OK(Flush());
}
// At this point there should be 2 files with non-zero file creation time.
// GetCreationTimeOfOldestFile API should return non-zero value.
uint64_t ctime;
Status s2 = dbfull()->GetCreationTimeOfOldestFile(&ctime);
ASSERT_EQ(uint_time_1, ctime);
ASSERT_EQ(s2, Status::OK());
// Testing with max_open_files != -1
options = CurrentOptions();
options.max_open_files = 10;
DestroyAndReopen(options);
Status s3 = dbfull()->GetCreationTimeOfOldestFile(&ctime);
ASSERT_EQ(s3, Status::NotSupported());
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
}
TEST_F(DBTest, MemoryUsageWithMaxWriteBufferSizeToMaintain) {
Options options = CurrentOptions();
options.max_write_buffer_size_to_maintain = 10000;
options.write_buffer_size = 160000;
Reopen(options);
Random rnd(301);
bool memory_limit_exceeded = false;
ColumnFamilyData* cfd =
static_cast<ColumnFamilyHandleImpl*>(db_->DefaultColumnFamily())->cfd();
for (int i = 0; i < 1000; i++) {
std::string value = rnd.RandomString(1000);
ASSERT_OK(Put("keykey_" + std::to_string(i), value));
ASSERT_OK(dbfull()->TEST_WaitForFlushMemTable());
const uint64_t cur_active_mem = cfd->mem()->ApproximateMemoryUsage();
const uint64_t size_all_mem_table =
cur_active_mem + cfd->imm()->ApproximateMemoryUsage();
// Errors out if memory usage keeps on increasing beyond the limit.
// Once memory limit exceeds, memory_limit_exceeded is set and if
// size_all_mem_table doesn't drop out in the next write then it errors out
// (not expected behaviour). If memory usage drops then
// memory_limit_exceeded is set to false.
if ((size_all_mem_table > cur_active_mem) &&
(cur_active_mem >=
static_cast<uint64_t>(options.max_write_buffer_size_to_maintain)) &&
(size_all_mem_table >
static_cast<uint64_t>(options.max_write_buffer_size_to_maintain) +
options.write_buffer_size)) {
ASSERT_FALSE(memory_limit_exceeded);
memory_limit_exceeded = true;
} else {
memory_limit_exceeded = false;
}
}
}
TEST_F(DBTest, ShuttingDownNotBlockStalledWrites) {
Options options = CurrentOptions();
options.disable_auto_compactions = true;
Reopen(options);
Random rnd(403);
for (int i = 0; i < 20; i++) {
ASSERT_OK(Put("key_" + std::to_string(i), rnd.RandomString(10)));
ASSERT_OK(Flush());
}
ASSERT_EQ(GetSstFileCount(dbname_), 20);
// We need !disable_auto_compactions for writes to stall but also want to
// delay compaction so stalled writes unblocked due to kShutdownInProgress. BG
// compaction will first wait for the sync point
// DBTest::ShuttingDownNotBlockStalledWrites. Then it waits extra 2 sec to
// allow CancelAllBackgroundWork() to set shutting_down_.
SyncPoint::GetInstance()->SetCallBack(
"BackgroundCallCompaction:0",
[&](void* /* arg */) { env_->SleepForMicroseconds(2 * 1000 * 1000); });
SyncPoint::GetInstance()->LoadDependency(
{{"DBImpl::DelayWrite:Wait", "DBTest::ShuttingDownNotBlockStalledWrites"},
{"DBTest::ShuttingDownNotBlockStalledWrites",
"BackgroundCallCompaction:0"}});
SyncPoint::GetInstance()->EnableProcessing();
options.level0_stop_writes_trigger = 20;
options.disable_auto_compactions = false;
Reopen(options);
std::thread thd([&]() {
Status s = Put("key_" + std::to_string(101), "101");
ASSERT_EQ(s.code(), Status::kShutdownInProgress);
});
TEST_SYNC_POINT("DBTest::ShuttingDownNotBlockStalledWrites");
CancelAllBackgroundWork(db_, true);
thd.join();
}
} // namespace ROCKSDB_NAMESPACE
int main(int argc, char** argv) {
ROCKSDB_NAMESPACE::port::InstallStackTraceHandler();
::testing::InitGoogleTest(&argc, argv);
RegisterCustomObjects(argc, argv);
return RUN_ALL_TESTS();
}