You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
rust-rocksdb/env/env_test.cc

3662 lines
121 KiB

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#ifndef OS_WIN
#include <sys/ioctl.h>
#endif
#if defined(ROCKSDB_IOURING_PRESENT)
#include <liburing.h>
#include <sys/uio.h>
#endif
#include <sys/types.h>
#include <atomic>
#include <list>
#include <mutex>
#include <unordered_set>
#ifdef OS_LINUX
#include <fcntl.h>
#include <linux/fs.h>
#include <stdlib.h>
#include <sys/stat.h>
#include <unistd.h>
#endif
#ifdef ROCKSDB_FALLOCATE_PRESENT
#include <errno.h>
#endif
#include "db/db_impl/db_impl.h"
#include "env/emulated_clock.h"
#include "env/env_chroot.h"
#include "env/env_encryption_ctr.h"
#include "env/fs_readonly.h"
#include "env/mock_env.h"
#include "env/unique_id_gen.h"
#include "logging/log_buffer.h"
#include "logging/logging.h"
#include "options/options_helper.h"
#include "port/malloc.h"
#include "port/port.h"
#include "port/stack_trace.h"
#include "rocksdb/convenience.h"
#include "rocksdb/env.h"
#include "rocksdb/env_encryption.h"
#include "rocksdb/file_system.h"
#include "rocksdb/system_clock.h"
#include "rocksdb/utilities/object_registry.h"
#include "test_util/mock_time_env.h"
#include "test_util/sync_point.h"
#include "test_util/testharness.h"
#include "test_util/testutil.h"
#include "util/coding.h"
#include "util/crc32c.h"
#include "util/mutexlock.h"
#include "util/random.h"
#include "util/string_util.h"
#include "utilities/counted_fs.h"
#include "utilities/env_timed.h"
#include "utilities/fault_injection_env.h"
#include "utilities/fault_injection_fs.h"
namespace ROCKSDB_NAMESPACE {
using port::kPageSize;
static const int kDelayMicros = 100000;
struct Deleter {
explicit Deleter(void (*fn)(void*)) : fn_(fn) {}
void operator()(void* ptr) {
assert(fn_);
assert(ptr);
(*fn_)(ptr);
}
void (*fn_)(void*);
};
extern "C" bool RocksDbIOUringEnable() { return true; }
std::unique_ptr<char, Deleter> NewAligned(const size_t size, const char ch) {
char* ptr = nullptr;
#ifdef OS_WIN
if (nullptr ==
(ptr = reinterpret_cast<char*>(_aligned_malloc(size, kPageSize)))) {
return std::unique_ptr<char, Deleter>(nullptr, Deleter(_aligned_free));
}
std::unique_ptr<char, Deleter> uptr(ptr, Deleter(_aligned_free));
#else
if (posix_memalign(reinterpret_cast<void**>(&ptr), kPageSize, size) != 0) {
return std::unique_ptr<char, Deleter>(nullptr, Deleter(free));
}
std::unique_ptr<char, Deleter> uptr(ptr, Deleter(free));
#endif
memset(uptr.get(), ch, size);
return uptr;
}
class EnvPosixTest : public testing::Test {
private:
port::Mutex mu_;
std::string events_;
public:
Env* env_;
bool direct_io_;
EnvPosixTest() : env_(Env::Default()), direct_io_(false) {}
~EnvPosixTest() {
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->LoadDependency({});
SyncPoint::GetInstance()->ClearAllCallBacks();
}
};
class EnvPosixTestWithParam
: public EnvPosixTest,
public ::testing::WithParamInterface<std::pair<Env*, bool>> {
public:
EnvPosixTestWithParam() {
std::pair<Env*, bool> param_pair = GetParam();
env_ = param_pair.first;
direct_io_ = param_pair.second;
}
void WaitThreadPoolsEmpty() {
// Wait until the thread pools are empty.
while (env_->GetThreadPoolQueueLen(Env::Priority::LOW) != 0) {
Env::Default()->SleepForMicroseconds(kDelayMicros);
}
while (env_->GetThreadPoolQueueLen(Env::Priority::HIGH) != 0) {
Env::Default()->SleepForMicroseconds(kDelayMicros);
}
}
~EnvPosixTestWithParam() override { WaitThreadPoolsEmpty(); }
};
static void SetBool(void* ptr) {
reinterpret_cast<std::atomic<bool>*>(ptr)->store(true);
}
TEST_F(EnvPosixTest, DISABLED_RunImmediately) {
for (int pri = Env::BOTTOM; pri < Env::TOTAL; ++pri) {
std::atomic<bool> called(false);
env_->SetBackgroundThreads(1, static_cast<Env::Priority>(pri));
env_->Schedule(&SetBool, &called, static_cast<Env::Priority>(pri));
Env::Default()->SleepForMicroseconds(kDelayMicros);
ASSERT_TRUE(called.load());
}
}
TEST_F(EnvPosixTest, RunEventually) {
std::atomic<bool> called(false);
env_->StartThread(&SetBool, &called);
env_->WaitForJoin();
ASSERT_TRUE(called.load());
}
#ifdef OS_WIN
TEST_F(EnvPosixTest, AreFilesSame) {
{
bool tmp;
if (env_->AreFilesSame("", "", &tmp).IsNotSupported()) {
fprintf(stderr,
"skipping EnvBasicTestWithParam.AreFilesSame due to "
"unsupported Env::AreFilesSame\n");
return;
}
}
const EnvOptions soptions;
auto* env = Env::Default();
std::string same_file_name = test::PerThreadDBPath(env, "same_file");
std::string same_file_link_name = same_file_name + "_link";
std::unique_ptr<WritableFile> same_file;
ASSERT_OK(env->NewWritableFile(same_file_name, &same_file, soptions));
same_file->Append("random_data");
ASSERT_OK(same_file->Flush());
same_file.reset();
ASSERT_OK(env->LinkFile(same_file_name, same_file_link_name));
bool result = false;
ASSERT_OK(env->AreFilesSame(same_file_name, same_file_link_name, &result));
ASSERT_TRUE(result);
}
#endif
#ifdef OS_LINUX
TEST_F(EnvPosixTest, DISABLED_FilePermission) {
// Only works for Linux environment
if (env_ == Env::Default()) {
EnvOptions soptions;
std::vector<std::string> fileNames{
test::PerThreadDBPath(env_, "testfile"),
test::PerThreadDBPath(env_, "testfile1")};
std::unique_ptr<WritableFile> wfile;
ASSERT_OK(env_->NewWritableFile(fileNames[0], &wfile, soptions));
ASSERT_OK(env_->NewWritableFile(fileNames[1], &wfile, soptions));
wfile.reset();
std::unique_ptr<RandomRWFile> rwfile;
ASSERT_OK(env_->NewRandomRWFile(fileNames[1], &rwfile, soptions));
struct stat sb;
for (const auto& filename : fileNames) {
if (::stat(filename.c_str(), &sb) == 0) {
ASSERT_EQ(sb.st_mode & 0777, 0644);
}
ASSERT_OK(env_->DeleteFile(filename));
}
env_->SetAllowNonOwnerAccess(false);
ASSERT_OK(env_->NewWritableFile(fileNames[0], &wfile, soptions));
ASSERT_OK(env_->NewWritableFile(fileNames[1], &wfile, soptions));
wfile.reset();
ASSERT_OK(env_->NewRandomRWFile(fileNames[1], &rwfile, soptions));
for (const auto& filename : fileNames) {
if (::stat(filename.c_str(), &sb) == 0) {
ASSERT_EQ(sb.st_mode & 0777, 0600);
}
ASSERT_OK(env_->DeleteFile(filename));
}
}
}
TEST_F(EnvPosixTest, LowerThreadPoolCpuPriority) {
std::atomic<CpuPriority> from_priority(CpuPriority::kNormal);
std::atomic<CpuPriority> to_priority(CpuPriority::kNormal);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"ThreadPoolImpl::BGThread::BeforeSetCpuPriority", [&](void* pri) {
from_priority.store(*reinterpret_cast<CpuPriority*>(pri));
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"ThreadPoolImpl::BGThread::AfterSetCpuPriority", [&](void* pri) {
to_priority.store(*reinterpret_cast<CpuPriority*>(pri));
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
env_->SetBackgroundThreads(1, Env::BOTTOM);
env_->SetBackgroundThreads(1, Env::HIGH);
auto RunTask = [&](Env::Priority pool) {
std::atomic<bool> called(false);
env_->Schedule(&SetBool, &called, pool);
for (int i = 0; i < kDelayMicros; i++) {
if (called.load()) {
break;
}
Env::Default()->SleepForMicroseconds(1);
}
ASSERT_TRUE(called.load());
};
{
// Same priority, no-op.
env_->LowerThreadPoolCPUPriority(Env::Priority::BOTTOM,
CpuPriority::kNormal)
.PermitUncheckedError();
RunTask(Env::Priority::BOTTOM);
ASSERT_EQ(from_priority, CpuPriority::kNormal);
ASSERT_EQ(to_priority, CpuPriority::kNormal);
}
{
// Higher priority, no-op.
env_->LowerThreadPoolCPUPriority(Env::Priority::BOTTOM, CpuPriority::kHigh)
.PermitUncheckedError();
RunTask(Env::Priority::BOTTOM);
ASSERT_EQ(from_priority, CpuPriority::kNormal);
ASSERT_EQ(to_priority, CpuPriority::kNormal);
}
{
// Lower priority from kNormal -> kLow.
env_->LowerThreadPoolCPUPriority(Env::Priority::BOTTOM, CpuPriority::kLow)
.PermitUncheckedError();
RunTask(Env::Priority::BOTTOM);
ASSERT_EQ(from_priority, CpuPriority::kNormal);
ASSERT_EQ(to_priority, CpuPriority::kLow);
}
{
// Lower priority from kLow -> kIdle.
env_->LowerThreadPoolCPUPriority(Env::Priority::BOTTOM, CpuPriority::kIdle)
.PermitUncheckedError();
RunTask(Env::Priority::BOTTOM);
ASSERT_EQ(from_priority, CpuPriority::kLow);
ASSERT_EQ(to_priority, CpuPriority::kIdle);
}
{
// Lower priority from kNormal -> kIdle for another pool.
env_->LowerThreadPoolCPUPriority(Env::Priority::HIGH, CpuPriority::kIdle)
.PermitUncheckedError();
RunTask(Env::Priority::HIGH);
ASSERT_EQ(from_priority, CpuPriority::kNormal);
ASSERT_EQ(to_priority, CpuPriority::kIdle);
}
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->ClearAllCallBacks();
}
#endif
TEST_F(EnvPosixTest, MemoryMappedFileBuffer) {
const int kFileBytes = 1 << 15; // 32 KB
std::string expected_data;
std::string fname = test::PerThreadDBPath(env_, "testfile");
{
std::unique_ptr<WritableFile> wfile;
const EnvOptions soptions;
ASSERT_OK(env_->NewWritableFile(fname, &wfile, soptions));
Random rnd(301);
expected_data = rnd.RandomString(kFileBytes);
ASSERT_OK(wfile->Append(expected_data));
}
std::unique_ptr<MemoryMappedFileBuffer> mmap_buffer;
Status status = env_->NewMemoryMappedFileBuffer(fname, &mmap_buffer);
// it should be supported at least on linux
#if !defined(OS_LINUX)
if (status.IsNotSupported()) {
fprintf(stderr,
"skipping EnvPosixTest.MemoryMappedFileBuffer due to "
"unsupported Env::NewMemoryMappedFileBuffer\n");
return;
}
#endif // !defined(OS_LINUX)
ASSERT_OK(status);
ASSERT_NE(nullptr, mmap_buffer.get());
ASSERT_NE(nullptr, mmap_buffer->GetBase());
ASSERT_EQ(kFileBytes, mmap_buffer->GetLen());
std::string actual_data(reinterpret_cast<const char*>(mmap_buffer->GetBase()),
mmap_buffer->GetLen());
ASSERT_EQ(expected_data, actual_data);
}
#ifndef ROCKSDB_NO_DYNAMIC_EXTENSION
TEST_F(EnvPosixTest, LoadRocksDBLibrary) {
std::shared_ptr<DynamicLibrary> library;
std::function<void*(void*, const char*)> function;
Status status = env_->LoadLibrary("no-such-library", "", &library);
ASSERT_NOK(status);
ASSERT_EQ(nullptr, library.get());
status = env_->LoadLibrary("rocksdb", "", &library);
if (status.ok()) { // If we have can find a rocksdb shared library
ASSERT_NE(nullptr, library.get());
ASSERT_OK(library->LoadFunction("rocksdb_create_default_env",
&function)); // from C definition
ASSERT_NE(nullptr, function);
ASSERT_NOK(library->LoadFunction("no-such-method", &function));
ASSERT_EQ(nullptr, function);
ASSERT_OK(env_->LoadLibrary(library->Name(), "", &library));
} else {
ASSERT_EQ(nullptr, library.get());
}
}
#endif // !ROCKSDB_NO_DYNAMIC_EXTENSION
#if !defined(OS_WIN) && !defined(ROCKSDB_NO_DYNAMIC_EXTENSION)
TEST_F(EnvPosixTest, LoadRocksDBLibraryWithSearchPath) {
std::shared_ptr<DynamicLibrary> library;
std::function<void*(void*, const char*)> function;
ASSERT_NOK(env_->LoadLibrary("no-such-library", "/tmp", &library));
ASSERT_EQ(nullptr, library.get());
ASSERT_NOK(env_->LoadLibrary("dl", "/tmp", &library));
ASSERT_EQ(nullptr, library.get());
Status status = env_->LoadLibrary("rocksdb", "/tmp:./", &library);
if (status.ok()) {
ASSERT_NE(nullptr, library.get());
ASSERT_OK(env_->LoadLibrary(library->Name(), "", &library));
}
char buff[1024];
std::string cwd = getcwd(buff, sizeof(buff));
status = env_->LoadLibrary("rocksdb", "/tmp:" + cwd, &library);
if (status.ok()) {
ASSERT_NE(nullptr, library.get());
ASSERT_OK(env_->LoadLibrary(library->Name(), "", &library));
}
}
#endif // !OS_WIN && !ROCKSDB_NO_DYNAMIC_EXTENSION
TEST_P(EnvPosixTestWithParam, UnSchedule) {
std::atomic<bool> called(false);
env_->SetBackgroundThreads(1, Env::LOW);
/* Block the low priority queue */
test::SleepingBackgroundTask sleeping_task, sleeping_task1;
env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &sleeping_task,
Env::Priority::LOW);
/* Schedule another task */
env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &sleeping_task1,
Env::Priority::LOW, &sleeping_task1);
/* Remove it with a different tag */
ASSERT_EQ(0, env_->UnSchedule(&called, Env::Priority::LOW));
/* Remove it from the queue with the right tag */
ASSERT_EQ(1, env_->UnSchedule(&sleeping_task1, Env::Priority::LOW));
// Unblock background thread
sleeping_task.WakeUp();
/* Schedule another task */
env_->Schedule(&SetBool, &called);
for (int i = 0; i < kDelayMicros; i++) {
if (called.load()) {
break;
}
Env::Default()->SleepForMicroseconds(1);
}
ASSERT_TRUE(called.load());
ASSERT_TRUE(!sleeping_task.IsSleeping() && !sleeping_task1.IsSleeping());
WaitThreadPoolsEmpty();
}
// This tests assumes that the last scheduled
// task will run last. In fact, in the allotted
// sleeping time nothing may actually run or they may
// run in any order. The purpose of the test is unclear.
#ifndef OS_WIN
TEST_P(EnvPosixTestWithParam, RunMany) {
env_->SetBackgroundThreads(1, Env::LOW);
std::atomic<int> last_id(0);
struct CB {
std::atomic<int>* last_id_ptr; // Pointer to shared slot
int id; // Order# for the execution of this callback
CB(std::atomic<int>* p, int i) : last_id_ptr(p), id(i) {}
static void Run(void* v) {
CB* cb = reinterpret_cast<CB*>(v);
int cur = cb->last_id_ptr->load();
ASSERT_EQ(cb->id - 1, cur);
cb->last_id_ptr->store(cb->id);
}
};
// Schedule in different order than start time
CB cb1(&last_id, 1);
CB cb2(&last_id, 2);
CB cb3(&last_id, 3);
CB cb4(&last_id, 4);
env_->Schedule(&CB::Run, &cb1);
env_->Schedule(&CB::Run, &cb2);
env_->Schedule(&CB::Run, &cb3);
env_->Schedule(&CB::Run, &cb4);
// thread-pool pops a thread function and then run the function, which may
// cause threadpool is empty but the last function is still running. Add a
// dummy function at the end, to make sure the last callback is finished
// before threadpool is empty.
struct DummyCB {
static void Run(void*) {}
};
env_->Schedule(&DummyCB::Run, nullptr);
WaitThreadPoolsEmpty();
ASSERT_EQ(4, last_id.load(std::memory_order_acquire));
}
#endif
struct State {
port::Mutex mu;
int val;
int num_running;
};
static void ThreadBody(void* arg) {
State* s = reinterpret_cast<State*>(arg);
s->mu.Lock();
s->val += 1;
s->num_running -= 1;
s->mu.Unlock();
}
TEST_P(EnvPosixTestWithParam, StartThread) {
State state;
state.val = 0;
state.num_running = 3;
for (int i = 0; i < 3; i++) {
env_->StartThread(&ThreadBody, &state);
}
while (true) {
state.mu.Lock();
int num = state.num_running;
state.mu.Unlock();
if (num == 0) {
break;
}
Env::Default()->SleepForMicroseconds(kDelayMicros);
}
ASSERT_EQ(state.val, 3);
WaitThreadPoolsEmpty();
}
TEST_P(EnvPosixTestWithParam, TwoPools) {
// Data structures to signal tasks to run.
port::Mutex mutex;
port::CondVar cv(&mutex);
bool should_start = false;
class CB {
public:
CB(const std::string& pool_name, int pool_size, port::Mutex* trigger_mu,
port::CondVar* trigger_cv, bool* _should_start)
: mu_(),
num_running_(0),
num_finished_(0),
pool_size_(pool_size),
pool_name_(pool_name),
trigger_mu_(trigger_mu),
trigger_cv_(trigger_cv),
should_start_(_should_start) {}
static void Run(void* v) {
CB* cb = reinterpret_cast<CB*>(v);
cb->Run();
}
void Run() {
{
MutexLock l(&mu_);
num_running_++;
// make sure we don't have more than pool_size_ jobs running.
ASSERT_LE(num_running_, pool_size_.load());
}
{
MutexLock l(trigger_mu_);
while (!(*should_start_)) {
trigger_cv_->Wait();
}
}
{
MutexLock l(&mu_);
num_running_--;
num_finished_++;
}
}
int NumFinished() {
MutexLock l(&mu_);
return num_finished_;
}
void Reset(int pool_size) {
pool_size_.store(pool_size);
num_finished_ = 0;
}
private:
port::Mutex mu_;
int num_running_;
int num_finished_;
std::atomic<int> pool_size_;
std::string pool_name_;
port::Mutex* trigger_mu_;
port::CondVar* trigger_cv_;
bool* should_start_;
};
const int kLowPoolSize = 2;
const int kHighPoolSize = 4;
const int kJobs = 8;
CB low_pool_job("low", kLowPoolSize, &mutex, &cv, &should_start);
CB high_pool_job("high", kHighPoolSize, &mutex, &cv, &should_start);
env_->SetBackgroundThreads(kLowPoolSize);
env_->SetBackgroundThreads(kHighPoolSize, Env::Priority::HIGH);
ASSERT_EQ(0U, env_->GetThreadPoolQueueLen(Env::Priority::LOW));
ASSERT_EQ(0U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH));
// schedule same number of jobs in each pool
for (int i = 0; i < kJobs; i++) {
env_->Schedule(&CB::Run, &low_pool_job);
env_->Schedule(&CB::Run, &high_pool_job, Env::Priority::HIGH);
}
// Wait a short while for the jobs to be dispatched.
int sleep_count = 0;
while ((unsigned int)(kJobs - kLowPoolSize) !=
env_->GetThreadPoolQueueLen(Env::Priority::LOW) ||
(unsigned int)(kJobs - kHighPoolSize) !=
env_->GetThreadPoolQueueLen(Env::Priority::HIGH)) {
env_->SleepForMicroseconds(kDelayMicros);
if (++sleep_count > 100) {
break;
}
}
ASSERT_EQ((unsigned int)(kJobs - kLowPoolSize),
env_->GetThreadPoolQueueLen());
ASSERT_EQ((unsigned int)(kJobs - kLowPoolSize),
env_->GetThreadPoolQueueLen(Env::Priority::LOW));
ASSERT_EQ((unsigned int)(kJobs - kHighPoolSize),
env_->GetThreadPoolQueueLen(Env::Priority::HIGH));
// Trigger jobs to run.
{
MutexLock l(&mutex);
should_start = true;
cv.SignalAll();
}
// wait for all jobs to finish
while (low_pool_job.NumFinished() < kJobs ||
high_pool_job.NumFinished() < kJobs) {
env_->SleepForMicroseconds(kDelayMicros);
}
ASSERT_EQ(0U, env_->GetThreadPoolQueueLen(Env::Priority::LOW));
ASSERT_EQ(0U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH));
// Hold jobs to schedule;
should_start = false;
// call IncBackgroundThreadsIfNeeded to two pools. One increasing and
// the other decreasing
env_->IncBackgroundThreadsIfNeeded(kLowPoolSize - 1, Env::Priority::LOW);
env_->IncBackgroundThreadsIfNeeded(kHighPoolSize + 1, Env::Priority::HIGH);
high_pool_job.Reset(kHighPoolSize + 1);
low_pool_job.Reset(kLowPoolSize);
// schedule same number of jobs in each pool
for (int i = 0; i < kJobs; i++) {
env_->Schedule(&CB::Run, &low_pool_job);
env_->Schedule(&CB::Run, &high_pool_job, Env::Priority::HIGH);
}
// Wait a short while for the jobs to be dispatched.
sleep_count = 0;
while ((unsigned int)(kJobs - kLowPoolSize) !=
env_->GetThreadPoolQueueLen(Env::Priority::LOW) ||
(unsigned int)(kJobs - (kHighPoolSize + 1)) !=
env_->GetThreadPoolQueueLen(Env::Priority::HIGH)) {
env_->SleepForMicroseconds(kDelayMicros);
if (++sleep_count > 100) {
break;
}
}
ASSERT_EQ((unsigned int)(kJobs - kLowPoolSize),
env_->GetThreadPoolQueueLen());
ASSERT_EQ((unsigned int)(kJobs - kLowPoolSize),
env_->GetThreadPoolQueueLen(Env::Priority::LOW));
ASSERT_EQ((unsigned int)(kJobs - (kHighPoolSize + 1)),
env_->GetThreadPoolQueueLen(Env::Priority::HIGH));
// Trigger jobs to run.
{
MutexLock l(&mutex);
should_start = true;
cv.SignalAll();
}
// wait for all jobs to finish
while (low_pool_job.NumFinished() < kJobs ||
high_pool_job.NumFinished() < kJobs) {
env_->SleepForMicroseconds(kDelayMicros);
}
env_->SetBackgroundThreads(kHighPoolSize, Env::Priority::HIGH);
WaitThreadPoolsEmpty();
}
TEST_P(EnvPosixTestWithParam, DecreaseNumBgThreads) {
constexpr int kWaitMicros = 60000000; // 1min
std::vector<test::SleepingBackgroundTask> tasks(10);
// Set number of thread to 1 first.
env_->SetBackgroundThreads(1, Env::Priority::HIGH);
// Schedule 3 tasks. 0 running; Task 1, 2 waiting.
for (size_t i = 0; i < 3; i++) {
env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &tasks[i],
Env::Priority::HIGH);
}
ASSERT_FALSE(tasks[0].TimedWaitUntilSleeping(kWaitMicros));
ASSERT_EQ(2U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH));
ASSERT_TRUE(tasks[0].IsSleeping());
ASSERT_TRUE(!tasks[1].IsSleeping());
ASSERT_TRUE(!tasks[2].IsSleeping());
// Increase to 2 threads. Task 0, 1 running; 2 waiting
env_->SetBackgroundThreads(2, Env::Priority::HIGH);
ASSERT_FALSE(tasks[1].TimedWaitUntilSleeping(kWaitMicros));
ASSERT_EQ(1U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH));
ASSERT_TRUE(tasks[0].IsSleeping());
ASSERT_TRUE(tasks[1].IsSleeping());
ASSERT_TRUE(!tasks[2].IsSleeping());
// Shrink back to 1 thread. Still task 0, 1 running, 2 waiting
env_->SetBackgroundThreads(1, Env::Priority::HIGH);
Env::Default()->SleepForMicroseconds(kDelayMicros);
ASSERT_EQ(1U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH));
ASSERT_TRUE(tasks[0].IsSleeping());
ASSERT_TRUE(tasks[1].IsSleeping());
ASSERT_TRUE(!tasks[2].IsSleeping());
// The last task finishes. Task 0 running, 2 waiting.
tasks[1].WakeUp();
ASSERT_FALSE(tasks[1].TimedWaitUntilDone(kWaitMicros));
ASSERT_EQ(1U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH));
ASSERT_TRUE(tasks[0].IsSleeping());
ASSERT_TRUE(!tasks[1].IsSleeping());
ASSERT_TRUE(!tasks[2].IsSleeping());
// Increase to 5 threads. Task 0 and 2 running.
env_->SetBackgroundThreads(5, Env::Priority::HIGH);
ASSERT_FALSE(tasks[2].TimedWaitUntilSleeping(kWaitMicros));
ASSERT_EQ(0U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH));
ASSERT_TRUE(tasks[0].IsSleeping());
ASSERT_TRUE(!tasks[1].IsSleeping());
ASSERT_TRUE(tasks[2].IsSleeping());
// Change number of threads a couple of times while there is no sufficient
// tasks.
env_->SetBackgroundThreads(7, Env::Priority::HIGH);
tasks[2].WakeUp();
ASSERT_FALSE(tasks[2].TimedWaitUntilDone(kWaitMicros));
ASSERT_EQ(0U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH));
env_->SetBackgroundThreads(3, Env::Priority::HIGH);
Env::Default()->SleepForMicroseconds(kDelayMicros);
ASSERT_EQ(0U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH));
env_->SetBackgroundThreads(4, Env::Priority::HIGH);
Env::Default()->SleepForMicroseconds(kDelayMicros);
ASSERT_EQ(0U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH));
env_->SetBackgroundThreads(5, Env::Priority::HIGH);
Env::Default()->SleepForMicroseconds(kDelayMicros);
ASSERT_EQ(0U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH));
env_->SetBackgroundThreads(4, Env::Priority::HIGH);
Env::Default()->SleepForMicroseconds(kDelayMicros);
ASSERT_EQ(0U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH));
Env::Default()->SleepForMicroseconds(kDelayMicros * 50);
// Enqueue 5 more tasks. Thread pool size now is 4.
// Task 0, 3, 4, 5 running;6, 7 waiting.
for (size_t i = 3; i < 8; i++) {
env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &tasks[i],
Env::Priority::HIGH);
}
for (size_t i = 3; i <= 5; i++) {
ASSERT_FALSE(tasks[i].TimedWaitUntilSleeping(kWaitMicros));
}
ASSERT_EQ(2U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH));
ASSERT_TRUE(tasks[0].IsSleeping());
ASSERT_TRUE(!tasks[1].IsSleeping());
ASSERT_TRUE(!tasks[2].IsSleeping());
ASSERT_TRUE(tasks[3].IsSleeping());
ASSERT_TRUE(tasks[4].IsSleeping());
ASSERT_TRUE(tasks[5].IsSleeping());
ASSERT_TRUE(!tasks[6].IsSleeping());
ASSERT_TRUE(!tasks[7].IsSleeping());
// Wake up task 0, 3 and 4. Task 5, 6, 7 running.
tasks[0].WakeUp();
tasks[3].WakeUp();
tasks[4].WakeUp();
for (size_t i = 5; i < 8; i++) {
ASSERT_FALSE(tasks[i].TimedWaitUntilSleeping(kWaitMicros));
}
ASSERT_EQ(0U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH));
for (size_t i = 5; i < 8; i++) {
ASSERT_TRUE(tasks[i].IsSleeping());
}
// Shrink back to 1 thread. Still task 5, 6, 7 running
env_->SetBackgroundThreads(1, Env::Priority::HIGH);
Env::Default()->SleepForMicroseconds(kDelayMicros);
ASSERT_TRUE(tasks[5].IsSleeping());
ASSERT_TRUE(tasks[6].IsSleeping());
ASSERT_TRUE(tasks[7].IsSleeping());
// Wake up task 6. Task 5, 7 running
tasks[6].WakeUp();
ASSERT_FALSE(tasks[6].TimedWaitUntilDone(kWaitMicros));
ASSERT_TRUE(tasks[5].IsSleeping());
ASSERT_TRUE(!tasks[6].IsSleeping());
ASSERT_TRUE(tasks[7].IsSleeping());
// Wake up threads 7. Task 5 running
tasks[7].WakeUp();
ASSERT_FALSE(tasks[7].TimedWaitUntilDone(kWaitMicros));
ASSERT_TRUE(!tasks[7].IsSleeping());
// Enqueue thread 8 and 9. Task 5 running; one of 8, 9 might be running.
env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &tasks[8],
Env::Priority::HIGH);
env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &tasks[9],
Env::Priority::HIGH);
Env::Default()->SleepForMicroseconds(kDelayMicros);
ASSERT_GT(env_->GetThreadPoolQueueLen(Env::Priority::HIGH), (unsigned int)0);
ASSERT_TRUE(!tasks[8].IsSleeping() || !tasks[9].IsSleeping());
// Increase to 4 threads. Task 5, 8, 9 running.
env_->SetBackgroundThreads(4, Env::Priority::HIGH);
Env::Default()->SleepForMicroseconds(kDelayMicros);
ASSERT_EQ((unsigned int)0, env_->GetThreadPoolQueueLen(Env::Priority::HIGH));
ASSERT_TRUE(tasks[8].IsSleeping());
ASSERT_TRUE(tasks[9].IsSleeping());
// Shrink to 1 thread
env_->SetBackgroundThreads(1, Env::Priority::HIGH);
// Wake up thread 9.
tasks[9].WakeUp();
ASSERT_FALSE(tasks[9].TimedWaitUntilDone(kWaitMicros));
ASSERT_TRUE(!tasks[9].IsSleeping());
ASSERT_TRUE(tasks[8].IsSleeping());
// Wake up thread 8
tasks[8].WakeUp();
ASSERT_FALSE(tasks[8].TimedWaitUntilDone(kWaitMicros));
ASSERT_TRUE(!tasks[8].IsSleeping());
// Wake up the last thread
tasks[5].WakeUp();
ASSERT_FALSE(tasks[5].TimedWaitUntilDone(kWaitMicros));
WaitThreadPoolsEmpty();
}
TEST_P(EnvPosixTestWithParam, ReserveThreads) {
// Initialize the background thread to 1 in case other threads exist
// from the last unit test
env_->SetBackgroundThreads(1, Env::Priority::HIGH);
ASSERT_EQ(env_->GetBackgroundThreads(Env::HIGH), 1);
constexpr int kWaitMicros = 10000000; // 10seconds
std::vector<test::SleepingBackgroundTask> tasks(4);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
// Set the sync point to ensure thread 0 can terminate
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency(
{{"ThreadPoolImpl::BGThread::Termination:th0",
"EnvTest::ReserveThreads:0"}});
// Empty the thread pool to ensure all the threads can start later
env_->SetBackgroundThreads(0, Env::Priority::HIGH);
TEST_SYNC_POINT("EnvTest::ReserveThreads:0");
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
// Set the sync point to ensure threads start and pass the sync point
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency(
{{"ThreadPoolImpl::BGThread::Start:th0", "EnvTest::ReserveThreads:1"},
{"ThreadPoolImpl::BGThread::Start:th1", "EnvTest::ReserveThreads:2"},
{"ThreadPoolImpl::BGThread::Start:th2", "EnvTest::ReserveThreads:3"},
{"ThreadPoolImpl::BGThread::Start:th3", "EnvTest::ReserveThreads:4"}});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
// Set number of thread to 3 first.
env_->SetBackgroundThreads(3, Env::Priority::HIGH);
ASSERT_EQ(env_->GetBackgroundThreads(Env::HIGH), 3);
// Add sync points to ensure all 3 threads start
TEST_SYNC_POINT("EnvTest::ReserveThreads:1");
TEST_SYNC_POINT("EnvTest::ReserveThreads:2");
TEST_SYNC_POINT("EnvTest::ReserveThreads:3");
// Reserve 2 threads
ASSERT_EQ(2, env_->ReserveThreads(2, Env::Priority::HIGH));
// Schedule 3 tasks. Task 0 running (in this context, doing
// SleepingBackgroundTask); Task 1, 2 waiting; 3 reserved threads.
for (size_t i = 0; i < 3; i++) {
env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &tasks[i],
Env::Priority::HIGH);
}
ASSERT_FALSE(tasks[0].TimedWaitUntilSleeping(kWaitMicros));
ASSERT_EQ(2U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH));
ASSERT_TRUE(tasks[0].IsSleeping());
ASSERT_TRUE(!tasks[1].IsSleeping());
ASSERT_TRUE(!tasks[2].IsSleeping());
// Release 2 threads. Task 0, 1, 2 running; 0 reserved thread.
ASSERT_EQ(2, env_->ReleaseThreads(2, Env::Priority::HIGH));
ASSERT_FALSE(tasks[1].TimedWaitUntilSleeping(kWaitMicros));
ASSERT_FALSE(tasks[2].TimedWaitUntilSleeping(kWaitMicros));
ASSERT_EQ(0U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH));
ASSERT_TRUE(tasks[1].IsSleeping());
ASSERT_TRUE(tasks[2].IsSleeping());
// No more threads can be reserved
ASSERT_EQ(0, env_->ReserveThreads(3, Env::Priority::HIGH));
// Expand the number of background threads so that the last thread
// is waiting
env_->SetBackgroundThreads(4, Env::Priority::HIGH);
// Add sync point to ensure the 4th thread starts
TEST_SYNC_POINT("EnvTest::ReserveThreads:4");
// As the thread pool is expanded, we can reserve one more thread
ASSERT_EQ(1, env_->ReserveThreads(3, Env::Priority::HIGH));
// No more threads can be reserved
ASSERT_EQ(0, env_->ReserveThreads(3, Env::Priority::HIGH));
// Reset the sync points for the next iteration in BGThread or the
// next time Submit() is called
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->LoadDependency(
{{"ThreadPoolImpl::BGThread::WaitingThreadsInc",
"EnvTest::ReserveThreads:5"},
{"ThreadPoolImpl::BGThread::Termination", "EnvTest::ReserveThreads:6"},
{"ThreadPoolImpl::Submit::Enqueue", "EnvTest::ReserveThreads:7"}});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
tasks[0].WakeUp();
ASSERT_FALSE(tasks[0].TimedWaitUntilDone(kWaitMicros));
// Add sync point to ensure the number of waiting threads increases
TEST_SYNC_POINT("EnvTest::ReserveThreads:5");
// 1 more thread can be reserved
ASSERT_EQ(1, env_->ReserveThreads(3, Env::Priority::HIGH));
// 2 reserved threads now
// Currently, two threads are blocked since the number of waiting
// threads is equal to the number of reserved threads (i.e., 2).
// If we reduce the number of background thread to 1, at least one thread
// will be the last excessive thread (here we have no control over the
// number of excessive threads because thread order does not
// necessarily follows the schedule order, but we ensure that the last thread
// shall not run any task by expanding the thread pool after we schedule
// the tasks), and thus they(it) become(s) unblocked, the number of waiting
// threads decreases to 0 or 1, but the number of reserved threads is still 2
env_->SetBackgroundThreads(1, Env::Priority::HIGH);
// Task 1,2 running; 2 reserved threads, however, in fact, we only have
// 0 or 1 waiting thread in the thread pool, proved by the
// following test, we CANNOT reserve 2 threads even though we just
// release 2
TEST_SYNC_POINT("EnvTest::ReserveThreads:6");
ASSERT_EQ(2, env_->ReleaseThreads(2, Env::Priority::HIGH));
ASSERT_GT(2, env_->ReserveThreads(2, Env::Priority::HIGH));
// Every new task will be put into the queue at this point
env_->Schedule(&test::SleepingBackgroundTask::DoSleepTask, &tasks[3],
Env::Priority::HIGH);
TEST_SYNC_POINT("EnvTest::ReserveThreads:7");
ASSERT_EQ(1U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH));
ASSERT_TRUE(!tasks[3].IsSleeping());
// Set the number of threads to 3 so that Task 3 can dequeue
env_->SetBackgroundThreads(3, Env::Priority::HIGH);
// Wakup Task 1
tasks[1].WakeUp();
ASSERT_FALSE(tasks[1].TimedWaitUntilDone(kWaitMicros));
// Task 2, 3 running (Task 3 dequeue); 0 or 1 reserved thread
ASSERT_FALSE(tasks[3].TimedWaitUntilSleeping(kWaitMicros));
ASSERT_TRUE(tasks[3].IsSleeping());
ASSERT_EQ(0U, env_->GetThreadPoolQueueLen(Env::Priority::HIGH));
// At most 1 thread can be released
ASSERT_GT(2, env_->ReleaseThreads(3, Env::Priority::HIGH));
tasks[2].WakeUp();
ASSERT_FALSE(tasks[2].TimedWaitUntilDone(kWaitMicros));
tasks[3].WakeUp();
ASSERT_FALSE(tasks[3].TimedWaitUntilDone(kWaitMicros));
WaitThreadPoolsEmpty();
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
}
#if (defined OS_LINUX || defined OS_WIN)
namespace {
bool IsSingleVarint(const std::string& s) {
Slice slice(s);
uint64_t v;
if (!GetVarint64(&slice, &v)) {
return false;
}
return slice.size() == 0;
}
bool IsUniqueIDValid(const std::string& s) {
return !s.empty() && !IsSingleVarint(s);
}
const size_t MAX_ID_SIZE = 100;
char temp_id[MAX_ID_SIZE];
} // namespace
// Determine whether we can use the FS_IOC_GETVERSION ioctl
// on a file in directory DIR. Create a temporary file therein,
// try to apply the ioctl (save that result), cleanup and
// return the result. Return true if it is supported, and
// false if anything fails.
// Note that this function "knows" that dir has just been created
// and is empty, so we create a simply-named test file: "f".
bool ioctl_support__FS_IOC_GETVERSION(const std::string& dir) {
#ifdef OS_WIN
return true;
#else
const std::string file = dir + "/f";
int fd;
do {
fd = open(file.c_str(), O_CREAT | O_RDWR | O_TRUNC, 0644);
} while (fd < 0 && errno == EINTR);
long int version;
bool ok = (fd >= 0 && ioctl(fd, FS_IOC_GETVERSION, &version) >= 0);
close(fd);
unlink(file.c_str());
return ok;
#endif
}
// To ensure that Env::GetUniqueId-related tests work correctly, the files
// should be stored in regular storage like "hard disk" or "flash device",
// and not on a tmpfs file system (like /dev/shm and /tmp on some systems).
// Otherwise we cannot get the correct id.
//
// This function serves as the replacement for test::TmpDir(), which may be
// customized to be on a file system that doesn't work with GetUniqueId().
class IoctlFriendlyTmpdir {
public:
explicit IoctlFriendlyTmpdir() {
char dir_buf[100];
const char* fmt = "%s/rocksdb.XXXXXX";
const char* tmp = getenv("TEST_IOCTL_FRIENDLY_TMPDIR");
#ifdef OS_WIN
#define rmdir _rmdir
if (tmp == nullptr) {
tmp = getenv("TMP");
}
snprintf(dir_buf, sizeof dir_buf, fmt, tmp);
auto result = _mktemp(dir_buf);
assert(result != nullptr);
BOOL ret = CreateDirectory(dir_buf, NULL);
assert(ret == TRUE);
dir_ = dir_buf;
#else
std::list<std::string> candidate_dir_list = {"/var/tmp", "/tmp"};
// If $TEST_IOCTL_FRIENDLY_TMPDIR/rocksdb.XXXXXX fits, use
// $TEST_IOCTL_FRIENDLY_TMPDIR; subtract 2 for the "%s", and
// add 1 for the trailing NUL byte.
if (tmp && strlen(tmp) + strlen(fmt) - 2 + 1 <= sizeof dir_buf) {
// use $TEST_IOCTL_FRIENDLY_TMPDIR value
candidate_dir_list.push_front(tmp);
}
for (const std::string& d : candidate_dir_list) {
snprintf(dir_buf, sizeof dir_buf, fmt, d.c_str());
if (mkdtemp(dir_buf)) {
if (ioctl_support__FS_IOC_GETVERSION(dir_buf)) {
dir_ = dir_buf;
return;
} else {
// Diagnose ioctl-related failure only if this is the
// directory specified via that envvar.
if (tmp && tmp == d) {
fprintf(stderr,
"TEST_IOCTL_FRIENDLY_TMPDIR-specified directory is "
"not suitable: %s\n",
d.c_str());
}
rmdir(dir_buf); // ignore failure
}
} else {
// mkdtemp failed: diagnose it, but don't give up.
fprintf(stderr, "mkdtemp(%s/...) failed: %s\n", d.c_str(),
errnoStr(errno).c_str());
}
}
// check if it's running test within a docker container, in which case, the
// file system inside `overlayfs` may not support FS_IOC_GETVERSION
// skip the tests
struct stat buffer;
if (stat("/.dockerenv", &buffer) == 0) {
is_supported_ = false;
return;
}
fprintf(stderr,
"failed to find an ioctl-friendly temporary directory;"
" specify one via the TEST_IOCTL_FRIENDLY_TMPDIR envvar\n");
std::abort();
#endif
}
~IoctlFriendlyTmpdir() { rmdir(dir_.c_str()); }
const std::string& name() const { return dir_; }
bool is_supported() const { return is_supported_; }
private:
std::string dir_;
bool is_supported_ = true;
};
TEST_F(EnvPosixTest, PositionedAppend) {
std::unique_ptr<WritableFile> writable_file;
EnvOptions options;
options.use_direct_writes = true;
options.use_mmap_writes = false;
std::string fname = test::PerThreadDBPath(env_, "positioned_append");
SetupSyncPointsToMockDirectIO();
ASSERT_OK(env_->NewWritableFile(fname, &writable_file, options));
const size_t kBlockSize = 4096;
const size_t kDataSize = kPageSize;
// Write a page worth of 'a'
auto data_ptr = NewAligned(kDataSize, 'a');
Slice data_a(data_ptr.get(), kDataSize);
ASSERT_OK(writable_file->PositionedAppend(data_a, 0U));
// Write a page worth of 'b' right after the first sector
data_ptr = NewAligned(kDataSize, 'b');
Slice data_b(data_ptr.get(), kDataSize);
ASSERT_OK(writable_file->PositionedAppend(data_b, kBlockSize));
ASSERT_OK(writable_file->Close());
// The file now has 1 sector worth of a followed by a page worth of b
// Verify the above
std::unique_ptr<SequentialFile> seq_file;
ASSERT_OK(env_->NewSequentialFile(fname, &seq_file, options));
size_t scratch_len = kPageSize * 2;
std::unique_ptr<char[]> scratch(new char[scratch_len]);
Slice result;
ASSERT_OK(seq_file->Read(scratch_len, &result, scratch.get()));
ASSERT_EQ(kPageSize + kBlockSize, result.size());
ASSERT_EQ('a', result[kBlockSize - 1]);
ASSERT_EQ('b', result[kBlockSize]);
}
// `GetUniqueId()` temporarily returns zero on Windows. `BlockBasedTable` can
// handle a return value of zero but this test case cannot.
#ifndef OS_WIN
TEST_P(EnvPosixTestWithParam, RandomAccessUniqueID) {
// Create file.
if (env_ == Env::Default()) {
EnvOptions soptions;
soptions.use_direct_reads = soptions.use_direct_writes = direct_io_;
IoctlFriendlyTmpdir ift;
if (!ift.is_supported()) {
ROCKSDB_GTEST_BYPASS(
"FS_IOC_GETVERSION is not supported by the filesystem");
return;
}
std::string fname = ift.name() + "/testfile";
std::unique_ptr<WritableFile> wfile;
ASSERT_OK(env_->NewWritableFile(fname, &wfile, soptions));
std::unique_ptr<RandomAccessFile> file;
// Get Unique ID
ASSERT_OK(env_->NewRandomAccessFile(fname, &file, soptions));
size_t id_size = file->GetUniqueId(temp_id, MAX_ID_SIZE);
ASSERT_TRUE(id_size > 0);
std::string unique_id1(temp_id, id_size);
ASSERT_TRUE(IsUniqueIDValid(unique_id1));
// Get Unique ID again
ASSERT_OK(env_->NewRandomAccessFile(fname, &file, soptions));
id_size = file->GetUniqueId(temp_id, MAX_ID_SIZE);
ASSERT_TRUE(id_size > 0);
std::string unique_id2(temp_id, id_size);
ASSERT_TRUE(IsUniqueIDValid(unique_id2));
// Get Unique ID again after waiting some time.
env_->SleepForMicroseconds(1000000);
ASSERT_OK(env_->NewRandomAccessFile(fname, &file, soptions));
id_size = file->GetUniqueId(temp_id, MAX_ID_SIZE);
ASSERT_TRUE(id_size > 0);
std::string unique_id3(temp_id, id_size);
ASSERT_TRUE(IsUniqueIDValid(unique_id3));
// Check IDs are the same.
ASSERT_EQ(unique_id1, unique_id2);
ASSERT_EQ(unique_id2, unique_id3);
// Delete the file
ASSERT_OK(env_->DeleteFile(fname));
}
}
#endif // !defined(OS_WIN)
// only works in linux platforms
#ifdef ROCKSDB_FALLOCATE_PRESENT
TEST_P(EnvPosixTestWithParam, AllocateTest) {
if (env_ == Env::Default()) {
SetupSyncPointsToMockDirectIO();
std::string fname = test::PerThreadDBPath(env_, "preallocate_testfile");
// Try fallocate in a file to see whether the target file system supports
// it.
// Skip the test if fallocate is not supported.
std::string fname_test_fallocate =
test::PerThreadDBPath(env_, "preallocate_testfile_2");
int fd = -1;
do {
fd = open(fname_test_fallocate.c_str(), O_CREAT | O_RDWR | O_TRUNC, 0644);
} while (fd < 0 && errno == EINTR);
ASSERT_GT(fd, 0);
int alloc_status = fallocate(fd, 0, 0, 1);
int err_number = 0;
if (alloc_status != 0) {
err_number = errno;
fprintf(stderr, "Warning: fallocate() fails, %s\n",
errnoStr(err_number).c_str());
}
close(fd);
ASSERT_OK(env_->DeleteFile(fname_test_fallocate));
if (alloc_status != 0 && err_number == EOPNOTSUPP) {
// The filesystem containing the file does not support fallocate
return;
}
EnvOptions soptions;
soptions.use_mmap_writes = false;
soptions.use_direct_reads = soptions.use_direct_writes = direct_io_;
std::unique_ptr<WritableFile> wfile;
ASSERT_OK(env_->NewWritableFile(fname, &wfile, soptions));
// allocate 100 MB
size_t kPreallocateSize = 100 * 1024 * 1024;
size_t kBlockSize = 512;
size_t kDataSize = 1024 * 1024;
auto data_ptr = NewAligned(kDataSize, 'A');
Slice data(data_ptr.get(), kDataSize);
wfile->SetPreallocationBlockSize(kPreallocateSize);
wfile->PrepareWrite(wfile->GetFileSize(), kDataSize);
ASSERT_OK(wfile->Append(data));
ASSERT_OK(wfile->Flush());
struct stat f_stat;
ASSERT_EQ(stat(fname.c_str(), &f_stat), 0);
ASSERT_EQ((unsigned int)kDataSize, f_stat.st_size);
// verify that blocks are preallocated
// Note here that we don't check the exact number of blocks preallocated --
// we only require that number of allocated blocks is at least what we
// expect.
// It looks like some FS give us more blocks that we asked for. That's fine.
// It might be worth investigating further.
ASSERT_LE((unsigned int)(kPreallocateSize / kBlockSize), f_stat.st_blocks);
// close the file, should deallocate the blocks
wfile.reset();
stat(fname.c_str(), &f_stat);
ASSERT_EQ((unsigned int)kDataSize, f_stat.st_size);
// verify that preallocated blocks were deallocated on file close
// Because the FS might give us more blocks, we add a full page to the size
// and expect the number of blocks to be less or equal to that.
ASSERT_GE((f_stat.st_size + kPageSize + kBlockSize - 1) / kBlockSize,
(unsigned int)f_stat.st_blocks);
}
}
#endif // ROCKSDB_FALLOCATE_PRESENT
// Returns true if any of the strings in ss are the prefix of another string.
bool HasPrefix(const std::unordered_set<std::string>& ss) {
for (const std::string& s : ss) {
if (s.empty()) {
return true;
}
for (size_t i = 1; i < s.size(); ++i) {
if (ss.count(s.substr(0, i)) != 0) {
return true;
}
}
}
return false;
}
// `GetUniqueId()` temporarily returns zero on Windows. `BlockBasedTable` can
// handle a return value of zero but this test case cannot.
#ifndef OS_WIN
TEST_P(EnvPosixTestWithParam, RandomAccessUniqueIDConcurrent) {
if (env_ == Env::Default()) {
// Check whether a bunch of concurrently existing files have unique IDs.
EnvOptions soptions;
soptions.use_direct_reads = soptions.use_direct_writes = direct_io_;
// Create the files
IoctlFriendlyTmpdir ift;
if (!ift.is_supported()) {
ROCKSDB_GTEST_BYPASS(
"FS_IOC_GETVERSION is not supported by the filesystem");
return;
}
std::vector<std::string> fnames;
for (int i = 0; i < 1000; ++i) {
fnames.push_back(ift.name() + "/" + "testfile" + std::to_string(i));
// Create file.
std::unique_ptr<WritableFile> wfile;
ASSERT_OK(env_->NewWritableFile(fnames[i], &wfile, soptions));
}
// Collect and check whether the IDs are unique.
std::unordered_set<std::string> ids;
for (const std::string& fname : fnames) {
std::unique_ptr<RandomAccessFile> file;
std::string unique_id;
ASSERT_OK(env_->NewRandomAccessFile(fname, &file, soptions));
size_t id_size = file->GetUniqueId(temp_id, MAX_ID_SIZE);
ASSERT_TRUE(id_size > 0);
unique_id = std::string(temp_id, id_size);
ASSERT_TRUE(IsUniqueIDValid(unique_id));
ASSERT_TRUE(ids.count(unique_id) == 0);
ids.insert(unique_id);
}
// Delete the files
for (const std::string& fname : fnames) {
ASSERT_OK(env_->DeleteFile(fname));
}
ASSERT_TRUE(!HasPrefix(ids));
}
}
// TODO: Disable the flaky test, it's a known issue that ext4 may return same
// key after file deletion. The issue is tracked in #7405, #7470.
TEST_P(EnvPosixTestWithParam, DISABLED_RandomAccessUniqueIDDeletes) {
if (env_ == Env::Default()) {
EnvOptions soptions;
soptions.use_direct_reads = soptions.use_direct_writes = direct_io_;
IoctlFriendlyTmpdir ift;
if (!ift.is_supported()) {
ROCKSDB_GTEST_BYPASS(
"FS_IOC_GETVERSION is not supported by the filesystem");
return;
}
std::string fname = ift.name() + "/" + "testfile";
// Check that after file is deleted we don't get same ID again in a new
// file.
std::unordered_set<std::string> ids;
for (int i = 0; i < 1000; ++i) {
// Create file.
{
std::unique_ptr<WritableFile> wfile;
ASSERT_OK(env_->NewWritableFile(fname, &wfile, soptions));
}
// Get Unique ID
std::string unique_id;
{
std::unique_ptr<RandomAccessFile> file;
ASSERT_OK(env_->NewRandomAccessFile(fname, &file, soptions));
size_t id_size = file->GetUniqueId(temp_id, MAX_ID_SIZE);
ASSERT_TRUE(id_size > 0);
unique_id = std::string(temp_id, id_size);
}
ASSERT_TRUE(IsUniqueIDValid(unique_id));
ASSERT_TRUE(ids.count(unique_id) == 0);
ids.insert(unique_id);
// Delete the file
ASSERT_OK(env_->DeleteFile(fname));
}
ASSERT_TRUE(!HasPrefix(ids));
}
}
#endif // !defined(OS_WIN)
TEST_P(EnvPosixTestWithParam, MultiRead) {
EnvOptions soptions;
soptions.use_direct_reads = soptions.use_direct_writes = direct_io_;
std::string fname = test::PerThreadDBPath(env_, "testfile");
const size_t kSectorSize = 4096;
const size_t kNumSectors = 8;
// Create file.
{
std::unique_ptr<WritableFile> wfile;
#if !defined(OS_MACOSX) && !defined(OS_WIN) && !defined(OS_SOLARIS) && \
!defined(OS_AIX)
if (soptions.use_direct_writes) {
soptions.use_direct_writes = false;
}
#endif
ASSERT_OK(env_->NewWritableFile(fname, &wfile, soptions));
for (size_t i = 0; i < kNumSectors; ++i) {
auto data = NewAligned(kSectorSize * 8, static_cast<char>(i + 1));
Slice slice(data.get(), kSectorSize);
ASSERT_OK(wfile->Append(slice));
}
ASSERT_OK(wfile->Close());
}
// More attempts to simulate more partial result sequences.
for (uint32_t attempt = 0; attempt < 20; attempt++) {
// Random Read
Random rnd(301 + attempt);
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"UpdateResults::io_uring_result", [&](void* arg) {
if (attempt > 0) {
// No failure in the first attempt.
size_t& bytes_read = *static_cast<size_t*>(arg);
if (rnd.OneIn(4)) {
bytes_read = 0;
} else if (rnd.OneIn(3)) {
bytes_read = static_cast<size_t>(
rnd.Uniform(static_cast<int>(bytes_read)));
}
}
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
std::unique_ptr<RandomAccessFile> file;
std::vector<ReadRequest> reqs(3);
std::vector<std::unique_ptr<char, Deleter>> data;
uint64_t offset = 0;
for (size_t i = 0; i < reqs.size(); ++i) {
reqs[i].offset = offset;
offset += 2 * kSectorSize;
reqs[i].len = kSectorSize;
data.emplace_back(NewAligned(kSectorSize, 0));
reqs[i].scratch = data.back().get();
}
#if !defined(OS_MACOSX) && !defined(OS_WIN) && !defined(OS_SOLARIS) && \
!defined(OS_AIX)
if (soptions.use_direct_reads) {
soptions.use_direct_reads = false;
}
#endif
ASSERT_OK(env_->NewRandomAccessFile(fname, &file, soptions));
ASSERT_OK(file->MultiRead(reqs.data(), reqs.size()));
for (size_t i = 0; i < reqs.size(); ++i) {
auto buf = NewAligned(kSectorSize * 8, static_cast<char>(i * 2 + 1));
ASSERT_OK(reqs[i].status);
ASSERT_EQ(memcmp(reqs[i].scratch, buf.get(), kSectorSize), 0);
}
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
}
}
TEST_F(EnvPosixTest, MultiReadNonAlignedLargeNum) {
// In this test we don't do aligned read, so it doesn't work for
// direct I/O case.
EnvOptions soptions;
soptions.use_direct_reads = soptions.use_direct_writes = false;
std::string fname = test::PerThreadDBPath(env_, "testfile");
const size_t kTotalSize = 81920;
Random rnd(301);
std::string expected_data = rnd.RandomString(kTotalSize);
// Create file.
{
std::unique_ptr<WritableFile> wfile;
ASSERT_OK(env_->NewWritableFile(fname, &wfile, soptions));
ASSERT_OK(wfile->Append(expected_data));
ASSERT_OK(wfile->Close());
}
// More attempts to simulate more partial result sequences.
for (uint32_t attempt = 0; attempt < 25; attempt++) {
// Right now kIoUringDepth is hard coded as 256, so we need very large
// number of keys to cover the case of multiple rounds of submissions.
// Right now the test latency is still acceptable. If it ends up with
// too long, we can modify the io uring depth with SyncPoint here.
const int num_reads = rnd.Uniform(512) + 1;
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"UpdateResults::io_uring_result", [&](void* arg) {
if (attempt > 5) {
// Improve partial result rates in second half of the run to
// cover the case of repeated partial results.
int odd = (attempt < 15) ? num_reads / 2 : 4;
// No failure in first several attempts.
size_t& bytes_read = *static_cast<size_t*>(arg);
if (rnd.OneIn(odd)) {
bytes_read = 0;
} else if (rnd.OneIn(odd / 2)) {
bytes_read = static_cast<size_t>(
rnd.Uniform(static_cast<int>(bytes_read)));
}
}
});
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
// Generate (offset, len) pairs
std::set<int> start_offsets;
for (int i = 0; i < num_reads; i++) {
int rnd_off;
// No repeat offsets.
while (start_offsets.find(rnd_off = rnd.Uniform(81920)) !=
start_offsets.end()) {
}
start_offsets.insert(rnd_off);
}
std::vector<size_t> offsets;
std::vector<size_t> lens;
// std::set already sorted the offsets.
for (int so : start_offsets) {
offsets.push_back(so);
}
for (size_t i = 0; i + 1 < offsets.size(); i++) {
lens.push_back(static_cast<size_t>(
rnd.Uniform(static_cast<int>(offsets[i + 1] - offsets[i])) + 1));
}
lens.push_back(static_cast<size_t>(
rnd.Uniform(static_cast<int>(kTotalSize - offsets.back())) + 1));
ASSERT_EQ(num_reads, lens.size());
// Create requests
std::vector<std::string> scratches;
scratches.reserve(num_reads);
std::vector<ReadRequest> reqs(num_reads);
for (size_t i = 0; i < reqs.size(); ++i) {
reqs[i].offset = offsets[i];
reqs[i].len = lens[i];
scratches.emplace_back(reqs[i].len, ' ');
reqs[i].scratch = const_cast<char*>(scratches.back().data());
}
// Query the data
std::unique_ptr<RandomAccessFile> file;
ASSERT_OK(env_->NewRandomAccessFile(fname, &file, soptions));
ASSERT_OK(file->MultiRead(reqs.data(), reqs.size()));
// Validate results
for (int i = 0; i < num_reads; ++i) {
ASSERT_OK(reqs[i].status);
ASSERT_EQ(
Slice(expected_data.data() + offsets[i], lens[i]).ToString(true),
reqs[i].result.ToString(true));
}
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
}
}
TEST_F(EnvPosixTest, NonAlignedDirectIOMultiReadBeyondFileSize) {
EnvOptions soptions;
soptions.use_direct_reads = true;
soptions.use_direct_writes = false;
std::string fname = test::PerThreadDBPath(env_, "testfile");
Random rnd(301);
std::unique_ptr<WritableFile> wfile;
size_t alignment = 0;
// Create file.
{
ASSERT_OK(env_->NewWritableFile(fname, &wfile, soptions));
auto data_ptr = NewAligned(4095, 'b');
Slice data_b(data_ptr.get(), 4095);
ASSERT_OK(wfile->PositionedAppend(data_b, 0U));
ASSERT_OK(wfile->Close());
}
#if !defined(OS_MACOSX) && !defined(OS_WIN) && !defined(OS_SOLARIS) && \
!defined(OS_AIX) && !defined(OS_OPENBSD) && !defined(OS_FREEBSD)
if (soptions.use_direct_reads) {
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"NewRandomAccessFile:O_DIRECT", [&](void* arg) {
int* val = static_cast<int*>(arg);
*val &= ~O_DIRECT;
});
}
#endif
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
const int num_reads = 2;
// Create requests
std::vector<std::string> scratches;
scratches.reserve(num_reads);
std::vector<ReadRequest> reqs(num_reads);
std::unique_ptr<RandomAccessFile> file;
ASSERT_OK(env_->NewRandomAccessFile(fname, &file, soptions));
alignment = file->GetRequiredBufferAlignment();
ASSERT_EQ(num_reads, reqs.size());
std::vector<std::unique_ptr<char, Deleter>> data;
std::vector<size_t> offsets = {0, 2047};
std::vector<size_t> lens = {2047, 4096 - 2047};
for (size_t i = 0; i < num_reads; i++) {
// Do alignment
reqs[i].offset = static_cast<uint64_t>(TruncateToPageBoundary(
alignment, static_cast<size_t>(/*offset=*/offsets[i])));
reqs[i].len =
Roundup(static_cast<size_t>(/*offset=*/offsets[i]) + /*length=*/lens[i],
alignment) -
reqs[i].offset;
size_t new_capacity = Roundup(reqs[i].len, alignment);
data.emplace_back(NewAligned(new_capacity, 0));
reqs[i].scratch = data.back().get();
}
// Query the data
ASSERT_OK(file->MultiRead(reqs.data(), reqs.size()));
// Validate results
for (size_t i = 0; i < num_reads; ++i) {
ASSERT_OK(reqs[i].status);
}
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->DisableProcessing();
}
#if defined(ROCKSDB_IOURING_PRESENT)
void GenerateFilesAndRequest(Env* env, const std::string& fname,
std::vector<ReadRequest>* ret_reqs,
std::vector<std::string>* scratches) {
const size_t kTotalSize = 81920;
Random rnd(301);
std::string expected_data = rnd.RandomString(kTotalSize);
// Create file.
{
std::unique_ptr<WritableFile> wfile;
ASSERT_OK(env->NewWritableFile(fname, &wfile, EnvOptions()));
ASSERT_OK(wfile->Append(expected_data));
ASSERT_OK(wfile->Close());
}
// Right now kIoUringDepth is hard coded as 256, so we need very large
// number of keys to cover the case of multiple rounds of submissions.
// Right now the test latency is still acceptable. If it ends up with
// too long, we can modify the io uring depth with SyncPoint here.
const int num_reads = 3;
std::vector<size_t> offsets = {10000, 20000, 30000};
std::vector<size_t> lens = {3000, 200, 100};
// Create requests
scratches->reserve(num_reads);
std::vector<ReadRequest>& reqs = *ret_reqs;
reqs.resize(num_reads);
for (int i = 0; i < num_reads; ++i) {
reqs[i].offset = offsets[i];
reqs[i].len = lens[i];
scratches->emplace_back(reqs[i].len, ' ');
reqs[i].scratch = const_cast<char*>(scratches->back().data());
}
}
TEST_F(EnvPosixTest, MultiReadIOUringError) {
// In this test we don't do aligned read, so we can't do direct I/O.
EnvOptions soptions;
soptions.use_direct_reads = soptions.use_direct_writes = false;
std::string fname = test::PerThreadDBPath(env_, "testfile");
std::vector<std::string> scratches;
std::vector<ReadRequest> reqs;
GenerateFilesAndRequest(env_, fname, &reqs, &scratches);
// Query the data
std::unique_ptr<RandomAccessFile> file;
ASSERT_OK(env_->NewRandomAccessFile(fname, &file, soptions));
bool io_uring_wait_cqe_called = false;
SyncPoint::GetInstance()->SetCallBack(
"PosixRandomAccessFile::MultiRead:io_uring_wait_cqe:return",
[&](void* arg) {
if (!io_uring_wait_cqe_called) {
io_uring_wait_cqe_called = true;
ssize_t& ret = *(static_cast<ssize_t*>(arg));
ret = 1;
}
});
SyncPoint::GetInstance()->EnableProcessing();
Status s = file->MultiRead(reqs.data(), reqs.size());
if (io_uring_wait_cqe_called) {
ASSERT_NOK(s);
} else {
s.PermitUncheckedError();
}
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->ClearAllCallBacks();
}
TEST_F(EnvPosixTest, MultiReadIOUringError2) {
// In this test we don't do aligned read, so we can't do direct I/O.
EnvOptions soptions;
soptions.use_direct_reads = soptions.use_direct_writes = false;
std::string fname = test::PerThreadDBPath(env_, "testfile");
std::vector<std::string> scratches;
std::vector<ReadRequest> reqs;
GenerateFilesAndRequest(env_, fname, &reqs, &scratches);
// Query the data
std::unique_ptr<RandomAccessFile> file;
ASSERT_OK(env_->NewRandomAccessFile(fname, &file, soptions));
bool io_uring_submit_and_wait_called = false;
SyncPoint::GetInstance()->SetCallBack(
"PosixRandomAccessFile::MultiRead:io_uring_submit_and_wait:return1",
[&](void* arg) {
io_uring_submit_and_wait_called = true;
ssize_t* ret = static_cast<ssize_t*>(arg);
(*ret)--;
});
SyncPoint::GetInstance()->SetCallBack(
"PosixRandomAccessFile::MultiRead:io_uring_submit_and_wait:return2",
[&](void* arg) {
struct io_uring* iu = static_cast<struct io_uring*>(arg);
struct io_uring_cqe* cqe;
assert(io_uring_wait_cqe(iu, &cqe) == 0);
io_uring_cqe_seen(iu, cqe);
});
SyncPoint::GetInstance()->EnableProcessing();
Status s = file->MultiRead(reqs.data(), reqs.size());
if (io_uring_submit_and_wait_called) {
ASSERT_NOK(s);
} else {
s.PermitUncheckedError();
}
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->ClearAllCallBacks();
}
#endif // ROCKSDB_IOURING_PRESENT
// Only works in linux platforms
#ifdef OS_WIN
TEST_P(EnvPosixTestWithParam, DISABLED_InvalidateCache) {
#else
TEST_P(EnvPosixTestWithParam, InvalidateCache) {
#endif
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
EnvOptions soptions;
soptions.use_direct_reads = soptions.use_direct_writes = direct_io_;
std::string fname = test::PerThreadDBPath(env_, "testfile");
const size_t kSectorSize = 512;
auto data = NewAligned(kSectorSize, 0);
Slice slice(data.get(), kSectorSize);
// Create file.
{
std::unique_ptr<WritableFile> wfile;
#if !defined(OS_MACOSX) && !defined(OS_WIN) && !defined(OS_SOLARIS) && \
!defined(OS_AIX)
if (soptions.use_direct_writes) {
soptions.use_direct_writes = false;
}
#endif
ASSERT_OK(env_->NewWritableFile(fname, &wfile, soptions));
ASSERT_OK(wfile->Append(slice));
ASSERT_OK(wfile->InvalidateCache(0, 0));
ASSERT_OK(wfile->Close());
}
// Random Read
{
std::unique_ptr<RandomAccessFile> file;
auto scratch = NewAligned(kSectorSize, 0);
Slice result;
#if !defined(OS_MACOSX) && !defined(OS_WIN) && !defined(OS_SOLARIS) && \
!defined(OS_AIX)
if (soptions.use_direct_reads) {
soptions.use_direct_reads = false;
}
#endif
ASSERT_OK(env_->NewRandomAccessFile(fname, &file, soptions));
ASSERT_OK(file->Read(0, kSectorSize, &result, scratch.get()));
ASSERT_EQ(memcmp(scratch.get(), data.get(), kSectorSize), 0);
ASSERT_OK(file->InvalidateCache(0, 11));
ASSERT_OK(file->InvalidateCache(0, 0));
}
// Sequential Read
{
std::unique_ptr<SequentialFile> file;
auto scratch = NewAligned(kSectorSize, 0);
Slice result;
#if !defined(OS_MACOSX) && !defined(OS_WIN) && !defined(OS_SOLARIS) && \
!defined(OS_AIX)
if (soptions.use_direct_reads) {
soptions.use_direct_reads = false;
}
#endif
ASSERT_OK(env_->NewSequentialFile(fname, &file, soptions));
if (file->use_direct_io()) {
ASSERT_OK(file->PositionedRead(0, kSectorSize, &result, scratch.get()));
} else {
ASSERT_OK(file->Read(kSectorSize, &result, scratch.get()));
}
ASSERT_EQ(memcmp(scratch.get(), data.get(), kSectorSize), 0);
ASSERT_OK(file->InvalidateCache(0, 11));
ASSERT_OK(file->InvalidateCache(0, 0));
}
// Delete the file
ASSERT_OK(env_->DeleteFile(fname));
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->ClearTrace();
}
#endif // OS_LINUX || OS_WIN
class TestLogger : public Logger {
public:
using Logger::Logv;
void Logv(const char* format, va_list ap) override {
log_count++;
char new_format[550];
std::fill_n(new_format, sizeof(new_format), '2');
{
va_list backup_ap;
va_copy(backup_ap, ap);
int n = vsnprintf(new_format, sizeof(new_format) - 1, format, backup_ap);
// 48 bytes for extra information + bytes allocated
// When we have n == -1 there is not a terminating zero expected
#ifdef OS_WIN
if (n < 0) {
char_0_count++;
}
#endif
if (new_format[0] == '[') {
// "[DEBUG] "
ASSERT_TRUE(n <= 56 + (512 - static_cast<int>(sizeof(port::TimeVal))));
} else {
ASSERT_TRUE(n <= 48 + (512 - static_cast<int>(sizeof(port::TimeVal))));
}
va_end(backup_ap);
}
for (size_t i = 0; i < sizeof(new_format); i++) {
if (new_format[i] == 'x') {
char_x_count++;
} else if (new_format[i] == '\0') {
char_0_count++;
}
}
}
int log_count;
int char_x_count;
int char_0_count;
};
TEST_P(EnvPosixTestWithParam, LogBufferTest) {
TestLogger test_logger;
test_logger.SetInfoLogLevel(InfoLogLevel::INFO_LEVEL);
test_logger.log_count = 0;
test_logger.char_x_count = 0;
test_logger.char_0_count = 0;
LogBuffer log_buffer(InfoLogLevel::INFO_LEVEL, &test_logger);
LogBuffer log_buffer_debug(DEBUG_LEVEL, &test_logger);
char bytes200[200];
std::fill_n(bytes200, sizeof(bytes200), '1');
bytes200[sizeof(bytes200) - 1] = '\0';
char bytes600[600];
std::fill_n(bytes600, sizeof(bytes600), '1');
bytes600[sizeof(bytes600) - 1] = '\0';
char bytes9000[9000];
std::fill_n(bytes9000, sizeof(bytes9000), '1');
bytes9000[sizeof(bytes9000) - 1] = '\0';
ROCKS_LOG_BUFFER(&log_buffer, "x%sx", bytes200);
ROCKS_LOG_BUFFER(&log_buffer, "x%sx", bytes600);
ROCKS_LOG_BUFFER(&log_buffer, "x%sx%sx%sx", bytes200, bytes200, bytes200);
ROCKS_LOG_BUFFER(&log_buffer, "x%sx%sx", bytes200, bytes600);
ROCKS_LOG_BUFFER(&log_buffer, "x%sx%sx", bytes600, bytes9000);
ROCKS_LOG_BUFFER(&log_buffer_debug, "x%sx", bytes200);
test_logger.SetInfoLogLevel(DEBUG_LEVEL);
ROCKS_LOG_BUFFER(&log_buffer_debug, "x%sx%sx%sx", bytes600, bytes9000,
bytes200);
ASSERT_EQ(0, test_logger.log_count);
log_buffer.FlushBufferToLog();
log_buffer_debug.FlushBufferToLog();
ASSERT_EQ(6, test_logger.log_count);
ASSERT_EQ(6, test_logger.char_0_count);
ASSERT_EQ(10, test_logger.char_x_count);
}
class TestLogger2 : public Logger {
public:
explicit TestLogger2(size_t max_log_size) : max_log_size_(max_log_size) {}
using Logger::Logv;
void Logv(const char* format, va_list ap) override {
char new_format[2000];
std::fill_n(new_format, sizeof(new_format), '2');
{
va_list backup_ap;
va_copy(backup_ap, ap);
int n = vsnprintf(new_format, sizeof(new_format) - 1, format, backup_ap);
// 48 bytes for extra information + bytes allocated
ASSERT_TRUE(n <=
48 + static_cast<int>(max_log_size_ - sizeof(port::TimeVal)));
ASSERT_TRUE(n > static_cast<int>(max_log_size_ - sizeof(port::TimeVal)));
va_end(backup_ap);
}
}
size_t max_log_size_;
};
TEST_P(EnvPosixTestWithParam, LogBufferMaxSizeTest) {
char bytes9000[9000];
std::fill_n(bytes9000, sizeof(bytes9000), '1');
bytes9000[sizeof(bytes9000) - 1] = '\0';
for (size_t max_log_size = 256; max_log_size <= 1024;
max_log_size += 1024 - 256) {
TestLogger2 test_logger(max_log_size);
test_logger.SetInfoLogLevel(InfoLogLevel::INFO_LEVEL);
LogBuffer log_buffer(InfoLogLevel::INFO_LEVEL, &test_logger);
ROCKS_LOG_BUFFER_MAX_SZ(&log_buffer, max_log_size, "%s", bytes9000);
log_buffer.FlushBufferToLog();
}
}
TEST_P(EnvPosixTestWithParam, Preallocation) {
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
const std::string src = test::PerThreadDBPath(env_, "testfile");
std::unique_ptr<WritableFile> srcfile;
EnvOptions soptions;
soptions.use_direct_reads = soptions.use_direct_writes = direct_io_;
#if !defined(OS_MACOSX) && !defined(OS_WIN) && !defined(OS_SOLARIS) && \
!defined(OS_AIX) && !defined(OS_OPENBSD) && !defined(OS_FREEBSD)
if (soptions.use_direct_writes) {
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"NewWritableFile:O_DIRECT", [&](void* arg) {
int* val = static_cast<int*>(arg);
*val &= ~O_DIRECT;
});
}
#endif
ASSERT_OK(env_->NewWritableFile(src, &srcfile, soptions));
srcfile->SetPreallocationBlockSize(1024 * 1024);
// No writes should mean no preallocation
size_t block_size, last_allocated_block;
srcfile->GetPreallocationStatus(&block_size, &last_allocated_block);
ASSERT_EQ(last_allocated_block, 0UL);
// Small write should preallocate one block
size_t kStrSize = 4096;
auto data = NewAligned(kStrSize, 'A');
Slice str(data.get(), kStrSize);
srcfile->PrepareWrite(srcfile->GetFileSize(), kStrSize);
ASSERT_OK(srcfile->Append(str));
srcfile->GetPreallocationStatus(&block_size, &last_allocated_block);
ASSERT_EQ(last_allocated_block, 1UL);
// Write an entire preallocation block, make sure we increased by two.
{
auto buf_ptr = NewAligned(block_size, ' ');
Slice buf(buf_ptr.get(), block_size);
srcfile->PrepareWrite(srcfile->GetFileSize(), block_size);
ASSERT_OK(srcfile->Append(buf));
srcfile->GetPreallocationStatus(&block_size, &last_allocated_block);
ASSERT_EQ(last_allocated_block, 2UL);
}
// Write five more blocks at once, ensure we're where we need to be.
{
auto buf_ptr = NewAligned(block_size * 5, ' ');
Slice buf = Slice(buf_ptr.get(), block_size * 5);
srcfile->PrepareWrite(srcfile->GetFileSize(), buf.size());
ASSERT_OK(srcfile->Append(buf));
srcfile->GetPreallocationStatus(&block_size, &last_allocated_block);
ASSERT_EQ(last_allocated_block, 7UL);
}
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->ClearTrace();
}
// Test that the two ways to get children file attributes (in bulk or
// individually) behave consistently.
TEST_P(EnvPosixTestWithParam, ConsistentChildrenAttributes) {
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->EnableProcessing();
EnvOptions soptions;
soptions.use_direct_reads = soptions.use_direct_writes = direct_io_;
const int kNumChildren = 10;
std::string data;
std::string test_base_dir = test::PerThreadDBPath(env_, "env_test_chr_attr");
env_->CreateDir(test_base_dir).PermitUncheckedError();
for (int i = 0; i < kNumChildren; ++i) {
const std::string path = test_base_dir + "/testfile_" + std::to_string(i);
std::unique_ptr<WritableFile> file;
#if !defined(OS_MACOSX) && !defined(OS_WIN) && !defined(OS_SOLARIS) && \
!defined(OS_AIX) && !defined(OS_OPENBSD) && !defined(OS_FREEBSD)
if (soptions.use_direct_writes) {
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->SetCallBack(
"NewWritableFile:O_DIRECT", [&](void* arg) {
int* val = static_cast<int*>(arg);
*val &= ~O_DIRECT;
});
}
#endif
ASSERT_OK(env_->NewWritableFile(path, &file, soptions));
auto buf_ptr = NewAligned(data.size(), 'T');
Slice buf(buf_ptr.get(), data.size());
ASSERT_OK(file->Append(buf));
data.append(std::string(4096, 'T'));
}
std::vector<Env::FileAttributes> file_attrs;
ASSERT_OK(env_->GetChildrenFileAttributes(test_base_dir, &file_attrs));
for (int i = 0; i < kNumChildren; ++i) {
const std::string name = "testfile_" + std::to_string(i);
const std::string path = test_base_dir + "/" + name;
auto file_attrs_iter = std::find_if(
file_attrs.begin(), file_attrs.end(),
[&name](const Env::FileAttributes& fm) { return fm.name == name; });
ASSERT_TRUE(file_attrs_iter != file_attrs.end());
uint64_t size;
ASSERT_OK(env_->GetFileSize(path, &size));
ASSERT_EQ(size, 4096 * i);
ASSERT_EQ(size, file_attrs_iter->size_bytes);
}
ROCKSDB_NAMESPACE::SyncPoint::GetInstance()->ClearTrace();
}
// Test that all WritableFileWrapper forwards all calls to WritableFile.
TEST_P(EnvPosixTestWithParam, WritableFileWrapper) {
class Base : public WritableFile {
public:
mutable int* step_;
void inc(int x) const { EXPECT_EQ(x, (*step_)++); }
explicit Base(int* step) : step_(step) { inc(0); }
Status Append(const Slice& /*data*/) override {
inc(1);
return Status::OK();
}
Status Append(
const Slice& /*data*/,
const DataVerificationInfo& /* verification_info */) override {
inc(1);
return Status::OK();
}
Status PositionedAppend(const Slice& /*data*/,
uint64_t /*offset*/) override {
inc(2);
return Status::OK();
}
Status PositionedAppend(
const Slice& /*data*/, uint64_t /*offset*/,
const DataVerificationInfo& /* verification_info */) override {
inc(2);
return Status::OK();
}
Status Truncate(uint64_t /*size*/) override {
inc(3);
return Status::OK();
}
Status Close() override {
inc(4);
return Status::OK();
}
Status Flush() override {
inc(5);
return Status::OK();
}
Status Sync() override {
inc(6);
return Status::OK();
}
Status Fsync() override {
inc(7);
return Status::OK();
}
bool IsSyncThreadSafe() const override {
inc(8);
return true;
}
bool use_direct_io() const override {
inc(9);
return true;
}
size_t GetRequiredBufferAlignment() const override {
inc(10);
return 0;
}
void SetIOPriority(Env::IOPriority /*pri*/) override { inc(11); }
Env::IOPriority GetIOPriority() override {
inc(12);
return Env::IOPriority::IO_LOW;
}
void SetWriteLifeTimeHint(Env::WriteLifeTimeHint /*hint*/) override {
inc(13);
}
Env::WriteLifeTimeHint GetWriteLifeTimeHint() override {
inc(14);
return Env::WriteLifeTimeHint::WLTH_NOT_SET;
}
uint64_t GetFileSize() override {
inc(15);
return 0;
}
void SetPreallocationBlockSize(size_t /*size*/) override { inc(16); }
void GetPreallocationStatus(size_t* /*block_size*/,
size_t* /*last_allocated_block*/) override {
inc(17);
}
size_t GetUniqueId(char* /*id*/, size_t /*max_size*/) const override {
inc(18);
return 0;
}
Status InvalidateCache(size_t /*offset*/, size_t /*length*/) override {
inc(19);
return Status::OK();
}
Status RangeSync(uint64_t /*offset*/, uint64_t /*nbytes*/) override {
inc(20);
return Status::OK();
}
void PrepareWrite(size_t /*offset*/, size_t /*len*/) override { inc(21); }
Status Allocate(uint64_t /*offset*/, uint64_t /*len*/) override {
inc(22);
return Status::OK();
}
public:
~Base() override { inc(23); }
};
class Wrapper : public WritableFileWrapper {
public:
explicit Wrapper(WritableFile* target) : WritableFileWrapper(target) {}
};
int step = 0;
{
Base b(&step);
Wrapper w(&b);
ASSERT_OK(w.Append(Slice()));
ASSERT_OK(w.PositionedAppend(Slice(), 0));
ASSERT_OK(w.Truncate(0));
ASSERT_OK(w.Close());
ASSERT_OK(w.Flush());
ASSERT_OK(w.Sync());
ASSERT_OK(w.Fsync());
w.IsSyncThreadSafe();
w.use_direct_io();
w.GetRequiredBufferAlignment();
w.SetIOPriority(Env::IOPriority::IO_HIGH);
w.GetIOPriority();
w.SetWriteLifeTimeHint(Env::WriteLifeTimeHint::WLTH_NOT_SET);
w.GetWriteLifeTimeHint();
w.GetFileSize();
w.SetPreallocationBlockSize(0);
w.GetPreallocationStatus(nullptr, nullptr);
w.GetUniqueId(nullptr, 0);
ASSERT_OK(w.InvalidateCache(0, 0));
ASSERT_OK(w.RangeSync(0, 0));
w.PrepareWrite(0, 0);
ASSERT_OK(w.Allocate(0, 0));
}
EXPECT_EQ(24, step);
}
TEST_P(EnvPosixTestWithParam, PosixRandomRWFile) {
const std::string path = test::PerThreadDBPath(env_, "random_rw_file");
env_->DeleteFile(path).PermitUncheckedError();
std::unique_ptr<RandomRWFile> file;
// Cannot open non-existing file.
ASSERT_NOK(env_->NewRandomRWFile(path, &file, EnvOptions()));
// Create the file using WritableFile
{
std::unique_ptr<WritableFile> wf;
ASSERT_OK(env_->NewWritableFile(path, &wf, EnvOptions()));
}
ASSERT_OK(env_->NewRandomRWFile(path, &file, EnvOptions()));
char buf[10000];
Slice read_res;
ASSERT_OK(file->Write(0, "ABCD"));
ASSERT_OK(file->Read(0, 10, &read_res, buf));
ASSERT_EQ(read_res.ToString(), "ABCD");
ASSERT_OK(file->Write(2, "XXXX"));
ASSERT_OK(file->Read(0, 10, &read_res, buf));
ASSERT_EQ(read_res.ToString(), "ABXXXX");
ASSERT_OK(file->Write(10, "ZZZ"));
ASSERT_OK(file->Read(10, 10, &read_res, buf));
ASSERT_EQ(read_res.ToString(), "ZZZ");
ASSERT_OK(file->Write(11, "Y"));
ASSERT_OK(file->Read(10, 10, &read_res, buf));
ASSERT_EQ(read_res.ToString(), "ZYZ");
ASSERT_OK(file->Write(200, "FFFFF"));
ASSERT_OK(file->Read(200, 10, &read_res, buf));
ASSERT_EQ(read_res.ToString(), "FFFFF");
ASSERT_OK(file->Write(205, "XXXX"));
ASSERT_OK(file->Read(200, 10, &read_res, buf));
ASSERT_EQ(read_res.ToString(), "FFFFFXXXX");
ASSERT_OK(file->Write(5, "QQQQ"));
ASSERT_OK(file->Read(0, 9, &read_res, buf));
ASSERT_EQ(read_res.ToString(), "ABXXXQQQQ");
ASSERT_OK(file->Read(2, 4, &read_res, buf));
ASSERT_EQ(read_res.ToString(), "XXXQ");
// Close file and reopen it
ASSERT_OK(file->Close());
ASSERT_OK(env_->NewRandomRWFile(path, &file, EnvOptions()));
ASSERT_OK(file->Read(0, 9, &read_res, buf));
ASSERT_EQ(read_res.ToString(), "ABXXXQQQQ");
ASSERT_OK(file->Read(10, 3, &read_res, buf));
ASSERT_EQ(read_res.ToString(), "ZYZ");
ASSERT_OK(file->Read(200, 9, &read_res, buf));
ASSERT_EQ(read_res.ToString(), "FFFFFXXXX");
ASSERT_OK(file->Write(4, "TTTTTTTTTTTTTTTT"));
ASSERT_OK(file->Read(0, 10, &read_res, buf));
ASSERT_EQ(read_res.ToString(), "ABXXTTTTTT");
// Clean up
ASSERT_OK(env_->DeleteFile(path));
}
class RandomRWFileWithMirrorString {
public:
explicit RandomRWFileWithMirrorString(RandomRWFile* _file) : file_(_file) {}
void Write(size_t offset, const std::string& data) {
// Write to mirror string
StringWrite(offset, data);
// Write to file
Status s = file_->Write(offset, data);
ASSERT_OK(s) << s.ToString();
}
void Read(size_t offset = 0, size_t n = 1000000) {
Slice str_res(nullptr, 0);
if (offset < file_mirror_.size()) {
size_t str_res_sz = std::min(file_mirror_.size() - offset, n);
str_res = Slice(file_mirror_.data() + offset, str_res_sz);
StopSliceAtNull(&str_res);
}
Slice file_res;
Status s = file_->Read(offset, n, &file_res, buf_);
ASSERT_OK(s) << s.ToString();
StopSliceAtNull(&file_res);
ASSERT_EQ(str_res.ToString(), file_res.ToString()) << offset << " " << n;
}
void SetFile(RandomRWFile* _file) { file_ = _file; }
private:
void StringWrite(size_t offset, const std::string& src) {
if (offset + src.size() > file_mirror_.size()) {
file_mirror_.resize(offset + src.size(), '\0');
}
char* pos = const_cast<char*>(file_mirror_.data() + offset);
memcpy(pos, src.data(), src.size());
}
void StopSliceAtNull(Slice* slc) {
for (size_t i = 0; i < slc->size(); i++) {
if ((*slc)[i] == '\0') {
*slc = Slice(slc->data(), i);
break;
}
}
}
char buf_[10000];
RandomRWFile* file_;
std::string file_mirror_;
};
TEST_P(EnvPosixTestWithParam, PosixRandomRWFileRandomized) {
const std::string path = test::PerThreadDBPath(env_, "random_rw_file_rand");
env_->DeleteFile(path).PermitUncheckedError();
std::unique_ptr<RandomRWFile> file;
#ifdef OS_LINUX
// Cannot open non-existing file.
ASSERT_NOK(env_->NewRandomRWFile(path, &file, EnvOptions()));
#endif
// Create the file using WritableFile
{
std::unique_ptr<WritableFile> wf;
ASSERT_OK(env_->NewWritableFile(path, &wf, EnvOptions()));
}
ASSERT_OK(env_->NewRandomRWFile(path, &file, EnvOptions()));
RandomRWFileWithMirrorString file_with_mirror(file.get());
Random rnd(301);
std::string buf;
for (int i = 0; i < 10000; i++) {
// Genrate random data
buf = rnd.RandomString(10);
// Pick random offset for write
size_t write_off = rnd.Next() % 1000;
file_with_mirror.Write(write_off, buf);
// Pick random offset for read
size_t read_off = rnd.Next() % 1000;
size_t read_sz = rnd.Next() % 20;
file_with_mirror.Read(read_off, read_sz);
if (i % 500 == 0) {
// Reopen the file every 500 iters
ASSERT_OK(env_->NewRandomRWFile(path, &file, EnvOptions()));
file_with_mirror.SetFile(file.get());
}
}
// clean up
ASSERT_OK(env_->DeleteFile(path));
}
class TestEnv : public EnvWrapper {
public:
explicit TestEnv() : EnvWrapper(Env::Default()), close_count(0) {}
const char* Name() const override { return "TestEnv"; }
class TestLogger : public Logger {
public:
using Logger::Logv;
explicit TestLogger(TestEnv* env_ptr) : Logger() { env = env_ptr; }
~TestLogger() override {
if (!closed_) {
Status s = CloseHelper();
s.PermitUncheckedError();
}
}
void Logv(const char* /*format*/, va_list /*ap*/) override {}
protected:
Status CloseImpl() override { return CloseHelper(); }
private:
Status CloseHelper() {
env->CloseCountInc();
return Status::OK();
}
TestEnv* env;
};
void CloseCountInc() { close_count++; }
int GetCloseCount() { return close_count; }
Status NewLogger(const std::string& /*fname*/,
std::shared_ptr<Logger>* result) override {
result->reset(new TestLogger(this));
return Status::OK();
}
private:
int close_count;
};
class EnvTest : public testing::Test {
public:
EnvTest() : test_directory_(test::PerThreadDBPath("env_test")) {}
protected:
const std::string test_directory_;
};
TEST_F(EnvTest, Close) {
TestEnv* env = new TestEnv();
std::shared_ptr<Logger> logger;
Status s;
s = env->NewLogger("", &logger);
ASSERT_OK(s);
ASSERT_OK(logger.get()->Close());
ASSERT_EQ(env->GetCloseCount(), 1);
// Call Close() again. CloseHelper() should not be called again
ASSERT_OK(logger.get()->Close());
ASSERT_EQ(env->GetCloseCount(), 1);
logger.reset();
ASSERT_EQ(env->GetCloseCount(), 1);
s = env->NewLogger("", &logger);
ASSERT_OK(s);
logger.reset();
ASSERT_EQ(env->GetCloseCount(), 2);
delete env;
}
class LogvWithInfoLogLevelLogger : public Logger {
public:
using Logger::Logv;
void Logv(const InfoLogLevel /* log_level */, const char* /* format */,
va_list /* ap */) override {}
};
TEST_F(EnvTest, LogvWithInfoLogLevel) {
// Verifies the log functions work on a `Logger` that only overrides the
// `Logv()` overload including `InfoLogLevel`.
const std::string kSampleMessage("sample log message");
LogvWithInfoLogLevelLogger logger;
ROCKS_LOG_HEADER(&logger, "%s", kSampleMessage.c_str());
ROCKS_LOG_DEBUG(&logger, "%s", kSampleMessage.c_str());
ROCKS_LOG_INFO(&logger, "%s", kSampleMessage.c_str());
ROCKS_LOG_WARN(&logger, "%s", kSampleMessage.c_str());
ROCKS_LOG_ERROR(&logger, "%s", kSampleMessage.c_str());
ROCKS_LOG_FATAL(&logger, "%s", kSampleMessage.c_str());
}
INSTANTIATE_TEST_CASE_P(DefaultEnvWithoutDirectIO, EnvPosixTestWithParam,
::testing::Values(std::pair<Env*, bool>(Env::Default(),
false)));
INSTANTIATE_TEST_CASE_P(DefaultEnvWithDirectIO, EnvPosixTestWithParam,
::testing::Values(std::pair<Env*, bool>(Env::Default(),
true)));
#if !defined(OS_WIN)
static Env* GetChrootEnv() {
static std::unique_ptr<Env> chroot_env(
NewChrootEnv(Env::Default(), test::TmpDir(Env::Default())));
return chroot_env.get();
}
INSTANTIATE_TEST_CASE_P(ChrootEnvWithoutDirectIO, EnvPosixTestWithParam,
::testing::Values(std::pair<Env*, bool>(GetChrootEnv(),
false)));
INSTANTIATE_TEST_CASE_P(ChrootEnvWithDirectIO, EnvPosixTestWithParam,
::testing::Values(std::pair<Env*, bool>(GetChrootEnv(),
true)));
#endif // !defined(OS_WIN)
class EnvFSTestWithParam
: public ::testing::Test,
public ::testing::WithParamInterface<std::tuple<bool, bool, bool>> {
public:
EnvFSTestWithParam() {
bool env_non_null = std::get<0>(GetParam());
bool env_default = std::get<1>(GetParam());
bool fs_default = std::get<2>(GetParam());
env_ = env_non_null ? (env_default ? Env::Default() : nullptr) : nullptr;
fs_ = fs_default
? FileSystem::Default()
: std::make_shared<FaultInjectionTestFS>(FileSystem::Default());
if (env_non_null && env_default && !fs_default) {
env_ptr_ = NewCompositeEnv(fs_);
}
if (env_non_null && !env_default && fs_default) {
env_ptr_ =
std::unique_ptr<Env>(new FaultInjectionTestEnv(Env::Default()));
fs_.reset();
}
if (env_non_null && !env_default && !fs_default) {
env_ptr_.reset(new FaultInjectionTestEnv(Env::Default()));
composite_env_ptr_.reset(new CompositeEnvWrapper(env_ptr_.get(), fs_));
env_ = composite_env_ptr_.get();
} else {
env_ = env_ptr_.get();
}
dbname1_ = test::PerThreadDBPath("env_fs_test1");
dbname2_ = test::PerThreadDBPath("env_fs_test2");
}
~EnvFSTestWithParam() = default;
Env* env_;
std::unique_ptr<Env> env_ptr_;
std::unique_ptr<Env> composite_env_ptr_;
std::shared_ptr<FileSystem> fs_;
std::string dbname1_;
std::string dbname2_;
};
TEST_P(EnvFSTestWithParam, OptionsTest) {
Options opts;
opts.env = env_;
opts.create_if_missing = true;
std::string dbname = dbname1_;
if (env_) {
if (fs_) {
ASSERT_EQ(fs_.get(), env_->GetFileSystem().get());
} else {
ASSERT_NE(FileSystem::Default().get(), env_->GetFileSystem().get());
}
}
for (int i = 0; i < 2; ++i) {
DB* db;
Status s = DB::Open(opts, dbname, &db);
ASSERT_OK(s);
WriteOptions wo;
ASSERT_OK(db->Put(wo, "a", "a"));
ASSERT_OK(db->Flush(FlushOptions()));
ASSERT_OK(db->Put(wo, "b", "b"));
ASSERT_OK(db->Flush(FlushOptions()));
ASSERT_OK(db->CompactRange(CompactRangeOptions(), nullptr, nullptr));
std::string val;
ASSERT_OK(db->Get(ReadOptions(), "a", &val));
ASSERT_EQ("a", val);
ASSERT_OK(db->Get(ReadOptions(), "b", &val));
ASSERT_EQ("b", val);
ASSERT_OK(db->Close());
delete db;
ASSERT_OK(DestroyDB(dbname, opts));
dbname = dbname2_;
}
}
// The parameters are as follows -
// 1. True means Options::env is non-null, false means null
// 2. True means use Env::Default, false means custom
// 3. True means use FileSystem::Default, false means custom
INSTANTIATE_TEST_CASE_P(EnvFSTest, EnvFSTestWithParam,
::testing::Combine(::testing::Bool(), ::testing::Bool(),
::testing::Bool()));
// This test ensures that default Env and those allocated by
// NewCompositeEnv() all share the same threadpool
TEST_F(EnvTest, MultipleCompositeEnv) {
std::shared_ptr<FaultInjectionTestFS> fs1 =
std::make_shared<FaultInjectionTestFS>(FileSystem::Default());
std::shared_ptr<FaultInjectionTestFS> fs2 =
std::make_shared<FaultInjectionTestFS>(FileSystem::Default());
std::unique_ptr<Env> env1 = NewCompositeEnv(fs1);
std::unique_ptr<Env> env2 = NewCompositeEnv(fs2);
Env::Default()->SetBackgroundThreads(8, Env::HIGH);
Env::Default()->SetBackgroundThreads(16, Env::LOW);
ASSERT_EQ(env1->GetBackgroundThreads(Env::LOW), 16);
ASSERT_EQ(env1->GetBackgroundThreads(Env::HIGH), 8);
ASSERT_EQ(env2->GetBackgroundThreads(Env::LOW), 16);
ASSERT_EQ(env2->GetBackgroundThreads(Env::HIGH), 8);
}
TEST_F(EnvTest, IsDirectory) {
Status s = Env::Default()->CreateDirIfMissing(test_directory_);
ASSERT_OK(s);
const std::string test_sub_dir = test_directory_ + "sub1";
const std::string test_file_path = test_directory_ + "file1";
ASSERT_OK(Env::Default()->CreateDirIfMissing(test_sub_dir));
bool is_dir = false;
ASSERT_OK(Env::Default()->IsDirectory(test_sub_dir, &is_dir));
ASSERT_TRUE(is_dir);
{
std::unique_ptr<FSWritableFile> wfile;
s = Env::Default()->GetFileSystem()->NewWritableFile(
test_file_path, FileOptions(), &wfile, /*dbg=*/nullptr);
ASSERT_OK(s);
std::unique_ptr<WritableFileWriter> fwriter;
fwriter.reset(new WritableFileWriter(std::move(wfile), test_file_path,
FileOptions(),
SystemClock::Default().get()));
constexpr char buf[] = "test";
s = fwriter->Append(buf);
ASSERT_OK(s);
}
ASSERT_OK(Env::Default()->IsDirectory(test_file_path, &is_dir));
ASSERT_FALSE(is_dir);
}
TEST_F(EnvTest, EnvWriteVerificationTest) {
Status s = Env::Default()->CreateDirIfMissing(test_directory_);
const std::string test_file_path = test_directory_ + "file1";
ASSERT_OK(s);
std::shared_ptr<FaultInjectionTestFS> fault_fs(
new FaultInjectionTestFS(FileSystem::Default()));
fault_fs->SetChecksumHandoffFuncType(ChecksumType::kCRC32c);
std::unique_ptr<Env> fault_fs_env(NewCompositeEnv(fault_fs));
std::unique_ptr<WritableFile> file;
s = fault_fs_env->NewWritableFile(test_file_path, &file, EnvOptions());
ASSERT_OK(s);
DataVerificationInfo v_info;
std::string test_data = "test";
std::string checksum;
uint32_t v_crc32c = crc32c::Extend(0, test_data.c_str(), test_data.size());
PutFixed32(&checksum, v_crc32c);
v_info.checksum = Slice(checksum);
s = file->Append(Slice(test_data), v_info);
ASSERT_OK(s);
}
class CreateEnvTest : public testing::Test {
public:
CreateEnvTest() {
config_options_.ignore_unknown_options = false;
config_options_.ignore_unsupported_options = false;
}
ConfigOptions config_options_;
};
TEST_F(CreateEnvTest, LoadCTRProvider) {
config_options_.invoke_prepare_options = false;
std::string CTR = CTREncryptionProvider::kClassName();
std::shared_ptr<EncryptionProvider> provider;
// Test a provider with no cipher
ASSERT_OK(
EncryptionProvider::CreateFromString(config_options_, CTR, &provider));
ASSERT_NE(provider, nullptr);
ASSERT_EQ(provider->Name(), CTR);
ASSERT_NOK(provider->PrepareOptions(config_options_));
ASSERT_NOK(provider->ValidateOptions(DBOptions(), ColumnFamilyOptions()));
auto cipher = provider->GetOptions<std::shared_ptr<BlockCipher>>("Cipher");
ASSERT_NE(cipher, nullptr);
ASSERT_EQ(cipher->get(), nullptr);
provider.reset();
ASSERT_OK(EncryptionProvider::CreateFromString(config_options_,
CTR + "://test", &provider));
ASSERT_NE(provider, nullptr);
ASSERT_EQ(provider->Name(), CTR);
ASSERT_OK(provider->PrepareOptions(config_options_));
ASSERT_OK(provider->ValidateOptions(DBOptions(), ColumnFamilyOptions()));
cipher = provider->GetOptions<std::shared_ptr<BlockCipher>>("Cipher");
ASSERT_NE(cipher, nullptr);
ASSERT_NE(cipher->get(), nullptr);
ASSERT_STREQ(cipher->get()->Name(), "ROT13");
provider.reset();
ASSERT_OK(EncryptionProvider::CreateFromString(config_options_, "1://test",
&provider));
ASSERT_NE(provider, nullptr);
ASSERT_EQ(provider->Name(), CTR);
ASSERT_OK(provider->PrepareOptions(config_options_));
ASSERT_OK(provider->ValidateOptions(DBOptions(), ColumnFamilyOptions()));
cipher = provider->GetOptions<std::shared_ptr<BlockCipher>>("Cipher");
ASSERT_NE(cipher, nullptr);
ASSERT_NE(cipher->get(), nullptr);
ASSERT_STREQ(cipher->get()->Name(), "ROT13");
provider.reset();
ASSERT_OK(EncryptionProvider::CreateFromString(
config_options_, "id=" + CTR + "; cipher=ROT13", &provider));
ASSERT_NE(provider, nullptr);
ASSERT_EQ(provider->Name(), CTR);
cipher = provider->GetOptions<std::shared_ptr<BlockCipher>>("Cipher");
ASSERT_NE(cipher, nullptr);
ASSERT_NE(cipher->get(), nullptr);
ASSERT_STREQ(cipher->get()->Name(), "ROT13");
provider.reset();
}
TEST_F(CreateEnvTest, LoadROT13Cipher) {
std::shared_ptr<BlockCipher> cipher;
// Test a provider with no cipher
ASSERT_OK(BlockCipher::CreateFromString(config_options_, "ROT13", &cipher));
ASSERT_NE(cipher, nullptr);
ASSERT_STREQ(cipher->Name(), "ROT13");
}
TEST_F(CreateEnvTest, CreateDefaultSystemClock) {
std::shared_ptr<SystemClock> clock, copy;
ASSERT_OK(SystemClock::CreateFromString(config_options_,
SystemClock::kDefaultName(), &clock));
ASSERT_NE(clock, nullptr);
ASSERT_EQ(clock, SystemClock::Default());
std::string opts_str = clock->ToString(config_options_);
std::string mismatch;
ASSERT_OK(SystemClock::CreateFromString(config_options_, opts_str, &copy));
ASSERT_TRUE(clock->AreEquivalent(config_options_, copy.get(), &mismatch));
}
TEST_F(CreateEnvTest, CreateMockSystemClock) {
std::shared_ptr<SystemClock> mock, copy;
config_options_.registry->AddLibrary("test")->AddFactory<SystemClock>(
MockSystemClock::kClassName(),
[](const std::string& /*uri*/, std::unique_ptr<SystemClock>* guard,
std::string* /* errmsg */) {
guard->reset(new MockSystemClock(nullptr));
return guard->get();
});
ASSERT_OK(SystemClock::CreateFromString(
config_options_, EmulatedSystemClock::kClassName(), &mock));
ASSERT_NE(mock, nullptr);
ASSERT_STREQ(mock->Name(), EmulatedSystemClock::kClassName());
ASSERT_EQ(mock->Inner(), SystemClock::Default().get());
std::string opts_str = mock->ToString(config_options_);
std::string mismatch;
ASSERT_OK(SystemClock::CreateFromString(config_options_, opts_str, &copy));
ASSERT_TRUE(mock->AreEquivalent(config_options_, copy.get(), &mismatch));
std::string id = std::string("id=") + EmulatedSystemClock::kClassName() +
";target=" + MockSystemClock::kClassName();
ASSERT_OK(SystemClock::CreateFromString(config_options_, id, &mock));
ASSERT_NE(mock, nullptr);
ASSERT_STREQ(mock->Name(), EmulatedSystemClock::kClassName());
ASSERT_NE(mock->Inner(), nullptr);
ASSERT_STREQ(mock->Inner()->Name(), MockSystemClock::kClassName());
ASSERT_EQ(mock->Inner()->Inner(), SystemClock::Default().get());
opts_str = mock->ToString(config_options_);
ASSERT_OK(SystemClock::CreateFromString(config_options_, opts_str, &copy));
ASSERT_TRUE(mock->AreEquivalent(config_options_, copy.get(), &mismatch));
ASSERT_OK(SystemClock::CreateFromString(
config_options_, EmulatedSystemClock::kClassName(), &mock));
}
TEST_F(CreateEnvTest, CreateReadOnlyFileSystem) {
std::shared_ptr<FileSystem> fs, copy;
ASSERT_OK(FileSystem::CreateFromString(
config_options_, ReadOnlyFileSystem::kClassName(), &fs));
ASSERT_NE(fs, nullptr);
ASSERT_STREQ(fs->Name(), ReadOnlyFileSystem::kClassName());
ASSERT_EQ(fs->Inner(), FileSystem::Default().get());
std::string opts_str = fs->ToString(config_options_);
std::string mismatch;
ASSERT_OK(FileSystem::CreateFromString(config_options_, opts_str, &copy));
ASSERT_TRUE(fs->AreEquivalent(config_options_, copy.get(), &mismatch));
ASSERT_OK(FileSystem::CreateFromString(
config_options_,
std::string("id=") + ReadOnlyFileSystem::kClassName() +
"; target=" + TimedFileSystem::kClassName(),
&fs));
ASSERT_NE(fs, nullptr);
opts_str = fs->ToString(config_options_);
ASSERT_STREQ(fs->Name(), ReadOnlyFileSystem::kClassName());
ASSERT_NE(fs->Inner(), nullptr);
ASSERT_STREQ(fs->Inner()->Name(), TimedFileSystem::kClassName());
ASSERT_EQ(fs->Inner()->Inner(), FileSystem::Default().get());
ASSERT_OK(FileSystem::CreateFromString(config_options_, opts_str, &copy));
ASSERT_TRUE(fs->AreEquivalent(config_options_, copy.get(), &mismatch));
}
TEST_F(CreateEnvTest, CreateTimedFileSystem) {
std::shared_ptr<FileSystem> fs, copy;
ASSERT_OK(FileSystem::CreateFromString(config_options_,
TimedFileSystem::kClassName(), &fs));
ASSERT_NE(fs, nullptr);
ASSERT_STREQ(fs->Name(), TimedFileSystem::kClassName());
ASSERT_EQ(fs->Inner(), FileSystem::Default().get());
std::string opts_str = fs->ToString(config_options_);
std::string mismatch;
ASSERT_OK(FileSystem::CreateFromString(config_options_, opts_str, &copy));
ASSERT_TRUE(fs->AreEquivalent(config_options_, copy.get(), &mismatch));
ASSERT_OK(FileSystem::CreateFromString(
config_options_,
std::string("id=") + TimedFileSystem::kClassName() +
"; target=" + ReadOnlyFileSystem::kClassName(),
&fs));
ASSERT_NE(fs, nullptr);
opts_str = fs->ToString(config_options_);
ASSERT_STREQ(fs->Name(), TimedFileSystem::kClassName());
ASSERT_NE(fs->Inner(), nullptr);
ASSERT_STREQ(fs->Inner()->Name(), ReadOnlyFileSystem::kClassName());
ASSERT_EQ(fs->Inner()->Inner(), FileSystem::Default().get());
ASSERT_OK(FileSystem::CreateFromString(config_options_, opts_str, &copy));
ASSERT_TRUE(fs->AreEquivalent(config_options_, copy.get(), &mismatch));
}
TEST_F(CreateEnvTest, CreateCountedFileSystem) {
std::shared_ptr<FileSystem> fs, copy;
ASSERT_OK(FileSystem::CreateFromString(config_options_,
CountedFileSystem::kClassName(), &fs));
ASSERT_NE(fs, nullptr);
ASSERT_STREQ(fs->Name(), CountedFileSystem::kClassName());
ASSERT_EQ(fs->Inner(), FileSystem::Default().get());
std::string opts_str = fs->ToString(config_options_);
std::string mismatch;
ASSERT_OK(FileSystem::CreateFromString(config_options_, opts_str, &copy));
ASSERT_TRUE(fs->AreEquivalent(config_options_, copy.get(), &mismatch));
ASSERT_OK(FileSystem::CreateFromString(
config_options_,
std::string("id=") + CountedFileSystem::kClassName() +
"; target=" + ReadOnlyFileSystem::kClassName(),
&fs));
ASSERT_NE(fs, nullptr);
opts_str = fs->ToString(config_options_);
ASSERT_STREQ(fs->Name(), CountedFileSystem::kClassName());
ASSERT_NE(fs->Inner(), nullptr);
ASSERT_STREQ(fs->Inner()->Name(), ReadOnlyFileSystem::kClassName());
ASSERT_EQ(fs->Inner()->Inner(), FileSystem::Default().get());
ASSERT_OK(FileSystem::CreateFromString(config_options_, opts_str, &copy));
ASSERT_TRUE(fs->AreEquivalent(config_options_, copy.get(), &mismatch));
}
#ifndef OS_WIN
TEST_F(CreateEnvTest, CreateChrootFileSystem) {
std::shared_ptr<FileSystem> fs, copy;
auto tmp_dir = test::TmpDir(Env::Default());
// The Chroot FileSystem has a required "chroot_dir" option.
ASSERT_NOK(FileSystem::CreateFromString(config_options_,
ChrootFileSystem::kClassName(), &fs));
// ChrootFileSystem fails with an invalid directory
ASSERT_NOK(FileSystem::CreateFromString(
config_options_,
std::string("chroot_dir=/No/Such/Directory; id=") +
ChrootFileSystem::kClassName(),
&fs));
std::string chroot_opts = std::string("chroot_dir=") + tmp_dir +
std::string("; id=") +
ChrootFileSystem::kClassName();
// Create a valid ChrootFileSystem with an inner Default
ASSERT_OK(FileSystem::CreateFromString(config_options_, chroot_opts, &fs));
ASSERT_NE(fs, nullptr);
ASSERT_STREQ(fs->Name(), ChrootFileSystem::kClassName());
ASSERT_EQ(fs->Inner(), FileSystem::Default().get());
std::string opts_str = fs->ToString(config_options_);
std::string mismatch;
ASSERT_OK(FileSystem::CreateFromString(config_options_, opts_str, &copy));
ASSERT_TRUE(fs->AreEquivalent(config_options_, copy.get(), &mismatch));
// Create a valid ChrootFileSystem with an inner TimedFileSystem
ASSERT_OK(FileSystem::CreateFromString(
config_options_,
chroot_opts + "; target=" + TimedFileSystem::kClassName(), &fs));
ASSERT_NE(fs, nullptr);
ASSERT_STREQ(fs->Name(), ChrootFileSystem::kClassName());
ASSERT_NE(fs->Inner(), nullptr);
ASSERT_STREQ(fs->Inner()->Name(), TimedFileSystem::kClassName());
ASSERT_EQ(fs->Inner()->Inner(), FileSystem::Default().get());
opts_str = fs->ToString(config_options_);
ASSERT_OK(FileSystem::CreateFromString(config_options_, opts_str, &copy));
ASSERT_TRUE(fs->AreEquivalent(config_options_, copy.get(), &mismatch));
// Create a TimedFileSystem with an inner ChrootFileSystem
ASSERT_OK(FileSystem::CreateFromString(
config_options_,
"target={" + chroot_opts + "}; id=" + TimedFileSystem::kClassName(),
&fs));
ASSERT_NE(fs, nullptr);
ASSERT_STREQ(fs->Name(), TimedFileSystem::kClassName());
ASSERT_NE(fs->Inner(), nullptr);
ASSERT_STREQ(fs->Inner()->Name(), ChrootFileSystem::kClassName());
ASSERT_EQ(fs->Inner()->Inner(), FileSystem::Default().get());
opts_str = fs->ToString(config_options_);
ASSERT_OK(FileSystem::CreateFromString(config_options_, opts_str, &copy));
ASSERT_TRUE(fs->AreEquivalent(config_options_, copy.get(), &mismatch));
}
#endif // OS_WIN
TEST_F(CreateEnvTest, CreateEncryptedFileSystem) {
std::shared_ptr<FileSystem> fs, copy;
std::string base_opts =
std::string("provider=1://test; id=") + EncryptedFileSystem::kClassName();
// The EncryptedFileSystem requires a "provider" option.
ASSERT_NOK(FileSystem::CreateFromString(
config_options_, EncryptedFileSystem::kClassName(), &fs));
ASSERT_OK(FileSystem::CreateFromString(config_options_, base_opts, &fs));
ASSERT_NE(fs, nullptr);
ASSERT_STREQ(fs->Name(), EncryptedFileSystem::kClassName());
ASSERT_EQ(fs->Inner(), FileSystem::Default().get());
std::string opts_str = fs->ToString(config_options_);
std::string mismatch;
ASSERT_OK(FileSystem::CreateFromString(config_options_, opts_str, &copy));
ASSERT_TRUE(fs->AreEquivalent(config_options_, copy.get(), &mismatch));
ASSERT_OK(FileSystem::CreateFromString(
config_options_, base_opts + "; target=" + TimedFileSystem::kClassName(),
&fs));
ASSERT_NE(fs, nullptr);
ASSERT_STREQ(fs->Name(), EncryptedFileSystem::kClassName());
ASSERT_NE(fs->Inner(), nullptr);
ASSERT_STREQ(fs->Inner()->Name(), TimedFileSystem::kClassName());
ASSERT_EQ(fs->Inner()->Inner(), FileSystem::Default().get());
opts_str = fs->ToString(config_options_);
ASSERT_OK(FileSystem::CreateFromString(config_options_, opts_str, &copy));
ASSERT_TRUE(fs->AreEquivalent(config_options_, copy.get(), &mismatch));
}
namespace {
constexpr size_t kThreads = 8;
constexpr size_t kIdsPerThread = 1000;
// This is a mini-stress test to check for duplicates in functions like
// GenerateUniqueId()
template <typename IdType, class Hash = std::hash<IdType>>
struct NoDuplicateMiniStressTest {
std::unordered_set<IdType, Hash> ids;
std::mutex mutex;
Env* env;
NoDuplicateMiniStressTest() { env = Env::Default(); }
virtual ~NoDuplicateMiniStressTest() {}
void Run() {
std::array<std::thread, kThreads> threads;
for (size_t i = 0; i < kThreads; ++i) {
threads[i] = std::thread([&]() { ThreadFn(); });
}
for (auto& thread : threads) {
thread.join();
}
// All must be unique
ASSERT_EQ(ids.size(), kThreads * kIdsPerThread);
}
void ThreadFn() {
std::array<IdType, kIdsPerThread> my_ids;
// Generate in parallel threads as fast as possible
for (size_t i = 0; i < kIdsPerThread; ++i) {
my_ids[i] = Generate();
}
// Now collate
std::lock_guard<std::mutex> lock(mutex);
for (auto& id : my_ids) {
ids.insert(id);
}
}
virtual IdType Generate() = 0;
};
void VerifyRfcUuids(const std::unordered_set<std::string>& uuids) {
if (uuids.empty()) {
return;
}
}
using uint64_pair_t = std::pair<uint64_t, uint64_t>;
struct HashUint64Pair {
std::size_t operator()(
std::pair<uint64_t, uint64_t> const& u) const noexcept {
// Assume suitable distribution already
return static_cast<size_t>(u.first ^ u.second);
}
};
} // namespace
TEST_F(EnvTest, GenerateUniqueId) {
struct MyStressTest : public NoDuplicateMiniStressTest<std::string> {
std::string Generate() override { return env->GenerateUniqueId(); }
};
MyStressTest t;
t.Run();
// Basically verify RFC-4122 format
for (auto& uuid : t.ids) {
ASSERT_EQ(36U, uuid.size());
ASSERT_EQ('-', uuid[8]);
ASSERT_EQ('-', uuid[13]);
ASSERT_EQ('-', uuid[18]);
ASSERT_EQ('-', uuid[23]);
}
}
TEST_F(EnvTest, GenerateDbSessionId) {
struct MyStressTest : public NoDuplicateMiniStressTest<std::string> {
std::string Generate() override { return DBImpl::GenerateDbSessionId(env); }
};
MyStressTest t;
t.Run();
// Basically verify session ID
for (auto& id : t.ids) {
ASSERT_EQ(20U, id.size());
}
}
constexpr bool kRequirePortGenerateRfcUuid =
#if defined(OS_LINUX) || defined(OS_ANDROID) || defined(OS_WIN)
true;
#else
false;
#endif
TEST_F(EnvTest, PortGenerateRfcUuid) {
if (!kRequirePortGenerateRfcUuid) {
ROCKSDB_GTEST_SKIP("Not supported/expected on this platform");
return;
}
struct MyStressTest : public NoDuplicateMiniStressTest<std::string> {
std::string Generate() override {
std::string u;
assert(port::GenerateRfcUuid(&u));
return u;
}
};
MyStressTest t;
t.Run();
// Extra verification on versions and variants
VerifyRfcUuids(t.ids);
}
// Test the atomic, linear generation of GenerateRawUniqueId
TEST_F(EnvTest, GenerateRawUniqueId) {
struct MyStressTest
: public NoDuplicateMiniStressTest<uint64_pair_t, HashUint64Pair> {
uint64_pair_t Generate() override {
uint64_pair_t p;
GenerateRawUniqueId(&p.first, &p.second);
return p;
}
};
MyStressTest t;
t.Run();
}
// Test that each entropy source ("track") is at least adequate
TEST_F(EnvTest, GenerateRawUniqueIdTrackPortUuidOnly) {
if (!kRequirePortGenerateRfcUuid) {
ROCKSDB_GTEST_SKIP("Not supported/expected on this platform");
return;
}
struct MyStressTest
: public NoDuplicateMiniStressTest<uint64_pair_t, HashUint64Pair> {
uint64_pair_t Generate() override {
uint64_pair_t p;
TEST_GenerateRawUniqueId(&p.first, &p.second, false, true, true);
return p;
}
};
MyStressTest t;
t.Run();
}
TEST_F(EnvTest, GenerateRawUniqueIdTrackEnvDetailsOnly) {
struct MyStressTest
: public NoDuplicateMiniStressTest<uint64_pair_t, HashUint64Pair> {
uint64_pair_t Generate() override {
uint64_pair_t p;
TEST_GenerateRawUniqueId(&p.first, &p.second, true, false, true);
return p;
}
};
MyStressTest t;
t.Run();
}
TEST_F(EnvTest, GenerateRawUniqueIdTrackRandomDeviceOnly) {
struct MyStressTest
: public NoDuplicateMiniStressTest<uint64_pair_t, HashUint64Pair> {
uint64_pair_t Generate() override {
uint64_pair_t p;
TEST_GenerateRawUniqueId(&p.first, &p.second, true, true, false);
return p;
}
};
MyStressTest t;
t.Run();
}
TEST_F(EnvTest, SemiStructuredUniqueIdGenTest) {
// Must be thread safe and usable as a static
static SemiStructuredUniqueIdGen gen;
struct MyStressTest
: public NoDuplicateMiniStressTest<uint64_pair_t, HashUint64Pair> {
uint64_pair_t Generate() override {
uint64_pair_t p;
gen.GenerateNext(&p.first, &p.second);
return p;
}
};
MyStressTest t;
t.Run();
}
TEST_F(EnvTest, SemiStructuredUniqueIdGenTestSmaller) {
// For small generated types, will cycle through all the possible values.
SemiStructuredUniqueIdGen gen;
std::vector<bool> hit(256);
for (int i = 0; i < 256; ++i) {
auto val = gen.GenerateNext<uint8_t>();
ASSERT_FALSE(hit[val]);
hit[val] = true;
}
for (int i = 0; i < 256; ++i) {
ASSERT_TRUE(hit[i]);
}
}
TEST_F(EnvTest, UnpredictableUniqueIdGenTest1) {
// Must be thread safe and usable as a static.
static UnpredictableUniqueIdGen gen;
struct MyStressTest
: public NoDuplicateMiniStressTest<uint64_pair_t, HashUint64Pair> {
uint64_pair_t Generate() override {
uint64_pair_t p;
gen.GenerateNext(&p.first, &p.second);
return p;
}
};
MyStressTest t;
t.Run();
}
TEST_F(EnvTest, UnpredictableUniqueIdGenTest2) {
// Even if we completely strip the seeding and entropy of the structure
// down to a bare minimum, we still get quality pseudorandom results.
static UnpredictableUniqueIdGen gen{
UnpredictableUniqueIdGen::TEST_ZeroInitialized{}};
struct MyStressTest
: public NoDuplicateMiniStressTest<uint64_pair_t, HashUint64Pair> {
uint64_pair_t Generate() override {
uint64_pair_t p;
// No extra entropy is required to get quality pseudorandom results
gen.GenerateNextWithEntropy(&p.first, &p.second, /*no extra entropy*/ 0);
return p;
}
};
MyStressTest t;
t.Run();
}
TEST_F(EnvTest, UnpredictableUniqueIdGenTest3) {
struct MyStressTest
: public NoDuplicateMiniStressTest<uint64_pair_t, HashUint64Pair> {
uint64_pair_t Generate() override {
uint64_pair_t p;
thread_local UnpredictableUniqueIdGen gen{
UnpredictableUniqueIdGen::TEST_ZeroInitialized{}};
// Even without the counter (reset it to thread id), we get quality
// single-threaded results (because part of each result is fed back
// into pool).
gen.TEST_counter().store(Env::Default()->GetThreadID());
gen.GenerateNext(&p.first, &p.second);
return p;
}
};
MyStressTest t;
t.Run();
}
TEST_F(EnvTest, UnpredictableUniqueIdGenTest4) {
struct MyStressTest
: public NoDuplicateMiniStressTest<uint64_pair_t, HashUint64Pair> {
uint64_pair_t Generate() override {
uint64_pair_t p;
// Even if we reset the state to thread ID each time, RDTSC instruction
// suffices for quality single-threaded results.
UnpredictableUniqueIdGen gen{
UnpredictableUniqueIdGen::TEST_ZeroInitialized{}};
gen.TEST_counter().store(Env::Default()->GetThreadID());
gen.GenerateNext(&p.first, &p.second);
return p;
}
};
MyStressTest t;
#ifdef __SSE4_2__ // Our rough check for RDTSC
t.Run();
#else
ROCKSDB_GTEST_BYPASS("Requires IA32 with RDTSC");
// because nanosecond time might not be high enough fidelity to have
// incremented after a few hundred instructions, especially in cases where
// we really only have microsecond fidelity. Also, wall clock might not be
// monotonic.
#endif
}
TEST_F(EnvTest, FailureToCreateLockFile) {
auto env = Env::Default();
auto fs = env->GetFileSystem();
std::string dir = test::PerThreadDBPath(env, "lockdir");
std::string file = dir + "/lockfile";
// Ensure directory doesn't exist
ASSERT_OK(DestroyDir(env, dir));
// Make sure that we can acquire a file lock after the first attempt fails
FileLock* lock = nullptr;
ASSERT_NOK(fs->LockFile(file, IOOptions(), &lock, /*dbg*/ nullptr));
ASSERT_FALSE(lock);
ASSERT_OK(fs->CreateDir(dir, IOOptions(), /*dbg*/ nullptr));
ASSERT_OK(fs->LockFile(file, IOOptions(), &lock, /*dbg*/ nullptr));
ASSERT_OK(fs->UnlockFile(lock, IOOptions(), /*dbg*/ nullptr));
// Clean up
ASSERT_OK(DestroyDir(env, dir));
}
TEST_F(CreateEnvTest, CreateDefaultEnv) {
ConfigOptions options;
options.ignore_unsupported_options = false;
std::shared_ptr<Env> guard;
Env* env = nullptr;
ASSERT_OK(Env::CreateFromString(options, "", &env));
ASSERT_EQ(env, Env::Default());
env = nullptr;
ASSERT_OK(Env::CreateFromString(options, Env::kDefaultName(), &env));
ASSERT_EQ(env, Env::Default());
env = nullptr;
ASSERT_OK(Env::CreateFromString(options, "", &env, &guard));
ASSERT_EQ(env, Env::Default());
ASSERT_EQ(guard, nullptr);
env = nullptr;
ASSERT_OK(Env::CreateFromString(options, Env::kDefaultName(), &env, &guard));
ASSERT_EQ(env, Env::Default());
ASSERT_EQ(guard, nullptr);
std::string opt_str = env->ToString(options);
ASSERT_OK(Env::CreateFromString(options, opt_str, &env));
ASSERT_EQ(env, Env::Default());
ASSERT_OK(Env::CreateFromString(options, opt_str, &env, &guard));
ASSERT_EQ(env, Env::Default());
ASSERT_EQ(guard, nullptr);
}
namespace {
class WrappedEnv : public EnvWrapper {
public:
explicit WrappedEnv(Env* t) : EnvWrapper(t) {}
explicit WrappedEnv(const std::shared_ptr<Env>& t) : EnvWrapper(t) {}
static const char* kClassName() { return "WrappedEnv"; }
const char* Name() const override { return kClassName(); }
static void Register(ObjectLibrary& lib, const std::string& /*arg*/) {
lib.AddFactory<Env>(
WrappedEnv::kClassName(),
[](const std::string& /*uri*/, std::unique_ptr<Env>* guard,
std::string* /* errmsg */) {
guard->reset(new WrappedEnv(nullptr));
return guard->get();
});
}
};
} // namespace
TEST_F(CreateEnvTest, CreateMockEnv) {
ConfigOptions options;
options.ignore_unsupported_options = false;
WrappedEnv::Register(*(options.registry->AddLibrary("test")), "");
std::shared_ptr<Env> guard, copy;
std::string opt_str;
Env* env = nullptr;
ASSERT_NOK(Env::CreateFromString(options, MockEnv::kClassName(), &env));
ASSERT_OK(
Env::CreateFromString(options, MockEnv::kClassName(), &env, &guard));
ASSERT_NE(env, nullptr);
ASSERT_NE(env, Env::Default());
opt_str = env->ToString(options);
ASSERT_OK(Env::CreateFromString(options, opt_str, &env, &copy));
ASSERT_NE(copy, guard);
std::string mismatch;
ASSERT_TRUE(guard->AreEquivalent(options, copy.get(), &mismatch));
guard.reset(MockEnv::Create(Env::Default(), SystemClock::Default()));
opt_str = guard->ToString(options);
ASSERT_OK(Env::CreateFromString(options, opt_str, &env, &copy));
std::unique_ptr<Env> wrapped_env(new WrappedEnv(Env::Default()));
guard.reset(MockEnv::Create(wrapped_env.get(), SystemClock::Default()));
opt_str = guard->ToString(options);
ASSERT_OK(Env::CreateFromString(options, opt_str, &env, &copy));
opt_str = copy->ToString(options);
}
TEST_F(CreateEnvTest, CreateWrappedEnv) {
ConfigOptions options;
options.ignore_unsupported_options = false;
WrappedEnv::Register(*(options.registry->AddLibrary("test")), "");
Env* env = nullptr;
std::shared_ptr<Env> guard, copy;
std::string opt_str;
std::string mismatch;
ASSERT_NOK(Env::CreateFromString(options, WrappedEnv::kClassName(), &env));
ASSERT_OK(
Env::CreateFromString(options, WrappedEnv::kClassName(), &env, &guard));
ASSERT_NE(env, nullptr);
ASSERT_NE(env, Env::Default());
ASSERT_FALSE(guard->AreEquivalent(options, Env::Default(), &mismatch));
opt_str = env->ToString(options);
ASSERT_OK(Env::CreateFromString(options, opt_str, &env, &copy));
ASSERT_NE(copy, guard);
ASSERT_TRUE(guard->AreEquivalent(options, copy.get(), &mismatch));
guard.reset(new WrappedEnv(std::make_shared<WrappedEnv>(Env::Default())));
ASSERT_NE(guard.get(), env);
opt_str = guard->ToString(options);
ASSERT_OK(Env::CreateFromString(options, opt_str, &env, &copy));
ASSERT_NE(copy, guard);
ASSERT_TRUE(guard->AreEquivalent(options, copy.get(), &mismatch));
guard.reset(new WrappedEnv(std::make_shared<WrappedEnv>(
std::make_shared<WrappedEnv>(Env::Default()))));
ASSERT_NE(guard.get(), env);
opt_str = guard->ToString(options);
ASSERT_OK(Env::CreateFromString(options, opt_str, &env, &copy));
ASSERT_NE(copy, guard);
ASSERT_TRUE(guard->AreEquivalent(options, copy.get(), &mismatch));
}
TEST_F(CreateEnvTest, CreateCompositeEnv) {
ConfigOptions options;
options.ignore_unsupported_options = false;
std::shared_ptr<Env> guard, copy;
Env* env = nullptr;
std::string mismatch, opt_str;
WrappedEnv::Register(*(options.registry->AddLibrary("test")), "");
std::unique_ptr<Env> base(NewCompositeEnv(FileSystem::Default()));
std::unique_ptr<Env> wrapped(new WrappedEnv(Env::Default()));
std::shared_ptr<FileSystem> timed_fs =
std::make_shared<TimedFileSystem>(FileSystem::Default());
std::shared_ptr<SystemClock> clock =
std::make_shared<EmulatedSystemClock>(SystemClock::Default());
opt_str = base->ToString(options);
ASSERT_NOK(Env::CreateFromString(options, opt_str, &env));
ASSERT_OK(Env::CreateFromString(options, opt_str, &env, &guard));
ASSERT_NE(env, nullptr);
ASSERT_NE(env, Env::Default());
ASSERT_EQ(env->GetFileSystem(), FileSystem::Default());
ASSERT_EQ(env->GetSystemClock(), SystemClock::Default());
base = NewCompositeEnv(timed_fs);
opt_str = base->ToString(options);
ASSERT_NOK(Env::CreateFromString(options, opt_str, &env));
ASSERT_OK(Env::CreateFromString(options, opt_str, &env, &guard));
ASSERT_NE(env, nullptr);
ASSERT_NE(env, Env::Default());
ASSERT_NE(env->GetFileSystem(), FileSystem::Default());
ASSERT_EQ(env->GetSystemClock(), SystemClock::Default());
env = nullptr;
guard.reset(new CompositeEnvWrapper(wrapped.get(), timed_fs));
opt_str = guard->ToString(options);
ASSERT_OK(Env::CreateFromString(options, opt_str, &env, &copy));
ASSERT_NE(env, nullptr);
ASSERT_NE(env, Env::Default());
ASSERT_TRUE(guard->AreEquivalent(options, copy.get(), &mismatch));
env = nullptr;
guard.reset(new CompositeEnvWrapper(wrapped.get(), clock));
opt_str = guard->ToString(options);
ASSERT_OK(Env::CreateFromString(options, opt_str, &env, &copy));
ASSERT_NE(env, nullptr);
ASSERT_NE(env, Env::Default());
ASSERT_TRUE(guard->AreEquivalent(options, copy.get(), &mismatch));
env = nullptr;
guard.reset(new CompositeEnvWrapper(wrapped.get(), timed_fs, clock));
opt_str = guard->ToString(options);
ASSERT_OK(Env::CreateFromString(options, opt_str, &env, &copy));
ASSERT_NE(env, nullptr);
ASSERT_NE(env, Env::Default());
ASSERT_TRUE(guard->AreEquivalent(options, copy.get(), &mismatch));
guard.reset(new CompositeEnvWrapper(nullptr, timed_fs, clock));
ColumnFamilyOptions cf_opts;
DBOptions db_opts;
db_opts.env = guard.get();
auto comp = db_opts.env->CheckedCast<CompositeEnvWrapper>();
ASSERT_NE(comp, nullptr);
ASSERT_EQ(comp->Inner(), nullptr);
ASSERT_NOK(ValidateOptions(db_opts, cf_opts));
ASSERT_OK(db_opts.env->PrepareOptions(options));
ASSERT_NE(comp->Inner(), nullptr);
ASSERT_OK(ValidateOptions(db_opts, cf_opts));
}
// Forward declaration
class ReadAsyncFS;
struct MockIOHandle {
std::function<void(const FSReadRequest&, void*)> cb;
void* cb_arg;
bool create_io_error;
};
// ReadAsyncFS and ReadAsyncRandomAccessFile mocks the FS doing asynchronous
// reads by creating threads that submit read requests and then calling Poll API
// to obtain those results.
class ReadAsyncRandomAccessFile : public FSRandomAccessFileOwnerWrapper {
public:
ReadAsyncRandomAccessFile(ReadAsyncFS& fs,
std::unique_ptr<FSRandomAccessFile>& file)
: FSRandomAccessFileOwnerWrapper(std::move(file)), fs_(fs) {}
IOStatus ReadAsync(FSReadRequest& req, const IOOptions& opts,
std::function<void(const FSReadRequest&, void*)> cb,
void* cb_arg, void** io_handle, IOHandleDeleter* del_fn,
IODebugContext* dbg) override;
private:
ReadAsyncFS& fs_;
std::unique_ptr<FSRandomAccessFile> file_;
int counter = 0;
};
class ReadAsyncFS : public FileSystemWrapper {
public:
explicit ReadAsyncFS(const std::shared_ptr<FileSystem>& wrapped)
: FileSystemWrapper(wrapped) {}
static const char* kClassName() { return "ReadAsyncFS"; }
const char* Name() const override { return kClassName(); }
IOStatus NewRandomAccessFile(const std::string& fname,
const FileOptions& opts,
std::unique_ptr<FSRandomAccessFile>* result,
IODebugContext* dbg) override {
std::unique_ptr<FSRandomAccessFile> file;
IOStatus s = target()->NewRandomAccessFile(fname, opts, &file, dbg);
EXPECT_OK(s);
result->reset(new ReadAsyncRandomAccessFile(*this, file));
return s;
}
IOStatus Poll(std::vector<void*>& io_handles,
size_t /*min_completions*/) override {
// Wait for the threads completion.
for (auto& t : workers) {
t.join();
}
for (size_t i = 0; i < io_handles.size(); i++) {
MockIOHandle* handle = static_cast<MockIOHandle*>(io_handles[i]);
if (handle->create_io_error) {
FSReadRequest req;
req.status = IOStatus::IOError();
handle->cb(req, handle->cb_arg);
}
}
return IOStatus::OK();
}
std::vector<std::thread> workers;
};
IOStatus ReadAsyncRandomAccessFile::ReadAsync(
FSReadRequest& req, const IOOptions& opts,
std::function<void(const FSReadRequest&, void*)> cb, void* cb_arg,
void** io_handle, IOHandleDeleter* del_fn, IODebugContext* dbg) {
IOHandleDeleter deletefn = [](void* args) -> void {
delete (static_cast<MockIOHandle*>(args));
args = nullptr;
};
*del_fn = deletefn;
// Allocate and populate io_handle.
MockIOHandle* mock_handle = new MockIOHandle();
bool create_io_error = false;
if (counter % 2) {
create_io_error = true;
}
mock_handle->create_io_error = create_io_error;
mock_handle->cb = cb;
mock_handle->cb_arg = cb_arg;
*io_handle = static_cast<void*>(mock_handle);
counter++;
// Submit read request asynchronously.
std::function<void(FSReadRequest)> submit_request =
[&opts, cb, cb_arg, dbg, create_io_error, this](FSReadRequest _req) {
if (!create_io_error) {
_req.status = target()->Read(_req.offset, _req.len, opts,
&(_req.result), _req.scratch, dbg);
cb(_req, cb_arg);
}
};
fs_.workers.emplace_back(submit_request, std::move(req));
return IOStatus::OK();
}
class TestAsyncRead : public testing::Test {
public:
TestAsyncRead() { env_ = Env::Default(); }
Env* env_;
};
// Tests the default implementation of ReadAsync API.
TEST_F(TestAsyncRead, ReadAsync) {
EnvOptions soptions;
std::shared_ptr<ReadAsyncFS> fs =
std::make_shared<ReadAsyncFS>(env_->GetFileSystem());
std::string fname = test::PerThreadDBPath(env_, "testfile");
const size_t kSectorSize = 4096;
const size_t kNumSectors = 8;
// 1. create & write to a file.
{
std::unique_ptr<FSWritableFile> wfile;
ASSERT_OK(
fs->NewWritableFile(fname, FileOptions(), &wfile, nullptr /*dbg*/));
for (size_t i = 0; i < kNumSectors; ++i) {
auto data = NewAligned(kSectorSize * 8, static_cast<char>(i + 1));
Slice slice(data.get(), kSectorSize);
ASSERT_OK(wfile->Append(slice, IOOptions(), nullptr));
}
ASSERT_OK(wfile->Close(IOOptions(), nullptr));
}
// 2. Read file
{
std::unique_ptr<FSRandomAccessFile> file;
ASSERT_OK(fs->NewRandomAccessFile(fname, FileOptions(), &file, nullptr));
IOOptions opts;
std::vector<void*> io_handles(kNumSectors);
std::vector<FSReadRequest> reqs(kNumSectors);
std::vector<std::unique_ptr<char, Deleter>> data;
std::vector<size_t> vals;
IOHandleDeleter del_fn;
uint64_t offset = 0;
// Initialize read requests
for (size_t i = 0; i < kNumSectors; i++) {
reqs[i].offset = offset;
reqs[i].len = kSectorSize;
data.emplace_back(NewAligned(kSectorSize, 0));
reqs[i].scratch = data.back().get();
vals.push_back(i);
offset += kSectorSize;
}
// callback function passed to async read.
std::function<void(const FSReadRequest&, void*)> callback =
[&](const FSReadRequest& req, void* cb_arg) {
assert(cb_arg != nullptr);
size_t i = *(reinterpret_cast<size_t*>(cb_arg));
reqs[i].offset = req.offset;
reqs[i].result = req.result;
reqs[i].status = req.status;
};
// Submit asynchronous read requests.
for (size_t i = 0; i < kNumSectors; i++) {
void* cb_arg = static_cast<void*>(&(vals[i]));
ASSERT_OK(file->ReadAsync(reqs[i], opts, callback, cb_arg,
&(io_handles[i]), &del_fn, nullptr));
}
// Poll for the submitted requests.
fs->Poll(io_handles, kNumSectors);
// Check the status of read requests.
for (size_t i = 0; i < kNumSectors; i++) {
if (i % 2) {
ASSERT_EQ(reqs[i].status, IOStatus::IOError());
} else {
auto buf = NewAligned(kSectorSize * 8, static_cast<char>(i + 1));
Slice expected_data(buf.get(), kSectorSize);
ASSERT_EQ(reqs[i].offset, i * kSectorSize);
ASSERT_OK(reqs[i].status);
ASSERT_EQ(expected_data.ToString(), reqs[i].result.ToString());
}
}
// Delete io_handles.
for (size_t i = 0; i < io_handles.size(); i++) {
del_fn(io_handles[i]);
}
}
}
struct StaticDestructionTester {
bool activated = false;
~StaticDestructionTester() {
if (activated && !kMustFreeHeapAllocations) {
// Make sure we can still call some things on default Env.
std::string hostname;
Env::Default()->GetHostNameString(&hostname);
}
}
} static_destruction_tester;
TEST(EnvTestMisc, StaticDestruction) {
// Check for any crashes during static destruction.
static_destruction_tester.activated = true;
}
} // namespace ROCKSDB_NAMESPACE
int main(int argc, char** argv) {
ROCKSDB_NAMESPACE::port::InstallStackTraceHandler();
::testing::InitGoogleTest(&argc, argv);
return RUN_ALL_TESTS();
}