You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
rust-rocksdb/include/rocksdb/advanced_cache.h

623 lines
29 KiB

// Copyright (c) Meta Platforms, Inc. and affiliates.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// APIs for customizing read caches in RocksDB.
#pragma once
#include <cstdint>
#include <functional>
#include <memory>
#include <string>
#include "rocksdb/cache.h"
#include "rocksdb/memory_allocator.h"
#include "rocksdb/slice.h"
#include "rocksdb/status.h"
namespace ROCKSDB_NAMESPACE {
class Logger;
class SecondaryCacheResultHandle;
class Statistics;
// A Cache maps keys to objects resident in memory, tracks reference counts
// on those key-object entries, and is able to remove unreferenced entries
// whenever it wants. All operations are fully thread safe except as noted.
// Inserted entries have a specified "charge" which is some quantity in
// unspecified units, typically bytes of memory used. A Cache will typically
// have a finite capacity in units of charge, and evict entries as needed
// to stay at or below that capacity.
//
// NOTE: This API is for expert use only and is intended more for customizing
// cache behavior than for calling into outside of RocksDB. It is subject to
// change as RocksDB evolves, especially the RocksDB block cache. Overriding
// CacheWrapper is the preferred way of customizing some operations on an
// existing implementation.
//
// INTERNAL: See typed_cache.h for convenient wrappers on top of this API.
// New virtual functions must also be added to CacheWrapper below.
class Cache {
public: // types hidden from API client
// Opaque handle to an entry stored in the cache.
struct Handle {};
public: // types hidden from Cache implementation
// Pointer to cached object of unspecified type. (This type alias is
// provided for clarity, not really for type checking.)
using ObjectPtr = void*;
// Opaque object providing context (settings, etc.) to create objects
// for primary cache from saved (serialized) secondary cache entries.
struct CreateContext {};
public: // type defs
// Depending on implementation, cache entries with higher priority levels
// could be less likely to get evicted than entries with lower priority
// levels. The "high" priority level applies to certain SST metablocks (e.g.
// index and filter blocks) if the option
// cache_index_and_filter_blocks_with_high_priority is set. The "low" priority
// level is used for other kinds of SST blocks (most importantly, data
// blocks), as well as the above metablocks in case
// cache_index_and_filter_blocks_with_high_priority is
// not set. The "bottom" priority level is for BlobDB's blob values.
enum class Priority { HIGH, LOW, BOTTOM };
// A set of callbacks to allow objects in the primary block cache to be
// be persisted in a secondary cache. The purpose of the secondary cache
// is to support other ways of caching the object, such as persistent or
// compressed data, that may require the object to be parsed and transformed
// in some way. Since the primary cache holds C++ objects and the secondary
// cache may only hold flat data that doesn't need relocation, these
// callbacks need to be provided by the user of the block
// cache to do the conversion.
// The CacheItemHelper is passed to Insert() and Lookup(). It has pointers
// to callback functions for size, saving and deletion of the
// object. The callbacks are defined in C-style in order to make them
// stateless and not add to the cache metadata size.
// Saving multiple std::function objects will take up 32 bytes per
// function, even if its not bound to an object and does no capture.
//
// All the callbacks are C-style function pointers in order to simplify
// lifecycle management. Objects in the cache can outlive the parent DB,
// so anything required for these operations should be contained in the
// object itself.
//
// The SizeCallback takes a pointer to the object and returns the size
// of the persistable data. It can be used by the secondary cache to allocate
// memory if needed.
//
// RocksDB callbacks are NOT exception-safe. A callback completing with an
// exception can lead to undefined behavior in RocksDB, including data loss,
// unreported corruption, deadlocks, and more.
using SizeCallback = size_t (*)(ObjectPtr obj);
// The SaveToCallback takes an object pointer and saves the persistable
// data into a buffer. The secondary cache may decide to not store it in a
// contiguous buffer, in which case this callback will be called multiple
// times with increasing offset
using SaveToCallback = Status (*)(ObjectPtr from_obj, size_t from_offset,
size_t length, char* out_buf);
// A function pointer type for destruction of a cache object. This will
// typically call the destructor for the appropriate type of the object.
// The Cache is responsible for copying and reclaiming space for the key,
// but objects are managed in part using this callback. Generally a DeleterFn
// can be nullptr if the ObjectPtr does not need destruction (e.g. nullptr or
// pointer into static data).
using DeleterFn = void (*)(ObjectPtr obj, MemoryAllocator* allocator);
// The CreateCallback is takes in a buffer from the NVM cache and constructs
// an object using it. The callback doesn't have ownership of the buffer and
// should copy the contents into its own buffer. The CreateContext* is
// provided by Lookup and may be used to follow DB- or CF-specific settings.
// In case of some error, non-OK is returned and the caller should ignore
// any result in out_obj. (The implementation must clean up after itself.)
using CreateCallback = Status (*)(const Slice& data, CreateContext* context,
MemoryAllocator* allocator,
ObjectPtr* out_obj, size_t* out_charge);
// A struct with pointers to helper functions for spilling items from the
// cache into the secondary cache. May be extended in the future. An
// instance of this struct is expected to outlive the cache.
struct CacheItemHelper {
// Function for deleting an object on its removal from the Cache.
// nullptr is only for entries that require no destruction, such as
// "placeholder" cache entries with nullptr object.
DeleterFn del_cb; // (<- Most performance critical)
// Next three are used for persisting values as described above.
// If any is nullptr, then all three should be nullptr and persisting the
// entry to/from secondary cache is not supported.
SizeCallback size_cb;
SaveToCallback saveto_cb;
CreateCallback create_cb;
// Classification of the entry for monitoring purposes in block cache.
CacheEntryRole role;
// Another CacheItemHelper (or this one) without secondary cache support.
// This is provided so that items promoted from secondary cache into
// primary cache without removal from the secondary cache can be prevented
// from attempting re-insertion into secondary cache (for efficiency).
const CacheItemHelper* without_secondary_compat;
CacheItemHelper() : CacheItemHelper(CacheEntryRole::kMisc) {}
// For helpers without SecondaryCache support
explicit CacheItemHelper(CacheEntryRole _role, DeleterFn _del_cb = nullptr)
: CacheItemHelper(_role, _del_cb, nullptr, nullptr, nullptr, this) {}
// For helpers with SecondaryCache support
explicit CacheItemHelper(CacheEntryRole _role, DeleterFn _del_cb,
SizeCallback _size_cb, SaveToCallback _saveto_cb,
CreateCallback _create_cb,
const CacheItemHelper* _without_secondary_compat)
: del_cb(_del_cb),
size_cb(_size_cb),
saveto_cb(_saveto_cb),
create_cb(_create_cb),
role(_role),
without_secondary_compat(_without_secondary_compat) {
// Either all three secondary cache callbacks are non-nullptr or
// all three are nullptr
assert((size_cb != nullptr) == (saveto_cb != nullptr));
assert((size_cb != nullptr) == (create_cb != nullptr));
// without_secondary_compat points to equivalent but without
// secondary support
assert(role == without_secondary_compat->role);
assert(del_cb == without_secondary_compat->del_cb);
assert(!without_secondary_compat->IsSecondaryCacheCompatible());
}
inline bool IsSecondaryCacheCompatible() const {
return size_cb != nullptr;
}
};
public: // ctor/dtor/create
Cache(std::shared_ptr<MemoryAllocator> allocator = nullptr)
: memory_allocator_(std::move(allocator)) {}
// No copying allowed
Cache(const Cache&) = delete;
Cache& operator=(const Cache&) = delete;
// Destroys all remaining entries by calling the associated "deleter"
virtual ~Cache() {}
// Creates a new Cache based on the input value string and returns the result.
// Currently, this method can be used to create LRUCaches only
// @param config_options
// @param value The value might be:
// - an old-style cache ("1M") -- equivalent to NewLRUCache(1024*102(
// - Name-value option pairs -- "capacity=1M; num_shard_bits=4;
// For the LRUCache, the values are defined in LRUCacheOptions.
// @param result The new Cache object
// @return OK if the cache was successfully created
// @return NotFound if an invalid name was specified in the value
// @return InvalidArgument if either the options were not valid
static Status CreateFromString(const ConfigOptions& config_options,
const std::string& value,
std::shared_ptr<Cache>* result);
public: // functions
// The type of the Cache
virtual const char* Name() const = 0;
// The Insert and Lookup APIs below are intended to allow cached objects
// to be demoted/promoted between the primary block cache and a secondary
// cache. The secondary cache could be a non-volatile cache, and will
// likely store the object in a different representation. They rely on a
// per object CacheItemHelper to do the conversions.
// The secondary cache may persist across process and system restarts,
// and may even be moved between hosts. Therefore, the cache key must
// be repeatable across restarts/reboots, and globally unique if
// multiple DBs share the same cache and the set of DBs can change
// over time.
// Insert a mapping from key->object into the cache and assign it
// the specified charge against the total cache capacity. If
// strict_capacity_limit is true and cache reaches its full capacity,
// return Status::MemoryLimit. `obj` must be non-nullptr if compatible
// with secondary cache (helper->size_cb != nullptr), because Value() ==
// nullptr is reserved for indicating some secondary cache failure cases.
// On success, returns OK and takes ownership of `obj`, eventually deleting
// it with helper->del_cb. On non-OK return, the caller maintains ownership
// of `obj` so will often need to delete it in such cases.
//
// The helper argument is saved by the cache and will be used when the
// inserted object is evicted or considered for promotion to the secondary
// cache. Promotion to secondary cache is only enabled if helper->size_cb
// != nullptr. The helper must outlive the cache. Callers may use
// &kNoopCacheItemHelper as a trivial helper (no deleter for the object,
// no secondary cache). `helper` must not be nullptr (efficiency).
//
// If `handle` is not nullptr and return status is OK, `handle` is set
// to a Handle* for the entry. The caller must call this->Release(handle)
// when the returned entry is no longer needed. If `handle` is nullptr, it is
// as if Release is called immediately after Insert.
//
// Regardless of whether the item was inserted into the cache,
// it will attempt to insert it into the secondary cache if one is
// configured, and the helper supports it.
// The cache implementation must support a secondary cache, otherwise
// the item is only inserted into the primary cache. It may
// defer the insertion to the secondary cache as it sees fit.
//
// When the inserted entry is no longer needed, it will be destroyed using
// helper->del_cb (if non-nullptr).
virtual Status Insert(const Slice& key, ObjectPtr obj,
const CacheItemHelper* helper, size_t charge,
Handle** handle = nullptr,
Priority priority = Priority::LOW) = 0;
// Similar to Insert, but used for creating cache entries that cannot
// be found with Lookup, such as for memory charging purposes. The
// key is needed for cache sharding purposes.
// * If allow_uncharged==true or strict_capacity_limit=false, the operation
// always succeeds and returns a valid Handle.
// * If strict_capacity_limit=true and the requested charge cannot be freed
// up in the cache, then
// * If allow_uncharged==true, it's created anyway (GetCharge() == 0).
// * If allow_uncharged==false, returns nullptr to indicate failure.
virtual Handle* CreateStandalone(const Slice& key, ObjectPtr obj,
const CacheItemHelper* helper, size_t charge,
bool allow_uncharged) = 0;
// Lookup the key, returning nullptr if not found. If found, returns
// a handle to the mapping that must eventually be passed to Release().
//
// If a non-nullptr helper argument is provided with a non-nullptr
// create_cb, and a secondary cache is configured, then the secondary
// cache is also queried if lookup in the primary cache fails. If found
// in secondary cache, the provided create_db and create_context are
// used to promote the entry to an object in the primary cache.
// In that case, the helper may be saved and used later when the object
// is evicted, so as usual, the pointed-to helper must outlive the cache.
virtual Handle* Lookup(const Slice& key,
const CacheItemHelper* helper = nullptr,
CreateContext* create_context = nullptr,
Priority priority = Priority::LOW,
Statistics* stats = nullptr) = 0;
// Convenience wrapper when secondary cache not supported
inline Handle* BasicLookup(const Slice& key, Statistics* stats) {
return Lookup(key, nullptr, nullptr, Priority::LOW, stats);
}
// Increments the reference count for the handle if it refers to an entry in
// the cache. Returns true if refcount was incremented; otherwise, returns
// false.
// REQUIRES: handle must have been returned by a method on *this.
virtual bool Ref(Handle* handle) = 0;
/**
* Release a mapping returned by a previous Lookup(). A released entry might
* still remain in cache in case it is later looked up by others. If
* erase_if_last_ref is set then it also erases it from the cache if there is
* no other reference to it. Erasing it should call the deleter function that
* was provided when the entry was inserted.
*
* Returns true if the entry was also erased.
*/
// REQUIRES: handle must not have been released yet.
// REQUIRES: handle must have been returned by a method on *this.
virtual bool Release(Handle* handle, bool erase_if_last_ref = false) = 0;
// Return the object assiciated with a handle returned by a successful
// Lookup(). For historical reasons, this is also known at the "value"
// associated with the key.
// REQUIRES: handle must not have been released yet.
// REQUIRES: handle must have been returned by a method on *this.
virtual ObjectPtr Value(Handle* handle) = 0;
// If the cache contains the entry for the key, erase it. Note that the
// underlying entry will be kept around until all existing handles
// to it have been released.
virtual void Erase(const Slice& key) = 0;
// Return a new numeric id. May be used by multiple clients who are
// sharding the same cache to partition the key space. Typically the
// client will allocate a new id at startup and prepend the id to
// its cache keys.
virtual uint64_t NewId() = 0;
// sets the maximum configured capacity of the cache. When the new
// capacity is less than the old capacity and the existing usage is
// greater than new capacity, the implementation will do its best job to
// purge the released entries from the cache in order to lower the usage
virtual void SetCapacity(size_t capacity) = 0;
// Set whether to return error on insertion when cache reaches its full
// capacity.
virtual void SetStrictCapacityLimit(bool strict_capacity_limit) = 0;
// Get the flag whether to return error on insertion when cache reaches its
// full capacity.
virtual bool HasStrictCapacityLimit() const = 0;
// Returns the maximum configured capacity of the cache
virtual size_t GetCapacity() const = 0;
// Returns the memory size for the entries residing in the cache.
virtual size_t GetUsage() const = 0;
// Returns the number of entries currently tracked in the table. SIZE_MAX
// means "not supported." This is used for inspecting the load factor, along
// with GetTableAddressCount().
virtual size_t GetOccupancyCount() const { return SIZE_MAX; }
// Returns the number of ways the hash function is divided for addressing
// entries. Zero means "not supported." This is used for inspecting the load
// factor, along with GetOccupancyCount().
virtual size_t GetTableAddressCount() const { return 0; }
// Returns the memory size for a specific entry in the cache.
virtual size_t GetUsage(Handle* handle) const = 0;
// Returns the memory size for the entries in use by the system
virtual size_t GetPinnedUsage() const = 0;
// Returns the charge for the specific entry in the cache.
virtual size_t GetCharge(Handle* handle) const = 0;
// Returns the helper for the specified entry.
virtual const CacheItemHelper* GetCacheItemHelper(Handle* handle) const = 0;
// Call this on shutdown if you want to speed it up. Cache will disown
// any underlying data and will not free it on delete. This call will leak
// memory - call this only if you're shutting down the process.
// Any attempts of using cache after this call will fail terribly.
// Always delete the DB object before calling this method!
virtual void DisownData() {
// default implementation is noop
}
struct ApplyToAllEntriesOptions {
// If the Cache uses locks, setting `average_entries_per_lock` to
// a higher value suggests iterating over more entries each time a lock
// is acquired, likely reducing the time for ApplyToAllEntries but
// increasing latency for concurrent users of the Cache. Setting
// `average_entries_per_lock` to a smaller value could be helpful if
// callback is relatively expensive, such as using large data structures.
size_t average_entries_per_lock = 256;
};
// Apply a callback to all entries in the cache. The Cache must ensure
// thread safety but does not guarantee that a consistent snapshot of all
// entries is iterated over if other threads are operating on the Cache
// also.
virtual void ApplyToAllEntries(
const std::function<void(const Slice& key, ObjectPtr obj, size_t charge,
const CacheItemHelper* helper)>& callback,
const ApplyToAllEntriesOptions& opts) = 0;
// Remove all entries.
// Prerequisite: no entry is referenced.
virtual void EraseUnRefEntries() = 0;
virtual std::string GetPrintableOptions() const { return ""; }
// Check for any warnings or errors in the operation of the cache and
// report them to the logger. This is intended only to be called
// periodically so does not need to be very efficient. (Obscure calling
// conventions for Logger inherited from env.h)
virtual void ReportProblems(
const std::shared_ptr<Logger>& /*info_log*/) const {}
MemoryAllocator* memory_allocator() const { return memory_allocator_.get(); }
// See ShardedCacheOptions::hash_seed
virtual uint32_t GetHashSeed() const { return 0; }
// EXPERIMENTAL
// The following APIs are experimental and might change in the future.
// Release a mapping returned by a previous Lookup(). The "useful"
// parameter specifies whether the data was actually used or not,
// which may be used by the cache implementation to decide whether
// to consider it as a hit for retention purposes. As noted elsewhere,
// "pending" handles require Wait()/WaitAll() before Release().
virtual bool Release(Handle* handle, bool /*useful*/,
bool erase_if_last_ref) {
return Release(handle, erase_if_last_ref);
}
// A temporary handle structure for managing async lookups, which callers
// of AsyncLookup() can allocate on the call stack for efficiency.
// An AsyncLookupHandle should not be used concurrently across threads.
struct AsyncLookupHandle {
// Inputs, populated by caller:
// NOTE: at least in case of stacked secondary caches, the underlying
// key buffer must last until handle is completely waited on.
Slice key;
const CacheItemHelper* helper = nullptr;
CreateContext* create_context = nullptr;
Priority priority = Priority::LOW;
Statistics* stats = nullptr;
AsyncLookupHandle() {}
AsyncLookupHandle(const Slice& _key, const CacheItemHelper* _helper,
CreateContext* _create_context,
Priority _priority = Priority::LOW,
Statistics* _stats = nullptr)
: key(_key),
helper(_helper),
create_context(_create_context),
priority(_priority),
stats(_stats) {}
// AsyncLookupHandle should only be destroyed when no longer pending
~AsyncLookupHandle() { assert(!IsPending()); }
// No copies or moves (StartAsyncLookup may save a pointer to this)
AsyncLookupHandle(const AsyncLookupHandle&) = delete;
AsyncLookupHandle operator=(const AsyncLookupHandle&) = delete;
AsyncLookupHandle(AsyncLookupHandle&&) = delete;
AsyncLookupHandle operator=(AsyncLookupHandle&&) = delete;
// Determines if the handle returned by Lookup() can give a value without
// blocking, though Wait()/WaitAll() might be required to publish it to
// Value(). See secondary cache compatible Lookup() above for details.
// This call is not thread safe on "pending" handles.
// WART/TODO with stacked secondaries: might indicate ready when one
// result is ready (a miss) but the next lookup will block.
bool IsReady();
// Returns true if Wait/WaitAll is required before calling Result().
bool IsPending();
// Returns a Lookup()-like result if this AsyncHandle is not pending.
// (Undefined behavior on a pending AsyncHandle.) Like Lookup(), the
// caller is responsible for eventually Release()ing a non-nullptr
// Handle* result.
Handle* Result();
// Implementation details, for RocksDB internal use only
Handle* result_handle = nullptr;
SecondaryCacheResultHandle* pending_handle = nullptr;
SecondaryCache* pending_cache = nullptr;
bool found_dummy_entry = false;
bool kept_in_sec_cache = false;
};
// Starts a potentially asynchronous Lookup(), based on the populated
// "input" fields of the async_handle. The caller is responsible for
// keeping the AsyncLookupHandle and the key it references alive through
// WaitAll(), and the AsyncLookupHandle alive through
// AsyncLookupHandle::Result(). WaitAll() can only be skipped if
// AsyncLookupHandle::IsPending() is already false after StartAsyncLookup.
// Calling AsyncLookupHandle::Result() is essentially required so that
// Release() can be called on non-nullptr Handle result. Wait() is a
// concise version of WaitAll()+Result() on a single handle. After an
// AsyncLookupHandle has completed this cycle, its input fields can be
// updated and re-used for another StartAsyncLookup.
//
// Handle is thread-safe while AsyncLookupHandle is not thread-safe.
//
// Default implementation is appropriate for Caches without
// true asynchronous support: defers to synchronous Lookup().
// (AsyncLookupHandles will only get into the "pending" state with
// SecondaryCache configured.)
virtual void StartAsyncLookup(AsyncLookupHandle& async_handle);
// A convenient wrapper around WaitAll() and AsyncLookupHandle::Result()
// for a single async handle. See StartAsyncLookup().
Handle* Wait(AsyncLookupHandle& async_handle);
// Wait for an array of async handles to get results, so that none are left
// in the "pending" state. Not thread safe. See StartAsyncLookup().
// Default implementation is appropriate for Caches without true
// asynchronous support: asserts that all handles are not pending (or not
// expected to be handled by this cache, in case of wrapped/stacked
// WaitAlls()).
virtual void WaitAll(AsyncLookupHandle* /*async_handles*/, size_t /*count*/);
// For a function called on cache entries about to be evicted. The function
// returns `true` if it has taken ownership of the Value (object), or
// `false` if the cache should destroy it as usual. Regardless, Ref() and
// Release() cannot be called on this Handle that is poised for eviction.
using EvictionCallback = std::function<bool(const Slice& key, Handle* h)>;
// Sets an eviction callback for this Cache. Not thread safe and only
// supports being set once, so should only be used during initialization
// or destruction, guaranteed before or after any thread-shared operations.
void SetEvictionCallback(EvictionCallback&& fn);
protected:
std::shared_ptr<MemoryAllocator> memory_allocator_;
EvictionCallback eviction_callback_;
};
// A wrapper around Cache that can easily be extended with instrumentation,
// etc.
class CacheWrapper : public Cache {
public:
explicit CacheWrapper(std::shared_ptr<Cache> target)
: target_(std::move(target)) {}
// Only function that derived class must provide
// const char* Name() const override { ... }
Status Insert(const Slice& key, ObjectPtr value,
const CacheItemHelper* helper, size_t charge,
Handle** handle = nullptr,
Priority priority = Priority::LOW) override {
return target_->Insert(key, value, helper, charge, handle, priority);
}
Handle* CreateStandalone(const Slice& key, ObjectPtr obj,
const CacheItemHelper* helper, size_t charge,
bool allow_uncharged) override {
return target_->CreateStandalone(key, obj, helper, charge, allow_uncharged);
}
Handle* Lookup(const Slice& key, const CacheItemHelper* helper,
CreateContext* create_context,
Priority priority = Priority::LOW,
Statistics* stats = nullptr) override {
return target_->Lookup(key, helper, create_context, priority, stats);
}
bool Ref(Handle* handle) override { return target_->Ref(handle); }
using Cache::Release;
bool Release(Handle* handle, bool erase_if_last_ref = false) override {
return target_->Release(handle, erase_if_last_ref);
}
ObjectPtr Value(Handle* handle) override { return target_->Value(handle); }
void Erase(const Slice& key) override { target_->Erase(key); }
uint64_t NewId() override { return target_->NewId(); }
void SetCapacity(size_t capacity) override { target_->SetCapacity(capacity); }
void SetStrictCapacityLimit(bool strict_capacity_limit) override {
target_->SetStrictCapacityLimit(strict_capacity_limit);
}
bool HasStrictCapacityLimit() const override {
return target_->HasStrictCapacityLimit();
}
size_t GetCapacity() const override { return target_->GetCapacity(); }
size_t GetUsage() const override { return target_->GetUsage(); }
size_t GetUsage(Handle* handle) const override {
return target_->GetUsage(handle);
}
size_t GetPinnedUsage() const override { return target_->GetPinnedUsage(); }
size_t GetCharge(Handle* handle) const override {
return target_->GetCharge(handle);
}
const CacheItemHelper* GetCacheItemHelper(Handle* handle) const override {
return target_->GetCacheItemHelper(handle);
}
void ApplyToAllEntries(
const std::function<void(const Slice& key, ObjectPtr value, size_t charge,
const CacheItemHelper* helper)>& callback,
const ApplyToAllEntriesOptions& opts) override {
target_->ApplyToAllEntries(callback, opts);
}
void EraseUnRefEntries() override { target_->EraseUnRefEntries(); }
void StartAsyncLookup(AsyncLookupHandle& async_handle) override {
target_->StartAsyncLookup(async_handle);
}
void WaitAll(AsyncLookupHandle* async_handles, size_t count) override {
target_->WaitAll(async_handles, count);
}
protected:
std::shared_ptr<Cache> target_;
};
// Useful for cache entries requiring no clean-up, such as for cache
// reservations
extern const Cache::CacheItemHelper kNoopCacheItemHelper;
} // namespace ROCKSDB_NAMESPACE