You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 
rust-rocksdb/librocksdb-sys/rocksdb/db/db_with_timestamp_basic_tes...

4152 lines
145 KiB

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#include "db/db_with_timestamp_test_util.h"
#include "port/stack_trace.h"
#include "rocksdb/perf_context.h"
#include "rocksdb/utilities/debug.h"
#include "table/block_based/block_based_table_reader.h"
#include "table/block_based/block_builder.h"
#include "test_util/sync_point.h"
#include "test_util/testutil.h"
#include "utilities/fault_injection_env.h"
#include "utilities/merge_operators/string_append/stringappend2.h"
namespace ROCKSDB_NAMESPACE {
class DBBasicTestWithTimestamp : public DBBasicTestWithTimestampBase {
public:
DBBasicTestWithTimestamp()
: DBBasicTestWithTimestampBase("db_basic_test_with_timestamp") {}
};
TEST_F(DBBasicTestWithTimestamp, SanityChecks) {
Options options = CurrentOptions();
options.env = env_;
options.create_if_missing = true;
options.avoid_flush_during_shutdown = true;
options.merge_operator = MergeOperators::CreateStringAppendTESTOperator();
DestroyAndReopen(options);
Options options1 = CurrentOptions();
options1.env = env_;
options1.comparator = test::BytewiseComparatorWithU64TsWrapper();
options1.merge_operator = MergeOperators::CreateStringAppendTESTOperator();
assert(options1.comparator &&
options1.comparator->timestamp_size() == sizeof(uint64_t));
ColumnFamilyHandle* handle = nullptr;
Status s = db_->CreateColumnFamily(options1, "data", &handle);
ASSERT_OK(s);
std::string dummy_ts(sizeof(uint64_t), '\0');
// Perform timestamp operations on default cf.
ASSERT_TRUE(
db_->Put(WriteOptions(), "key", dummy_ts, "value").IsInvalidArgument());
ASSERT_TRUE(db_->Merge(WriteOptions(), db_->DefaultColumnFamily(), "key",
dummy_ts, "value")
.IsInvalidArgument());
ASSERT_TRUE(db_->Delete(WriteOptions(), "key", dummy_ts).IsInvalidArgument());
ASSERT_TRUE(
db_->SingleDelete(WriteOptions(), "key", dummy_ts).IsInvalidArgument());
ASSERT_TRUE(db_->DeleteRange(WriteOptions(), db_->DefaultColumnFamily(),
"begin_key", "end_key", dummy_ts)
.IsInvalidArgument());
// Perform non-timestamp operations on "data" cf.
ASSERT_TRUE(
db_->Put(WriteOptions(), handle, "key", "value").IsInvalidArgument());
ASSERT_TRUE(db_->Delete(WriteOptions(), handle, "key").IsInvalidArgument());
ASSERT_TRUE(
db_->SingleDelete(WriteOptions(), handle, "key").IsInvalidArgument());
ASSERT_TRUE(
db_->Merge(WriteOptions(), handle, "key", "value").IsInvalidArgument());
ASSERT_TRUE(db_->DeleteRange(WriteOptions(), handle, "begin_key", "end_key")
.IsInvalidArgument());
{
WriteBatch wb;
ASSERT_OK(wb.Put(handle, "key", "value"));
ASSERT_TRUE(db_->Write(WriteOptions(), &wb).IsInvalidArgument());
}
{
WriteBatch wb;
ASSERT_OK(wb.Delete(handle, "key"));
ASSERT_TRUE(db_->Write(WriteOptions(), &wb).IsInvalidArgument());
}
{
WriteBatch wb;
ASSERT_OK(wb.SingleDelete(handle, "key"));
ASSERT_TRUE(db_->Write(WriteOptions(), &wb).IsInvalidArgument());
}
{
WriteBatch wb;
ASSERT_OK(wb.DeleteRange(handle, "begin_key", "end_key"));
ASSERT_TRUE(db_->Write(WriteOptions(), &wb).IsInvalidArgument());
}
// Perform timestamp operations with timestamps of incorrect size.
const std::string wrong_ts(sizeof(uint32_t), '\0');
ASSERT_TRUE(db_->Put(WriteOptions(), handle, "key", wrong_ts, "value")
.IsInvalidArgument());
ASSERT_TRUE(db_->Merge(WriteOptions(), handle, "key", wrong_ts, "value")
.IsInvalidArgument());
ASSERT_TRUE(
db_->Delete(WriteOptions(), handle, "key", wrong_ts).IsInvalidArgument());
ASSERT_TRUE(db_->SingleDelete(WriteOptions(), handle, "key", wrong_ts)
.IsInvalidArgument());
ASSERT_TRUE(
db_->DeleteRange(WriteOptions(), handle, "begin_key", "end_key", wrong_ts)
.IsInvalidArgument());
delete handle;
}
TEST_F(DBBasicTestWithTimestamp, MixedCfs) {
Options options = CurrentOptions();
options.env = env_;
options.create_if_missing = true;
options.avoid_flush_during_shutdown = true;
DestroyAndReopen(options);
Options options1 = CurrentOptions();
options1.env = env_;
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options1.comparator = &test_cmp;
ColumnFamilyHandle* handle = nullptr;
Status s = db_->CreateColumnFamily(options1, "data", &handle);
ASSERT_OK(s);
WriteBatch wb;
ASSERT_OK(wb.Put("a", "value"));
ASSERT_OK(wb.Put(handle, "a", "value"));
{
std::string ts = Timestamp(1, 0);
const auto ts_sz_func = [kTimestampSize, handle](uint32_t cf_id) {
assert(handle);
if (cf_id == 0) {
return static_cast<size_t>(0);
} else if (cf_id == handle->GetID()) {
return kTimestampSize;
} else {
assert(false);
return std::numeric_limits<size_t>::max();
}
};
ASSERT_OK(wb.UpdateTimestamps(ts, ts_sz_func));
ASSERT_OK(db_->Write(WriteOptions(), &wb));
}
const auto verify_db = [this](ColumnFamilyHandle* h, const std::string& key,
const std::string& ts,
const std::string& expected_value) {
ASSERT_EQ(expected_value, Get(key));
Slice read_ts_slice(ts);
ReadOptions read_opts;
read_opts.timestamp = &read_ts_slice;
std::string value;
ASSERT_OK(db_->Get(read_opts, h, key, &value));
ASSERT_EQ(expected_value, value);
};
verify_db(handle, "a", Timestamp(1, 0), "value");
delete handle;
Close();
std::vector<ColumnFamilyDescriptor> cf_descs;
cf_descs.emplace_back(kDefaultColumnFamilyName, options);
cf_descs.emplace_back("data", options1);
options.create_if_missing = false;
s = DB::Open(options, dbname_, cf_descs, &handles_, &db_);
ASSERT_OK(s);
verify_db(handles_[1], "a", Timestamp(1, 0), "value");
Close();
}
TEST_F(DBBasicTestWithTimestamp, CompactRangeWithSpecifiedRange) {
Options options = CurrentOptions();
options.env = env_;
options.create_if_missing = true;
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
DestroyAndReopen(options);
WriteOptions write_opts;
std::string ts = Timestamp(1, 0);
ASSERT_OK(db_->Put(write_opts, "foo1", ts, "bar"));
ASSERT_OK(Flush());
ASSERT_OK(db_->Put(write_opts, "foo2", ts, "bar"));
ASSERT_OK(Flush());
std::string start_str = "foo";
std::string end_str = "foo2";
Slice start(start_str), end(end_str);
ASSERT_OK(db_->CompactRange(CompactRangeOptions(), &start, &end));
Close();
}
TEST_F(DBBasicTestWithTimestamp, GcPreserveLatestVersionBelowFullHistoryLow) {
Options options = CurrentOptions();
options.env = env_;
options.create_if_missing = true;
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
DestroyAndReopen(options);
std::string ts_str = Timestamp(1, 0);
WriteOptions wopts;
ASSERT_OK(db_->Put(wopts, "k1", ts_str, "v1"));
ASSERT_OK(db_->Put(wopts, "k2", ts_str, "v2"));
ASSERT_OK(db_->Put(wopts, "k3", ts_str, "v3"));
ts_str = Timestamp(2, 0);
ASSERT_OK(db_->Delete(wopts, "k3", ts_str));
ts_str = Timestamp(4, 0);
ASSERT_OK(db_->Put(wopts, "k1", ts_str, "v5"));
ts_str = Timestamp(5, 0);
ASSERT_OK(
db_->DeleteRange(wopts, db_->DefaultColumnFamily(), "k0", "k9", ts_str));
ts_str = Timestamp(3, 0);
Slice ts = ts_str;
CompactRangeOptions cro;
cro.full_history_ts_low = &ts;
ASSERT_OK(db_->CompactRange(cro, nullptr, nullptr));
ASSERT_OK(Flush());
ReadOptions ropts;
ropts.timestamp = &ts;
std::string value;
Status s = db_->Get(ropts, "k1", &value);
ASSERT_OK(s);
ASSERT_EQ("v1", value);
std::string key_ts;
ASSERT_TRUE(db_->Get(ropts, "k3", &value, &key_ts).IsNotFound());
ASSERT_EQ(Timestamp(2, 0), key_ts);
ts_str = Timestamp(5, 0);
ts = ts_str;
ropts.timestamp = &ts;
ASSERT_TRUE(db_->Get(ropts, "k2", &value, &key_ts).IsNotFound());
ASSERT_EQ(Timestamp(5, 0), key_ts);
ASSERT_TRUE(db_->Get(ropts, "k2", &value).IsNotFound());
Close();
}
TEST_F(DBBasicTestWithTimestamp, UpdateFullHistoryTsLow) {
Options options = CurrentOptions();
options.env = env_;
options.create_if_missing = true;
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
DestroyAndReopen(options);
const std::string kKey = "test kKey";
// Test set ts_low first and flush()
int current_ts_low = 5;
std::string ts_low_str = Timestamp(current_ts_low, 0);
Slice ts_low = ts_low_str;
CompactRangeOptions comp_opts;
comp_opts.full_history_ts_low = &ts_low;
comp_opts.bottommost_level_compaction = BottommostLevelCompaction::kForce;
ASSERT_OK(db_->CompactRange(comp_opts, nullptr, nullptr));
auto* cfd =
static_cast_with_check<ColumnFamilyHandleImpl>(db_->DefaultColumnFamily())
->cfd();
auto result_ts_low = cfd->GetFullHistoryTsLow();
ASSERT_TRUE(test_cmp.CompareTimestamp(ts_low, result_ts_low) == 0);
for (int i = 0; i < 10; i++) {
WriteOptions write_opts;
std::string ts = Timestamp(i, 0);
ASSERT_OK(db_->Put(write_opts, kKey, ts, Key(i)));
}
ASSERT_OK(Flush());
for (int i = 0; i < 10; i++) {
ReadOptions read_opts;
std::string ts_str = Timestamp(i, 0);
Slice ts = ts_str;
read_opts.timestamp = &ts;
std::string value;
Status status = db_->Get(read_opts, kKey, &value);
if (i < current_ts_low) {
ASSERT_TRUE(status.IsInvalidArgument());
} else {
ASSERT_OK(status);
ASSERT_TRUE(value.compare(Key(i)) == 0);
}
}
// Test set ts_low and then trigger compaction
for (int i = 10; i < 20; i++) {
WriteOptions write_opts;
std::string ts = Timestamp(i, 0);
ASSERT_OK(db_->Put(write_opts, kKey, ts, Key(i)));
}
ASSERT_OK(Flush());
current_ts_low = 15;
ts_low_str = Timestamp(current_ts_low, 0);
ts_low = ts_low_str;
comp_opts.full_history_ts_low = &ts_low;
ASSERT_OK(db_->CompactRange(comp_opts, nullptr, nullptr));
result_ts_low = cfd->GetFullHistoryTsLow();
ASSERT_TRUE(test_cmp.CompareTimestamp(ts_low, result_ts_low) == 0);
for (int i = current_ts_low; i < 20; i++) {
ReadOptions read_opts;
std::string ts_str = Timestamp(i, 0);
Slice ts = ts_str;
read_opts.timestamp = &ts;
std::string value;
Status status = db_->Get(read_opts, kKey, &value);
ASSERT_OK(status);
ASSERT_TRUE(value.compare(Key(i)) == 0);
}
// Test invalid compaction with range
Slice start(kKey), end(kKey);
Status s = db_->CompactRange(comp_opts, &start, &end);
ASSERT_TRUE(s.IsInvalidArgument());
s = db_->CompactRange(comp_opts, &start, nullptr);
ASSERT_TRUE(s.IsInvalidArgument());
s = db_->CompactRange(comp_opts, nullptr, &end);
ASSERT_TRUE(s.IsInvalidArgument());
// Test invalid compaction with the decreasing ts_low
ts_low_str = Timestamp(current_ts_low - 1, 0);
ts_low = ts_low_str;
comp_opts.full_history_ts_low = &ts_low;
s = db_->CompactRange(comp_opts, nullptr, nullptr);
ASSERT_TRUE(s.IsInvalidArgument());
Close();
}
TEST_F(DBBasicTestWithTimestamp, UpdateFullHistoryTsLowWithPublicAPI) {
Options options = CurrentOptions();
options.env = env_;
options.create_if_missing = true;
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
DestroyAndReopen(options);
std::string ts_low_str = Timestamp(9, 0);
ASSERT_OK(
db_->IncreaseFullHistoryTsLow(db_->DefaultColumnFamily(), ts_low_str));
std::string result_ts_low;
ASSERT_OK(db_->GetFullHistoryTsLow(nullptr, &result_ts_low));
ASSERT_TRUE(test_cmp.CompareTimestamp(ts_low_str, result_ts_low) == 0);
// test increase full_history_low backward
std::string ts_low_str_back = Timestamp(8, 0);
auto s = db_->IncreaseFullHistoryTsLow(db_->DefaultColumnFamily(),
ts_low_str_back);
ASSERT_EQ(s, Status::InvalidArgument());
// test IncreaseFullHistoryTsLow with a timestamp whose length is longger
// than the cf's timestamp size
std::string ts_low_str_long(Timestamp(0, 0).size() + 1, 'a');
s = db_->IncreaseFullHistoryTsLow(db_->DefaultColumnFamily(),
ts_low_str_long);
ASSERT_EQ(s, Status::InvalidArgument());
// test IncreaseFullHistoryTsLow with a timestamp which is null
std::string ts_low_str_null = "";
s = db_->IncreaseFullHistoryTsLow(db_->DefaultColumnFamily(),
ts_low_str_null);
ASSERT_EQ(s, Status::InvalidArgument());
// test IncreaseFullHistoryTsLow for a column family that does not enable
// timestamp
options.comparator = BytewiseComparator();
DestroyAndReopen(options);
ts_low_str = Timestamp(10, 0);
s = db_->IncreaseFullHistoryTsLow(db_->DefaultColumnFamily(), ts_low_str);
ASSERT_EQ(s, Status::InvalidArgument());
// test GetFullHistoryTsLow for a column family that does not enable
// timestamp
std::string current_ts_low;
s = db_->GetFullHistoryTsLow(db_->DefaultColumnFamily(), &current_ts_low);
ASSERT_EQ(s, Status::InvalidArgument());
Close();
}
TEST_F(DBBasicTestWithTimestamp, GetApproximateSizes) {
Options options = CurrentOptions();
options.write_buffer_size = 100000000; // Large write buffer
options.compression = kNoCompression;
options.create_if_missing = true;
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
DestroyAndReopen(options);
auto default_cf = db_->DefaultColumnFamily();
WriteOptions write_opts;
std::string ts = Timestamp(1, 0);
const int N = 128;
Random rnd(301);
for (int i = 0; i < N; i++) {
ASSERT_OK(db_->Put(write_opts, Key(i), ts, rnd.RandomString(1024)));
}
uint64_t size;
std::string start = Key(50);
std::string end = Key(60);
Range r(start, end);
SizeApproximationOptions size_approx_options;
size_approx_options.include_memtables = true;
size_approx_options.include_files = true;
ASSERT_OK(
db_->GetApproximateSizes(size_approx_options, default_cf, &r, 1, &size));
ASSERT_GT(size, 6000);
ASSERT_LT(size, 204800);
// test multiple ranges
std::vector<Range> ranges;
std::string start_tmp = Key(10);
std::string end_tmp = Key(20);
ranges.emplace_back(Range(start_tmp, end_tmp));
ranges.emplace_back(Range(start, end));
uint64_t range_sizes[2];
ASSERT_OK(db_->GetApproximateSizes(size_approx_options, default_cf,
ranges.data(), 2, range_sizes));
ASSERT_EQ(range_sizes[1], size);
// Zero if not including mem table
ASSERT_OK(db_->GetApproximateSizes(&r, 1, &size));
ASSERT_EQ(size, 0);
start = Key(500);
end = Key(600);
r = Range(start, end);
ASSERT_OK(
db_->GetApproximateSizes(size_approx_options, default_cf, &r, 1, &size));
ASSERT_EQ(size, 0);
// Test range boundaries
ASSERT_OK(db_->Put(write_opts, Key(1000), ts, rnd.RandomString(1024)));
// Should include start key
start = Key(1000);
end = Key(1100);
r = Range(start, end);
ASSERT_OK(
db_->GetApproximateSizes(size_approx_options, default_cf, &r, 1, &size));
ASSERT_GT(size, 0);
// Should exclude end key
start = Key(900);
end = Key(1000);
r = Range(start, end);
ASSERT_OK(
db_->GetApproximateSizes(size_approx_options, default_cf, &r, 1, &size));
ASSERT_EQ(size, 0);
Close();
}
TEST_F(DBBasicTestWithTimestamp, SimpleIterate) {
const int kNumKeysPerFile = 128;
const uint64_t kMaxKey = 1024;
Options options = CurrentOptions();
options.env = env_;
options.create_if_missing = true;
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
options.memtable_factory.reset(
test::NewSpecialSkipListFactory(kNumKeysPerFile));
DestroyAndReopen(options);
const std::vector<uint64_t> start_keys = {1, 0};
const std::vector<std::string> write_timestamps = {Timestamp(1, 0),
Timestamp(3, 0)};
const std::vector<std::string> read_timestamps = {Timestamp(2, 0),
Timestamp(4, 0)};
for (size_t i = 0; i < write_timestamps.size(); ++i) {
WriteOptions write_opts;
for (uint64_t key = start_keys[i]; key <= kMaxKey; ++key) {
Status s = db_->Put(write_opts, Key1(key), write_timestamps[i],
"value" + std::to_string(i));
ASSERT_OK(s);
}
}
for (size_t i = 0; i < read_timestamps.size(); ++i) {
ReadOptions read_opts;
Slice read_ts = read_timestamps[i];
read_opts.timestamp = &read_ts;
std::unique_ptr<Iterator> it(db_->NewIterator(read_opts));
int count = 0;
uint64_t key = 0;
// Forward iterate.
for (it->Seek(Key1(0)), key = start_keys[i]; it->Valid();
it->Next(), ++count, ++key) {
CheckIterUserEntry(it.get(), Key1(key), kTypeValue,
"value" + std::to_string(i), write_timestamps[i]);
}
size_t expected_count = kMaxKey - start_keys[i] + 1;
ASSERT_EQ(expected_count, count);
// Backward iterate.
count = 0;
for (it->SeekForPrev(Key1(kMaxKey)), key = kMaxKey; it->Valid();
it->Prev(), ++count, --key) {
CheckIterUserEntry(it.get(), Key1(key), kTypeValue,
"value" + std::to_string(i), write_timestamps[i]);
}
ASSERT_EQ(static_cast<size_t>(kMaxKey) - start_keys[i] + 1, count);
// SeekToFirst()/SeekToLast() with lower/upper bounds.
// Then iter with lower and upper bounds.
uint64_t l = 0;
uint64_t r = kMaxKey + 1;
while (l < r) {
std::string lb_str = Key1(l);
Slice lb = lb_str;
std::string ub_str = Key1(r);
Slice ub = ub_str;
read_opts.iterate_lower_bound = &lb;
read_opts.iterate_upper_bound = &ub;
it.reset(db_->NewIterator(read_opts));
for (it->SeekToFirst(), key = std::max(l, start_keys[i]), count = 0;
it->Valid(); it->Next(), ++key, ++count) {
CheckIterUserEntry(it.get(), Key1(key), kTypeValue,
"value" + std::to_string(i), write_timestamps[i]);
}
ASSERT_EQ(r - std::max(l, start_keys[i]), count);
for (it->SeekToLast(), key = std::min(r, kMaxKey + 1), count = 0;
it->Valid(); it->Prev(), --key, ++count) {
CheckIterUserEntry(it.get(), Key1(key - 1), kTypeValue,
"value" + std::to_string(i), write_timestamps[i]);
}
l += (kMaxKey / 100);
r -= (kMaxKey / 100);
}
}
Close();
}
TEST_F(DBBasicTestWithTimestamp, TrimHistoryTest) {
Options options = CurrentOptions();
options.env = env_;
options.create_if_missing = true;
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
DestroyAndReopen(options);
auto check_value_by_ts = [](DB* db, Slice key, std::string readTs,
Status status, std::string checkValue,
std::string expected_ts) {
ReadOptions ropts;
Slice ts = readTs;
ropts.timestamp = &ts;
std::string value;
std::string key_ts;
Status s = db->Get(ropts, key, &value, &key_ts);
ASSERT_TRUE(s == status);
if (s.ok()) {
ASSERT_EQ(checkValue, value);
}
if (s.ok() || s.IsNotFound()) {
ASSERT_EQ(expected_ts, key_ts);
}
};
// Construct data of different versions with different ts
ASSERT_OK(db_->Put(WriteOptions(), "k1", Timestamp(2, 0), "v1"));
ASSERT_OK(db_->Put(WriteOptions(), "k1", Timestamp(4, 0), "v2"));
ASSERT_OK(db_->Delete(WriteOptions(), "k1", Timestamp(5, 0)));
ASSERT_OK(db_->Put(WriteOptions(), "k1", Timestamp(6, 0), "v3"));
check_value_by_ts(db_, "k1", Timestamp(7, 0), Status::OK(), "v3",
Timestamp(6, 0));
ASSERT_OK(Flush());
Close();
ColumnFamilyOptions cf_options(options);
std::vector<ColumnFamilyDescriptor> column_families;
column_families.push_back(
ColumnFamilyDescriptor(kDefaultColumnFamilyName, cf_options));
DBOptions db_options(options);
// Trim data whose version > Timestamp(5, 0), read(k1, ts(7)) <- NOT_FOUND.
ASSERT_OK(DB::OpenAndTrimHistory(db_options, dbname_, column_families,
&handles_, &db_, Timestamp(5, 0)));
check_value_by_ts(db_, "k1", Timestamp(7, 0), Status::NotFound(), "",
Timestamp(5, 0));
Close();
// Trim data whose timestamp > Timestamp(4, 0), read(k1, ts(7)) <- v2
ASSERT_OK(DB::OpenAndTrimHistory(db_options, dbname_, column_families,
&handles_, &db_, Timestamp(4, 0)));
check_value_by_ts(db_, "k1", Timestamp(7, 0), Status::OK(), "v2",
Timestamp(4, 0));
Close();
Reopen(options);
ASSERT_OK(db_->DeleteRange(WriteOptions(), db_->DefaultColumnFamily(), "k1",
"k3", Timestamp(7, 0)));
check_value_by_ts(db_, "k1", Timestamp(8, 0), Status::NotFound(), "",
Timestamp(7, 0));
Close();
// Trim data whose timestamp > Timestamp(6, 0), read(k1, ts(8)) <- v2
ASSERT_OK(DB::OpenAndTrimHistory(db_options, dbname_, column_families,
&handles_, &db_, Timestamp(6, 0)));
check_value_by_ts(db_, "k1", Timestamp(8, 0), Status::OK(), "v2",
Timestamp(4, 0));
Close();
}
TEST_F(DBBasicTestWithTimestamp, OpenAndTrimHistoryInvalidOptionTest) {
Destroy(last_options_);
Options options = CurrentOptions();
options.env = env_;
options.create_if_missing = true;
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
ColumnFamilyOptions cf_options(options);
std::vector<ColumnFamilyDescriptor> column_families;
column_families.push_back(
ColumnFamilyDescriptor(kDefaultColumnFamilyName, cf_options));
DBOptions db_options(options);
// OpenAndTrimHistory should not work with avoid_flush_during_recovery
db_options.avoid_flush_during_recovery = true;
ASSERT_TRUE(DB::OpenAndTrimHistory(db_options, dbname_, column_families,
&handles_, &db_, Timestamp(0, 0))
.IsInvalidArgument());
}
TEST_F(DBBasicTestWithTimestamp, GetTimestampTableProperties) {
Options options = CurrentOptions();
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
DestroyAndReopen(options);
// Create 2 tables
for (int table = 0; table < 2; ++table) {
for (int i = 0; i < 10; i++) {
std::string ts = Timestamp(i, 0);
ASSERT_OK(db_->Put(WriteOptions(), "key", ts, Key(i)));
}
ASSERT_OK(Flush());
}
TablePropertiesCollection props;
ASSERT_OK(db_->GetPropertiesOfAllTables(&props));
ASSERT_EQ(2U, props.size());
for (const auto& item : props) {
auto& user_collected = item.second->user_collected_properties;
ASSERT_TRUE(user_collected.find("rocksdb.timestamp_min") !=
user_collected.end());
ASSERT_TRUE(user_collected.find("rocksdb.timestamp_max") !=
user_collected.end());
ASSERT_EQ(user_collected.at("rocksdb.timestamp_min"), Timestamp(0, 0));
ASSERT_EQ(user_collected.at("rocksdb.timestamp_max"), Timestamp(9, 0));
}
Close();
}
class DBBasicTestWithTimestampTableOptions
: public DBBasicTestWithTimestampBase,
public testing::WithParamInterface<BlockBasedTableOptions::IndexType> {
public:
explicit DBBasicTestWithTimestampTableOptions()
: DBBasicTestWithTimestampBase(
"db_basic_test_with_timestamp_table_options") {}
};
INSTANTIATE_TEST_CASE_P(
Timestamp, DBBasicTestWithTimestampTableOptions,
testing::Values(
BlockBasedTableOptions::IndexType::kBinarySearch,
BlockBasedTableOptions::IndexType::kHashSearch,
BlockBasedTableOptions::IndexType::kTwoLevelIndexSearch,
BlockBasedTableOptions::IndexType::kBinarySearchWithFirstKey));
TEST_P(DBBasicTestWithTimestampTableOptions, GetAndMultiGet) {
Options options = GetDefaultOptions();
options.create_if_missing = true;
options.prefix_extractor.reset(NewFixedPrefixTransform(3));
options.compression = kNoCompression;
BlockBasedTableOptions bbto;
bbto.index_type = GetParam();
bbto.block_size = 100;
options.table_factory.reset(NewBlockBasedTableFactory(bbto));
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator cmp(kTimestampSize);
options.comparator = &cmp;
DestroyAndReopen(options);
constexpr uint64_t kNumKeys = 1024;
for (uint64_t k = 0; k < kNumKeys; ++k) {
WriteOptions write_opts;
ASSERT_OK(db_->Put(write_opts, Key1(k), Timestamp(1, 0),
"value" + std::to_string(k)));
}
ASSERT_OK(Flush());
{
ReadOptions read_opts;
read_opts.total_order_seek = true;
std::string ts_str = Timestamp(2, 0);
Slice ts = ts_str;
read_opts.timestamp = &ts;
std::unique_ptr<Iterator> it(db_->NewIterator(read_opts));
// verify Get()
for (it->SeekToFirst(); it->Valid(); it->Next()) {
std::string value_from_get;
std::string key_str(it->key().data(), it->key().size());
std::string timestamp;
ASSERT_OK(db_->Get(read_opts, key_str, &value_from_get, &timestamp));
ASSERT_EQ(it->value(), value_from_get);
ASSERT_EQ(Timestamp(1, 0), timestamp);
}
// verify MultiGet()
constexpr uint64_t step = 2;
static_assert(0 == (kNumKeys % step),
"kNumKeys must be a multiple of step");
for (uint64_t k = 0; k < kNumKeys; k += 2) {
std::vector<std::string> key_strs;
std::vector<Slice> keys;
for (size_t i = 0; i < step; ++i) {
key_strs.push_back(Key1(k + i));
}
for (size_t i = 0; i < step; ++i) {
keys.emplace_back(key_strs[i]);
}
std::vector<std::string> values;
std::vector<std::string> timestamps;
std::vector<Status> statuses =
db_->MultiGet(read_opts, keys, &values, &timestamps);
ASSERT_EQ(step, statuses.size());
ASSERT_EQ(step, values.size());
ASSERT_EQ(step, timestamps.size());
for (uint64_t i = 0; i < step; ++i) {
ASSERT_OK(statuses[i]);
ASSERT_EQ("value" + std::to_string(k + i), values[i]);
ASSERT_EQ(Timestamp(1, 0), timestamps[i]);
}
}
}
Close();
}
TEST_P(DBBasicTestWithTimestampTableOptions, SeekWithPrefixLessThanKey) {
Options options = CurrentOptions();
options.env = env_;
options.create_if_missing = true;
options.prefix_extractor.reset(NewFixedPrefixTransform(3));
options.memtable_whole_key_filtering = true;
options.memtable_prefix_bloom_size_ratio = 0.1;
BlockBasedTableOptions bbto;
bbto.filter_policy.reset(NewBloomFilterPolicy(10, false));
bbto.cache_index_and_filter_blocks = true;
bbto.whole_key_filtering = true;
bbto.index_type = GetParam();
options.table_factory.reset(NewBlockBasedTableFactory(bbto));
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
DestroyAndReopen(options);
WriteOptions write_opts;
std::string ts = Timestamp(1, 0);
ASSERT_OK(db_->Put(write_opts, "foo1", ts, "bar"));
ASSERT_OK(Flush());
ASSERT_OK(db_->Put(write_opts, "foo2", ts, "bar"));
ASSERT_OK(Flush());
// Move sst file to next level
ASSERT_OK(db_->CompactRange(CompactRangeOptions(), nullptr, nullptr));
ASSERT_OK(db_->Put(write_opts, "foo3", ts, "bar"));
ASSERT_OK(Flush());
ReadOptions read_opts;
Slice read_ts = ts;
read_opts.timestamp = &read_ts;
{
std::unique_ptr<Iterator> iter(db_->NewIterator(read_opts));
iter->Seek("foo");
ASSERT_TRUE(iter->Valid());
ASSERT_OK(iter->status());
iter->Next();
ASSERT_TRUE(iter->Valid());
ASSERT_OK(iter->status());
iter->Seek("bbb");
ASSERT_FALSE(iter->Valid());
ASSERT_OK(iter->status());
}
Close();
}
TEST_P(DBBasicTestWithTimestampTableOptions, SeekWithCappedPrefix) {
Options options = CurrentOptions();
options.env = env_;
options.create_if_missing = true;
// All of the keys or this test must be longer than 3 characters
constexpr int kMinKeyLen = 3;
options.prefix_extractor.reset(NewCappedPrefixTransform(kMinKeyLen));
options.memtable_whole_key_filtering = true;
options.memtable_prefix_bloom_size_ratio = 0.1;
BlockBasedTableOptions bbto;
bbto.filter_policy.reset(NewBloomFilterPolicy(10, false));
bbto.cache_index_and_filter_blocks = true;
bbto.whole_key_filtering = true;
bbto.index_type = GetParam();
options.table_factory.reset(NewBlockBasedTableFactory(bbto));
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
DestroyAndReopen(options);
WriteOptions write_opts;
std::string ts = Timestamp(1, 0);
ASSERT_OK(db_->Put(write_opts, "foo1", ts, "bar"));
ASSERT_OK(Flush());
ASSERT_OK(db_->Put(write_opts, "foo2", ts, "bar"));
ASSERT_OK(Flush());
// Move sst file to next level
ASSERT_OK(db_->CompactRange(CompactRangeOptions(), nullptr, nullptr));
ASSERT_OK(db_->Put(write_opts, "foo3", ts, "bar"));
ASSERT_OK(Flush());
ReadOptions read_opts;
ts = Timestamp(2, 0);
Slice read_ts = ts;
read_opts.timestamp = &read_ts;
{
std::unique_ptr<Iterator> iter(db_->NewIterator(read_opts));
// Make sure the prefix extractor doesn't include timestamp, otherwise it
// may return invalid result.
iter->Seek("foo");
ASSERT_TRUE(iter->Valid());
ASSERT_OK(iter->status());
iter->Next();
ASSERT_TRUE(iter->Valid());
ASSERT_OK(iter->status());
}
Close();
}
TEST_P(DBBasicTestWithTimestampTableOptions, SeekWithBound) {
Options options = CurrentOptions();
options.env = env_;
options.create_if_missing = true;
options.prefix_extractor.reset(NewFixedPrefixTransform(2));
BlockBasedTableOptions bbto;
bbto.filter_policy.reset(NewBloomFilterPolicy(10, false));
bbto.cache_index_and_filter_blocks = true;
bbto.whole_key_filtering = true;
bbto.index_type = GetParam();
options.table_factory.reset(NewBlockBasedTableFactory(bbto));
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
DestroyAndReopen(options);
WriteOptions write_opts;
std::string ts = Timestamp(1, 0);
ASSERT_OK(db_->Put(write_opts, "foo1", ts, "bar1"));
ASSERT_OK(Flush());
ASSERT_OK(db_->Put(write_opts, "foo2", ts, "bar2"));
ASSERT_OK(Flush());
// Move sst file to next level
ASSERT_OK(db_->CompactRange(CompactRangeOptions(), nullptr, nullptr));
for (int i = 3; i < 9; ++i) {
ASSERT_OK(db_->Put(write_opts, "foo" + std::to_string(i), ts,
"bar" + std::to_string(i)));
}
ASSERT_OK(Flush());
ReadOptions read_opts;
ts = Timestamp(2, 0);
Slice read_ts = ts;
read_opts.timestamp = &read_ts;
std::string up_bound = "foo5"; // exclusive
Slice up_bound_slice = up_bound;
std::string lo_bound = "foo2"; // inclusive
Slice lo_bound_slice = lo_bound;
read_opts.iterate_upper_bound = &up_bound_slice;
read_opts.iterate_lower_bound = &lo_bound_slice;
read_opts.auto_prefix_mode = true;
{
std::unique_ptr<Iterator> iter(db_->NewIterator(read_opts));
// Make sure the prefix extractor doesn't include timestamp, otherwise it
// may return invalid result.
iter->Seek("foo");
CheckIterUserEntry(iter.get(), lo_bound, kTypeValue, "bar2",
Timestamp(1, 0));
iter->SeekToFirst();
CheckIterUserEntry(iter.get(), lo_bound, kTypeValue, "bar2",
Timestamp(1, 0));
iter->SeekForPrev("g");
CheckIterUserEntry(iter.get(), "foo4", kTypeValue, "bar4", Timestamp(1, 0));
iter->SeekToLast();
CheckIterUserEntry(iter.get(), "foo4", kTypeValue, "bar4", Timestamp(1, 0));
}
Close();
}
TEST_F(DBBasicTestWithTimestamp, ChangeIterationDirection) {
Options options = GetDefaultOptions();
options.create_if_missing = true;
options.env = env_;
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
options.prefix_extractor.reset(NewFixedPrefixTransform(1));
options.statistics = ROCKSDB_NAMESPACE::CreateDBStatistics();
DestroyAndReopen(options);
const std::vector<std::string> timestamps = {Timestamp(1, 1), Timestamp(0, 2),
Timestamp(4, 3)};
const std::vector<std::tuple<std::string, std::string>> kvs = {
std::make_tuple("aa", "value1"), std::make_tuple("ab", "value2")};
for (const auto& ts : timestamps) {
WriteBatch wb(0, 0, 0, kTimestampSize);
for (const auto& kv : kvs) {
const std::string& key = std::get<0>(kv);
const std::string& value = std::get<1>(kv);
ASSERT_OK(wb.Put(key, value));
}
ASSERT_OK(wb.UpdateTimestamps(
ts, [kTimestampSize](uint32_t) { return kTimestampSize; }));
ASSERT_OK(db_->Write(WriteOptions(), &wb));
}
std::string read_ts_str = Timestamp(5, 3);
Slice read_ts = read_ts_str;
ReadOptions read_opts;
read_opts.timestamp = &read_ts;
std::unique_ptr<Iterator> it(db_->NewIterator(read_opts));
it->SeekToFirst();
ASSERT_TRUE(it->Valid());
it->Prev();
ASSERT_FALSE(it->Valid());
it->SeekToLast();
ASSERT_TRUE(it->Valid());
uint64_t prev_reseek_count =
options.statistics->getTickerCount(NUMBER_OF_RESEEKS_IN_ITERATION);
ASSERT_EQ(0, prev_reseek_count);
it->Next();
ASSERT_FALSE(it->Valid());
ASSERT_EQ(1 + prev_reseek_count,
options.statistics->getTickerCount(NUMBER_OF_RESEEKS_IN_ITERATION));
it->Seek(std::get<0>(kvs[0]));
CheckIterUserEntry(it.get(), std::get<0>(kvs[0]), kTypeValue,
std::get<1>(kvs[0]), Timestamp(4, 3));
it->Next();
CheckIterUserEntry(it.get(), std::get<0>(kvs[1]), kTypeValue,
std::get<1>(kvs[1]), Timestamp(4, 3));
it->Prev();
CheckIterUserEntry(it.get(), std::get<0>(kvs[0]), kTypeValue,
std::get<1>(kvs[0]), Timestamp(4, 3));
prev_reseek_count =
options.statistics->getTickerCount(NUMBER_OF_RESEEKS_IN_ITERATION);
ASSERT_EQ(1, prev_reseek_count);
it->Next();
CheckIterUserEntry(it.get(), std::get<0>(kvs[1]), kTypeValue,
std::get<1>(kvs[1]), Timestamp(4, 3));
ASSERT_EQ(1 + prev_reseek_count,
options.statistics->getTickerCount(NUMBER_OF_RESEEKS_IN_ITERATION));
it->SeekForPrev(std::get<0>(kvs[1]));
CheckIterUserEntry(it.get(), std::get<0>(kvs[1]), kTypeValue,
std::get<1>(kvs[1]), Timestamp(4, 3));
it->Prev();
CheckIterUserEntry(it.get(), std::get<0>(kvs[0]), kTypeValue,
std::get<1>(kvs[0]), Timestamp(4, 3));
prev_reseek_count =
options.statistics->getTickerCount(NUMBER_OF_RESEEKS_IN_ITERATION);
it->Next();
CheckIterUserEntry(it.get(), std::get<0>(kvs[1]), kTypeValue,
std::get<1>(kvs[1]), Timestamp(4, 3));
ASSERT_EQ(1 + prev_reseek_count,
options.statistics->getTickerCount(NUMBER_OF_RESEEKS_IN_ITERATION));
it.reset();
Close();
}
TEST_F(DBBasicTestWithTimestamp, SimpleForwardIterateLowerTsBound) {
constexpr int kNumKeysPerFile = 128;
constexpr uint64_t kMaxKey = 1024;
Options options = CurrentOptions();
options.env = env_;
options.create_if_missing = true;
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
options.memtable_factory.reset(
test::NewSpecialSkipListFactory(kNumKeysPerFile));
DestroyAndReopen(options);
const std::vector<std::string> write_timestamps = {Timestamp(1, 0),
Timestamp(3, 0)};
const std::vector<std::string> read_timestamps = {Timestamp(2, 0),
Timestamp(4, 0)};
const std::vector<std::string> read_timestamps_lb = {Timestamp(1, 0),
Timestamp(1, 0)};
for (size_t i = 0; i < write_timestamps.size(); ++i) {
WriteOptions write_opts;
for (uint64_t key = 0; key <= kMaxKey; ++key) {
Status s = db_->Put(write_opts, Key1(key), write_timestamps[i],
"value" + std::to_string(i));
ASSERT_OK(s);
}
}
for (size_t i = 0; i < read_timestamps.size(); ++i) {
ReadOptions read_opts;
Slice read_ts = read_timestamps[i];
Slice read_ts_lb = read_timestamps_lb[i];
read_opts.timestamp = &read_ts;
read_opts.iter_start_ts = &read_ts_lb;
std::unique_ptr<Iterator> it(db_->NewIterator(read_opts));
int count = 0;
uint64_t key = 0;
for (it->Seek(Key1(0)), key = 0; it->Valid(); it->Next(), ++count, ++key) {
CheckIterEntry(it.get(), Key1(key), kTypeValue,
"value" + std::to_string(i), write_timestamps[i]);
if (i > 0) {
it->Next();
CheckIterEntry(it.get(), Key1(key), kTypeValue,
"value" + std::to_string(i - 1),
write_timestamps[i - 1]);
}
}
size_t expected_count = kMaxKey + 1;
ASSERT_EQ(expected_count, count);
}
// Delete all keys@ts=5 and check iteration result with start ts set
{
std::string write_timestamp = Timestamp(5, 0);
WriteOptions write_opts;
for (uint64_t key = 0; key < kMaxKey + 1; ++key) {
Status s = db_->Delete(write_opts, Key1(key), write_timestamp);
ASSERT_OK(s);
}
std::string read_timestamp = Timestamp(6, 0);
ReadOptions read_opts;
Slice read_ts = read_timestamp;
read_opts.timestamp = &read_ts;
std::string read_timestamp_lb = Timestamp(2, 0);
Slice read_ts_lb = read_timestamp_lb;
read_opts.iter_start_ts = &read_ts_lb;
std::unique_ptr<Iterator> it(db_->NewIterator(read_opts));
int count = 0;
uint64_t key = 0;
for (it->Seek(Key1(0)), key = 0; it->Valid(); it->Next(), ++count, ++key) {
CheckIterEntry(it.get(), Key1(key), kTypeDeletionWithTimestamp, Slice(),
write_timestamp);
// Skip key@ts=3 and land on tombstone key@ts=5
it->Next();
}
ASSERT_EQ(kMaxKey + 1, count);
}
Close();
}
TEST_F(DBBasicTestWithTimestamp, BackwardIterateLowerTsBound) {
constexpr int kNumKeysPerFile = 128;
constexpr uint64_t kMaxKey = 1024;
Options options = CurrentOptions();
options.env = env_;
options.create_if_missing = true;
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
options.memtable_factory.reset(
test::NewSpecialSkipListFactory(kNumKeysPerFile));
DestroyAndReopen(options);
const std::vector<std::string> write_timestamps = {Timestamp(1, 0),
Timestamp(3, 0)};
const std::vector<std::string> read_timestamps = {Timestamp(2, 0),
Timestamp(4, 0)};
const std::vector<std::string> read_timestamps_lb = {Timestamp(1, 0),
Timestamp(1, 0)};
for (size_t i = 0; i < write_timestamps.size(); ++i) {
WriteOptions write_opts;
for (uint64_t key = 0; key <= kMaxKey; ++key) {
Status s = db_->Put(write_opts, Key1(key), write_timestamps[i],
"value" + std::to_string(i));
ASSERT_OK(s);
}
}
for (size_t i = 0; i < read_timestamps.size(); ++i) {
ReadOptions read_opts;
Slice read_ts = read_timestamps[i];
Slice read_ts_lb = read_timestamps_lb[i];
read_opts.timestamp = &read_ts;
read_opts.iter_start_ts = &read_ts_lb;
std::unique_ptr<Iterator> it(db_->NewIterator(read_opts));
int count = 0;
uint64_t key = 0;
for (it->SeekForPrev(Key1(kMaxKey)), key = kMaxKey; it->Valid();
it->Prev(), ++count, --key) {
CheckIterEntry(it.get(), Key1(key), kTypeValue, "value0",
write_timestamps[0]);
if (i > 0) {
it->Prev();
CheckIterEntry(it.get(), Key1(key), kTypeValue, "value1",
write_timestamps[1]);
}
}
size_t expected_count = kMaxKey + 1;
ASSERT_EQ(expected_count, count);
}
// Delete all keys@ts=5 and check iteration result with start ts set
{
std::string write_timestamp = Timestamp(5, 0);
WriteOptions write_opts;
for (uint64_t key = 0; key < kMaxKey + 1; ++key) {
Status s = db_->Delete(write_opts, Key1(key), write_timestamp);
ASSERT_OK(s);
}
std::string read_timestamp = Timestamp(6, 0);
ReadOptions read_opts;
Slice read_ts = read_timestamp;
read_opts.timestamp = &read_ts;
std::string read_timestamp_lb = Timestamp(2, 0);
Slice read_ts_lb = read_timestamp_lb;
read_opts.iter_start_ts = &read_ts_lb;
std::unique_ptr<Iterator> it(db_->NewIterator(read_opts));
int count = 0;
uint64_t key = kMaxKey;
for (it->SeekForPrev(Key1(key)), key = kMaxKey; it->Valid();
it->Prev(), ++count, --key) {
CheckIterEntry(it.get(), Key1(key), kTypeValue, "value1",
Timestamp(3, 0));
it->Prev();
CheckIterEntry(it.get(), Key1(key), kTypeDeletionWithTimestamp, Slice(),
write_timestamp);
}
ASSERT_EQ(kMaxKey + 1, count);
}
Close();
}
TEST_F(DBBasicTestWithTimestamp, SimpleBackwardIterateLowerTsBound) {
Options options = CurrentOptions();
options.env = env_;
options.create_if_missing = true;
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
DestroyAndReopen(options);
std::string ts_ub_buf = Timestamp(5, 0);
Slice ts_ub = ts_ub_buf;
std::string ts_lb_buf = Timestamp(1, 0);
Slice ts_lb = ts_lb_buf;
{
ReadOptions read_opts;
read_opts.timestamp = &ts_ub;
read_opts.iter_start_ts = &ts_lb;
std::unique_ptr<Iterator> it(db_->NewIterator(read_opts));
it->SeekToLast();
ASSERT_FALSE(it->Valid());
ASSERT_OK(it->status());
it->SeekForPrev("foo");
ASSERT_FALSE(it->Valid());
ASSERT_OK(it->status());
}
// Test iterate_upper_bound
ASSERT_OK(db_->Put(WriteOptions(), "a", Timestamp(0, 0), "v0"));
ASSERT_OK(db_->SingleDelete(WriteOptions(), "a", Timestamp(1, 0)));
for (int i = 0; i < 5; ++i) {
ASSERT_OK(db_->Put(WriteOptions(), "b", Timestamp(i, 0),
"v" + std::to_string(i)));
}
{
ReadOptions read_opts;
read_opts.timestamp = &ts_ub;
read_opts.iter_start_ts = &ts_lb;
std::string key_ub_str = "b"; // exclusive
Slice key_ub = key_ub_str;
read_opts.iterate_upper_bound = &key_ub;
std::unique_ptr<Iterator> it(db_->NewIterator(read_opts));
it->SeekToLast();
CheckIterEntry(it.get(), "a", kTypeSingleDeletion, Slice(),
Timestamp(1, 0));
key_ub_str = "a"; // exclusive
key_ub = key_ub_str;
read_opts.iterate_upper_bound = &key_ub;
it.reset(db_->NewIterator(read_opts));
it->SeekToLast();
ASSERT_FALSE(it->Valid());
ASSERT_OK(it->status());
}
Close();
}
TEST_F(DBBasicTestWithTimestamp, BackwardIterateLowerTsBound_Reseek) {
Options options = CurrentOptions();
options.env = env_;
options.create_if_missing = true;
options.max_sequential_skip_in_iterations = 2;
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
DestroyAndReopen(options);
for (int i = 0; i < 10; ++i) {
ASSERT_OK(db_->Put(WriteOptions(), "a", Timestamp(i, 0),
"v" + std::to_string(i)));
}
for (int i = 0; i < 10; ++i) {
ASSERT_OK(db_->Put(WriteOptions(), "b", Timestamp(i, 0),
"v" + std::to_string(i)));
}
{
std::string ts_ub_buf = Timestamp(6, 0);
Slice ts_ub = ts_ub_buf;
std::string ts_lb_buf = Timestamp(4, 0);
Slice ts_lb = ts_lb_buf;
ReadOptions read_opts;
read_opts.timestamp = &ts_ub;
read_opts.iter_start_ts = &ts_lb;
std::unique_ptr<Iterator> it(db_->NewIterator(read_opts));
it->SeekToLast();
for (int i = 0; i < 3 && it->Valid(); it->Prev(), ++i) {
CheckIterEntry(it.get(), "b", kTypeValue, "v" + std::to_string(4 + i),
Timestamp(4 + i, 0));
}
for (int i = 0; i < 3 && it->Valid(); it->Prev(), ++i) {
CheckIterEntry(it.get(), "a", kTypeValue, "v" + std::to_string(4 + i),
Timestamp(4 + i, 0));
}
}
Close();
}
TEST_F(DBBasicTestWithTimestamp, ReseekToTargetTimestamp) {
Options options = CurrentOptions();
options.env = env_;
options.create_if_missing = true;
constexpr size_t kNumKeys = 16;
options.max_sequential_skip_in_iterations = kNumKeys / 2;
options.statistics = ROCKSDB_NAMESPACE::CreateDBStatistics();
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
DestroyAndReopen(options);
// Insert kNumKeys
WriteOptions write_opts;
Status s;
for (size_t i = 0; i != kNumKeys; ++i) {
std::string ts = Timestamp(static_cast<uint64_t>(i + 1), 0);
s = db_->Put(write_opts, "foo", ts, "value" + std::to_string(i));
ASSERT_OK(s);
}
{
ReadOptions read_opts;
std::string ts_str = Timestamp(1, 0);
Slice ts = ts_str;
read_opts.timestamp = &ts;
std::unique_ptr<Iterator> iter(db_->NewIterator(read_opts));
iter->SeekToFirst();
CheckIterUserEntry(iter.get(), "foo", kTypeValue, "value0", ts_str);
ASSERT_EQ(
1, options.statistics->getTickerCount(NUMBER_OF_RESEEKS_IN_ITERATION));
ts_str = Timestamp(kNumKeys, 0);
ts = ts_str;
read_opts.timestamp = &ts;
iter.reset(db_->NewIterator(read_opts));
iter->SeekToLast();
CheckIterUserEntry(iter.get(), "foo", kTypeValue,
"value" + std::to_string(kNumKeys - 1), ts_str);
ASSERT_EQ(
2, options.statistics->getTickerCount(NUMBER_OF_RESEEKS_IN_ITERATION));
}
Close();
}
TEST_F(DBBasicTestWithTimestamp, ReseekToNextUserKey) {
Options options = CurrentOptions();
options.env = env_;
options.create_if_missing = true;
constexpr size_t kNumKeys = 16;
options.max_sequential_skip_in_iterations = kNumKeys / 2;
options.statistics = ROCKSDB_NAMESPACE::CreateDBStatistics();
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
DestroyAndReopen(options);
// Write kNumKeys + 1 keys
WriteOptions write_opts;
Status s;
for (size_t i = 0; i != kNumKeys; ++i) {
std::string ts = Timestamp(static_cast<uint64_t>(i + 1), 0);
s = db_->Put(write_opts, "a", ts, "value" + std::to_string(i));
ASSERT_OK(s);
}
{
std::string ts_str = Timestamp(static_cast<uint64_t>(kNumKeys + 1), 0);
WriteBatch batch(0, 0, 0, kTimestampSize);
{ ASSERT_OK(batch.Put("a", "new_value")); }
{ ASSERT_OK(batch.Put("b", "new_value")); }
s = batch.UpdateTimestamps(
ts_str, [kTimestampSize](uint32_t) { return kTimestampSize; });
ASSERT_OK(s);
s = db_->Write(write_opts, &batch);
ASSERT_OK(s);
}
{
ReadOptions read_opts;
std::string ts_str = Timestamp(static_cast<uint64_t>(kNumKeys + 1), 0);
Slice ts = ts_str;
read_opts.timestamp = &ts;
std::unique_ptr<Iterator> iter(db_->NewIterator(read_opts));
iter->Seek("a");
iter->Next();
CheckIterUserEntry(iter.get(), "b", kTypeValue, "new_value", ts_str);
ASSERT_EQ(
1, options.statistics->getTickerCount(NUMBER_OF_RESEEKS_IN_ITERATION));
}
Close();
}
TEST_F(DBBasicTestWithTimestamp, ReseekToUserKeyBeforeSavedKey) {
Options options = GetDefaultOptions();
options.env = env_;
options.create_if_missing = true;
constexpr size_t kNumKeys = 16;
options.max_sequential_skip_in_iterations = kNumKeys / 2;
options.statistics = ROCKSDB_NAMESPACE::CreateDBStatistics();
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
DestroyAndReopen(options);
for (size_t i = 0; i < kNumKeys; ++i) {
std::string ts = Timestamp(static_cast<uint64_t>(i + 1), 0);
WriteOptions write_opts;
Status s = db_->Put(write_opts, "b", ts, "value" + std::to_string(i));
ASSERT_OK(s);
}
{
std::string ts = Timestamp(1, 0);
WriteOptions write_opts;
ASSERT_OK(db_->Put(write_opts, "a", ts, "value"));
}
{
ReadOptions read_opts;
std::string ts_str = Timestamp(1, 0);
Slice ts = ts_str;
read_opts.timestamp = &ts;
std::unique_ptr<Iterator> iter(db_->NewIterator(read_opts));
iter->SeekToLast();
iter->Prev();
CheckIterUserEntry(iter.get(), "a", kTypeValue, "value", ts_str);
ASSERT_EQ(
1, options.statistics->getTickerCount(NUMBER_OF_RESEEKS_IN_ITERATION));
}
Close();
}
TEST_F(DBBasicTestWithTimestamp, MultiGetWithFastLocalBloom) {
Options options = CurrentOptions();
options.env = env_;
options.create_if_missing = true;
BlockBasedTableOptions bbto;
bbto.filter_policy.reset(NewBloomFilterPolicy(10, false));
bbto.cache_index_and_filter_blocks = true;
bbto.whole_key_filtering = true;
options.table_factory.reset(NewBlockBasedTableFactory(bbto));
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
DestroyAndReopen(options);
// Write any value
WriteOptions write_opts;
std::string ts = Timestamp(1, 0);
ASSERT_OK(db_->Put(write_opts, "foo", ts, "bar"));
ASSERT_OK(Flush());
// Read with MultiGet
ReadOptions read_opts;
Slice read_ts = ts;
read_opts.timestamp = &read_ts;
size_t batch_size = 1;
std::vector<Slice> keys(batch_size);
std::vector<PinnableSlice> values(batch_size);
std::vector<Status> statuses(batch_size);
std::vector<std::string> timestamps(batch_size);
keys[0] = "foo";
ColumnFamilyHandle* cfh = db_->DefaultColumnFamily();
db_->MultiGet(read_opts, cfh, batch_size, keys.data(), values.data(),
timestamps.data(), statuses.data(), true);
ASSERT_OK(statuses[0]);
ASSERT_EQ(Timestamp(1, 0), timestamps[0]);
for (auto& elem : values) {
elem.Reset();
}
ASSERT_OK(db_->SingleDelete(WriteOptions(), "foo", Timestamp(2, 0)));
ts = Timestamp(3, 0);
read_ts = ts;
read_opts.timestamp = &read_ts;
db_->MultiGet(read_opts, cfh, batch_size, keys.data(), values.data(),
timestamps.data(), statuses.data(), true);
ASSERT_TRUE(statuses[0].IsNotFound());
ASSERT_EQ(Timestamp(2, 0), timestamps[0]);
Close();
}
TEST_P(DBBasicTestWithTimestampTableOptions, MultiGetWithPrefix) {
Options options = CurrentOptions();
options.env = env_;
options.create_if_missing = true;
options.prefix_extractor.reset(NewCappedPrefixTransform(5));
BlockBasedTableOptions bbto;
bbto.filter_policy.reset(NewBloomFilterPolicy(10, false));
bbto.cache_index_and_filter_blocks = true;
bbto.whole_key_filtering = false;
bbto.index_type = GetParam();
options.table_factory.reset(NewBlockBasedTableFactory(bbto));
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
DestroyAndReopen(options);
// Write any value
WriteOptions write_opts;
std::string ts = Timestamp(1, 0);
ASSERT_OK(db_->Put(write_opts, "foo", ts, "bar"));
ASSERT_OK(Flush());
// Read with MultiGet
ReadOptions read_opts;
Slice read_ts = ts;
read_opts.timestamp = &read_ts;
size_t batch_size = 1;
std::vector<Slice> keys(batch_size);
std::vector<PinnableSlice> values(batch_size);
std::vector<Status> statuses(batch_size);
std::vector<std::string> timestamps(batch_size);
keys[0] = "foo";
ColumnFamilyHandle* cfh = db_->DefaultColumnFamily();
db_->MultiGet(read_opts, cfh, batch_size, keys.data(), values.data(),
timestamps.data(), statuses.data(), true);
ASSERT_OK(statuses[0]);
ASSERT_EQ(Timestamp(1, 0), timestamps[0]);
for (auto& elem : values) {
elem.Reset();
}
ASSERT_OK(db_->SingleDelete(WriteOptions(), "foo", Timestamp(2, 0)));
// TODO re-enable after fixing a bug of kHashSearch
if (GetParam() != BlockBasedTableOptions::IndexType::kHashSearch) {
ASSERT_OK(Flush());
}
ts = Timestamp(3, 0);
read_ts = ts;
db_->MultiGet(read_opts, cfh, batch_size, keys.data(), values.data(),
timestamps.data(), statuses.data(), true);
ASSERT_TRUE(statuses[0].IsNotFound());
ASSERT_EQ(Timestamp(2, 0), timestamps[0]);
Close();
}
TEST_P(DBBasicTestWithTimestampTableOptions, MultiGetWithMemBloomFilter) {
Options options = CurrentOptions();
options.env = env_;
options.create_if_missing = true;
options.prefix_extractor.reset(NewCappedPrefixTransform(5));
BlockBasedTableOptions bbto;
bbto.filter_policy.reset(NewBloomFilterPolicy(10, false));
bbto.cache_index_and_filter_blocks = true;
bbto.whole_key_filtering = false;
bbto.index_type = GetParam();
options.memtable_prefix_bloom_size_ratio = 0.1;
options.table_factory.reset(NewBlockBasedTableFactory(bbto));
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
DestroyAndReopen(options);
// Write any value
WriteOptions write_opts;
std::string ts = Timestamp(1, 0);
ASSERT_OK(db_->Put(write_opts, "foo", ts, "bar"));
// Read with MultiGet
ts = Timestamp(2, 0);
Slice read_ts = ts;
ReadOptions read_opts;
read_opts.timestamp = &read_ts;
size_t batch_size = 1;
std::vector<Slice> keys(batch_size);
std::vector<PinnableSlice> values(batch_size);
std::vector<Status> statuses(batch_size);
keys[0] = "foo";
ColumnFamilyHandle* cfh = db_->DefaultColumnFamily();
db_->MultiGet(read_opts, cfh, batch_size, keys.data(), values.data(),
statuses.data());
ASSERT_OK(statuses[0]);
Close();
}
TEST_F(DBBasicTestWithTimestamp, MultiGetRangeFiltering) {
Options options = CurrentOptions();
options.env = env_;
options.create_if_missing = true;
BlockBasedTableOptions bbto;
bbto.filter_policy.reset(NewBloomFilterPolicy(10, false));
bbto.cache_index_and_filter_blocks = true;
bbto.whole_key_filtering = false;
options.memtable_prefix_bloom_size_ratio = 0.1;
options.table_factory.reset(NewBlockBasedTableFactory(bbto));
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
DestroyAndReopen(options);
// Write any value
WriteOptions write_opts;
std::string ts = Timestamp(1, 0);
// random data
for (int i = 0; i < 3; i++) {
auto key = std::to_string(i * 10);
auto value = std::to_string(i * 10);
Slice key_slice = key;
Slice value_slice = value;
ASSERT_OK(db_->Put(write_opts, key_slice, ts, value_slice));
ASSERT_OK(Flush());
}
// Make num_levels to 2 to do key range filtering of sst files
ASSERT_OK(db_->CompactRange(CompactRangeOptions(), nullptr, nullptr));
ASSERT_OK(db_->Put(write_opts, "foo", ts, "bar"));
ASSERT_OK(Flush());
// Read with MultiGet
ts = Timestamp(2, 0);
Slice read_ts = ts;
ReadOptions read_opts;
read_opts.timestamp = &read_ts;
size_t batch_size = 1;
std::vector<Slice> keys(batch_size);
std::vector<PinnableSlice> values(batch_size);
std::vector<Status> statuses(batch_size);
keys[0] = "foo";
ColumnFamilyHandle* cfh = db_->DefaultColumnFamily();
db_->MultiGet(read_opts, cfh, batch_size, keys.data(), values.data(),
statuses.data());
ASSERT_OK(statuses[0]);
Close();
}
TEST_P(DBBasicTestWithTimestampTableOptions, MultiGetPrefixFilter) {
Options options = CurrentOptions();
options.env = env_;
options.create_if_missing = true;
options.prefix_extractor.reset(NewCappedPrefixTransform(3));
BlockBasedTableOptions bbto;
bbto.filter_policy.reset(NewBloomFilterPolicy(10, false));
bbto.cache_index_and_filter_blocks = true;
bbto.whole_key_filtering = false;
bbto.index_type = GetParam();
options.memtable_prefix_bloom_size_ratio = 0.1;
options.table_factory.reset(NewBlockBasedTableFactory(bbto));
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
DestroyAndReopen(options);
WriteOptions write_opts;
std::string ts = Timestamp(1, 0);
ASSERT_OK(db_->Put(write_opts, "foo", ts, "bar"));
ASSERT_OK(Flush());
// Read with MultiGet
ts = Timestamp(2, 0);
Slice read_ts = ts;
ReadOptions read_opts;
read_opts.timestamp = &read_ts;
size_t batch_size = 1;
std::vector<Slice> keys(batch_size);
std::vector<std::string> values(batch_size);
std::vector<std::string> timestamps(batch_size);
keys[0] = "foo";
ColumnFamilyHandle* cfh = db_->DefaultColumnFamily();
std::vector<ColumnFamilyHandle*> cfhs(keys.size(), cfh);
std::vector<Status> statuses =
db_->MultiGet(read_opts, cfhs, keys, &values, &timestamps);
ASSERT_OK(statuses[0]);
Close();
}
TEST_F(DBBasicTestWithTimestamp, MaxKeysSkippedDuringNext) {
Options options = CurrentOptions();
options.env = env_;
options.create_if_missing = true;
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
DestroyAndReopen(options);
constexpr size_t max_skippable_internal_keys = 2;
const size_t kNumKeys = max_skippable_internal_keys + 2;
WriteOptions write_opts;
Status s;
{
std::string ts = Timestamp(1, 0);
ASSERT_OK(db_->Put(write_opts, "a", ts, "value"));
}
for (size_t i = 0; i < kNumKeys; ++i) {
std::string ts = Timestamp(static_cast<uint64_t>(i + 1), 0);
s = db_->Put(write_opts, "b", ts, "value" + std::to_string(i));
ASSERT_OK(s);
}
{
ReadOptions read_opts;
read_opts.max_skippable_internal_keys = max_skippable_internal_keys;
std::string ts_str = Timestamp(1, 0);
Slice ts = ts_str;
read_opts.timestamp = &ts;
std::unique_ptr<Iterator> iter(db_->NewIterator(read_opts));
iter->SeekToFirst();
iter->Next();
ASSERT_TRUE(iter->status().IsIncomplete());
}
Close();
}
TEST_F(DBBasicTestWithTimestamp, MaxKeysSkippedDuringPrev) {
Options options = GetDefaultOptions();
options.env = env_;
options.create_if_missing = true;
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
DestroyAndReopen(options);
constexpr size_t max_skippable_internal_keys = 2;
const size_t kNumKeys = max_skippable_internal_keys + 2;
WriteOptions write_opts;
Status s;
{
std::string ts = Timestamp(1, 0);
ASSERT_OK(db_->Put(write_opts, "b", ts, "value"));
}
for (size_t i = 0; i < kNumKeys; ++i) {
std::string ts = Timestamp(static_cast<uint64_t>(i + 1), 0);
s = db_->Put(write_opts, "a", ts, "value" + std::to_string(i));
ASSERT_OK(s);
}
{
ReadOptions read_opts;
read_opts.max_skippable_internal_keys = max_skippable_internal_keys;
std::string ts_str = Timestamp(1, 0);
Slice ts = ts_str;
read_opts.timestamp = &ts;
std::unique_ptr<Iterator> iter(db_->NewIterator(read_opts));
iter->SeekToLast();
iter->Prev();
ASSERT_TRUE(iter->status().IsIncomplete());
}
Close();
}
// Create two L0, and compact them to a new L1. In this test, L1 is L_bottom.
// Two L0s:
// f1 f2
// <a, 1, kTypeValue> <a, 3, kTypeDeletionWithTimestamp>...<b, 2, kTypeValue>
// Since f2.smallest < f1.largest < f2.largest
// f1 and f2 will be the inputs of a real compaction instead of trivial move.
TEST_F(DBBasicTestWithTimestamp, CompactDeletionWithTimestampMarkerToBottom) {
Options options = CurrentOptions();
options.env = env_;
options.create_if_missing = true;
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
options.num_levels = 2;
options.level0_file_num_compaction_trigger = 2;
DestroyAndReopen(options);
WriteOptions write_opts;
std::string ts = Timestamp(1, 0);
ASSERT_OK(db_->Put(write_opts, "a", ts, "value0"));
ASSERT_OK(Flush());
ts = Timestamp(2, 0);
ASSERT_OK(db_->Put(write_opts, "b", ts, "value0"));
ts = Timestamp(3, 0);
ASSERT_OK(db_->Delete(write_opts, "a", ts));
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->TEST_WaitForCompact());
ReadOptions read_opts;
ts = Timestamp(1, 0);
Slice read_ts = ts;
read_opts.timestamp = &read_ts;
std::string value;
Status s = db_->Get(read_opts, "a", &value);
ASSERT_OK(s);
ASSERT_EQ("value0", value);
ts = Timestamp(3, 0);
read_ts = ts;
read_opts.timestamp = &read_ts;
std::string key_ts;
s = db_->Get(read_opts, "a", &value, &key_ts);
ASSERT_TRUE(s.IsNotFound());
ASSERT_EQ(Timestamp(3, 0), key_ts);
// Time-travel to the past before deletion
ts = Timestamp(2, 0);
read_ts = ts;
read_opts.timestamp = &read_ts;
s = db_->Get(read_opts, "a", &value);
ASSERT_OK(s);
ASSERT_EQ("value0", value);
Close();
}
#if !defined(ROCKSDB_VALGRIND_RUN) || defined(ROCKSDB_FULL_VALGRIND_RUN)
class DBBasicTestWithTimestampFilterPrefixSettings
: public DBBasicTestWithTimestampBase,
public testing::WithParamInterface<
std::tuple<std::shared_ptr<const FilterPolicy>, bool, bool,
std::shared_ptr<const SliceTransform>, bool, double,
BlockBasedTableOptions::IndexType>> {
public:
DBBasicTestWithTimestampFilterPrefixSettings()
: DBBasicTestWithTimestampBase(
"db_basic_test_with_timestamp_filter_prefix") {}
};
TEST_P(DBBasicTestWithTimestampFilterPrefixSettings, GetAndMultiGet) {
Options options = CurrentOptions();
options.env = env_;
options.create_if_missing = true;
BlockBasedTableOptions bbto;
bbto.filter_policy = std::get<0>(GetParam());
bbto.whole_key_filtering = std::get<1>(GetParam());
bbto.cache_index_and_filter_blocks = std::get<2>(GetParam());
bbto.index_type = std::get<6>(GetParam());
options.table_factory.reset(NewBlockBasedTableFactory(bbto));
options.prefix_extractor = std::get<3>(GetParam());
options.memtable_whole_key_filtering = std::get<4>(GetParam());
options.memtable_prefix_bloom_size_ratio = std::get<5>(GetParam());
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
DestroyAndReopen(options);
const int kMaxKey = 1000;
// Write any value
WriteOptions write_opts;
std::string ts = Timestamp(1, 0);
int idx = 0;
for (; idx < kMaxKey / 4; idx++) {
ASSERT_OK(db_->Put(write_opts, Key1(idx), ts, "bar"));
ASSERT_OK(db_->Put(write_opts, KeyWithPrefix("foo", idx), ts, "bar"));
}
ASSERT_OK(Flush());
ASSERT_OK(db_->CompactRange(CompactRangeOptions(), nullptr, nullptr));
for (; idx < kMaxKey / 2; idx++) {
ASSERT_OK(db_->Put(write_opts, Key1(idx), ts, "bar"));
ASSERT_OK(db_->Put(write_opts, KeyWithPrefix("foo", idx), ts, "bar"));
}
ASSERT_OK(Flush());
for (; idx < kMaxKey; idx++) {
ASSERT_OK(db_->Put(write_opts, Key1(idx), ts, "bar"));
ASSERT_OK(db_->Put(write_opts, KeyWithPrefix("foo", idx), ts, "bar"));
}
// Read with MultiGet
ReadOptions read_opts;
Slice read_ts = ts;
read_opts.timestamp = &read_ts;
for (idx = 0; idx < kMaxKey; idx++) {
size_t batch_size = 4;
std::vector<std::string> keys_str(batch_size);
std::vector<PinnableSlice> values(batch_size);
std::vector<Status> statuses(batch_size);
ColumnFamilyHandle* cfh = db_->DefaultColumnFamily();
keys_str[0] = Key1(idx);
keys_str[1] = KeyWithPrefix("foo", idx);
keys_str[2] = Key1(kMaxKey + idx);
keys_str[3] = KeyWithPrefix("foo", kMaxKey + idx);
auto keys = ConvertStrToSlice(keys_str);
db_->MultiGet(read_opts, cfh, batch_size, keys.data(), values.data(),
statuses.data());
for (int i = 0; i < 2; i++) {
ASSERT_OK(statuses[i]);
}
for (int i = 2; i < 4; i++) {
ASSERT_TRUE(statuses[i].IsNotFound());
}
for (int i = 0; i < 2; i++) {
std::string value;
ASSERT_OK(db_->Get(read_opts, keys[i], &value));
std::unique_ptr<Iterator> it1(db_->NewIterator(read_opts));
ASSERT_NE(nullptr, it1);
ASSERT_OK(it1->status());
it1->Seek(keys[i]);
ASSERT_TRUE(it1->Valid());
}
for (int i = 2; i < 4; i++) {
std::string value;
Status s = db_->Get(read_opts, keys[i], &value);
ASSERT_TRUE(s.IsNotFound());
}
}
Close();
}
INSTANTIATE_TEST_CASE_P(
Timestamp, DBBasicTestWithTimestampFilterPrefixSettings,
::testing::Combine(
::testing::Values(
std::shared_ptr<const FilterPolicy>(nullptr),
std::shared_ptr<const FilterPolicy>(NewBloomFilterPolicy(10, true)),
std::shared_ptr<const FilterPolicy>(NewBloomFilterPolicy(10,
false))),
::testing::Bool(), ::testing::Bool(),
::testing::Values(
std::shared_ptr<const SliceTransform>(NewFixedPrefixTransform(1)),
std::shared_ptr<const SliceTransform>(NewFixedPrefixTransform(4)),
std::shared_ptr<const SliceTransform>(NewFixedPrefixTransform(7)),
std::shared_ptr<const SliceTransform>(NewFixedPrefixTransform(8))),
::testing::Bool(), ::testing::Values(0, 0.1),
::testing::Values(
BlockBasedTableOptions::IndexType::kBinarySearch,
BlockBasedTableOptions::IndexType::kHashSearch,
BlockBasedTableOptions::IndexType::kTwoLevelIndexSearch,
BlockBasedTableOptions::IndexType::kBinarySearchWithFirstKey)));
#endif // !defined(ROCKSDB_VALGRIND_RUN) || defined(ROCKSDB_FULL_VALGRIND_RUN)
class DataVisibilityTest : public DBBasicTestWithTimestampBase {
public:
DataVisibilityTest() : DBBasicTestWithTimestampBase("data_visibility_test") {
// Initialize test data
for (int i = 0; i < kTestDataSize; i++) {
test_data_[i].key = "key" + std::to_string(i);
test_data_[i].value = "value" + std::to_string(i);
test_data_[i].timestamp = Timestamp(i, 0);
test_data_[i].ts = i;
test_data_[i].seq_num = kMaxSequenceNumber;
}
}
protected:
struct TestData {
std::string key;
std::string value;
int ts;
std::string timestamp;
SequenceNumber seq_num;
};
constexpr static int kTestDataSize = 3;
TestData test_data_[kTestDataSize];
void PutTestData(int index, ColumnFamilyHandle* cfh = nullptr) {
ASSERT_LE(index, kTestDataSize);
WriteOptions write_opts;
if (cfh == nullptr) {
ASSERT_OK(db_->Put(write_opts, test_data_[index].key,
test_data_[index].timestamp, test_data_[index].value));
const Snapshot* snap = db_->GetSnapshot();
test_data_[index].seq_num = snap->GetSequenceNumber();
if (index > 0) {
ASSERT_GT(test_data_[index].seq_num, test_data_[index - 1].seq_num);
}
db_->ReleaseSnapshot(snap);
} else {
ASSERT_OK(db_->Put(write_opts, cfh, test_data_[index].key,
test_data_[index].timestamp, test_data_[index].value));
}
}
void AssertVisibility(int ts, SequenceNumber seq,
std::vector<Status> statuses) {
ASSERT_EQ(kTestDataSize, statuses.size());
for (int i = 0; i < kTestDataSize; i++) {
if (test_data_[i].seq_num <= seq && test_data_[i].ts <= ts) {
ASSERT_OK(statuses[i]);
} else {
ASSERT_TRUE(statuses[i].IsNotFound());
}
}
}
std::vector<Slice> GetKeys() {
std::vector<Slice> ret(kTestDataSize);
for (int i = 0; i < kTestDataSize; i++) {
ret[i] = test_data_[i].key;
}
return ret;
}
void VerifyDefaultCF(int ts, const Snapshot* snap = nullptr) {
ReadOptions read_opts;
std::string read_ts = Timestamp(ts, 0);
Slice read_ts_slice = read_ts;
read_opts.timestamp = &read_ts_slice;
read_opts.snapshot = snap;
ColumnFamilyHandle* cfh = db_->DefaultColumnFamily();
std::vector<ColumnFamilyHandle*> cfs(kTestDataSize, cfh);
SequenceNumber seq =
snap ? snap->GetSequenceNumber() : kMaxSequenceNumber - 1;
// There're several MultiGet interfaces with not exactly the same
// implementations, query data with all of them.
auto keys = GetKeys();
std::vector<std::string> values;
auto s1 = db_->MultiGet(read_opts, cfs, keys, &values);
AssertVisibility(ts, seq, s1);
auto s2 = db_->MultiGet(read_opts, keys, &values);
AssertVisibility(ts, seq, s2);
std::vector<std::string> timestamps;
auto s3 = db_->MultiGet(read_opts, cfs, keys, &values, &timestamps);
AssertVisibility(ts, seq, s3);
auto s4 = db_->MultiGet(read_opts, keys, &values, &timestamps);
AssertVisibility(ts, seq, s4);
std::vector<PinnableSlice> values_ps5(kTestDataSize);
std::vector<Status> s5(kTestDataSize);
db_->MultiGet(read_opts, cfh, kTestDataSize, keys.data(), values_ps5.data(),
s5.data());
AssertVisibility(ts, seq, s5);
std::vector<PinnableSlice> values_ps6(kTestDataSize);
std::vector<Status> s6(kTestDataSize);
std::vector<std::string> timestamps_array(kTestDataSize);
db_->MultiGet(read_opts, cfh, kTestDataSize, keys.data(), values_ps6.data(),
timestamps_array.data(), s6.data());
AssertVisibility(ts, seq, s6);
std::vector<PinnableSlice> values_ps7(kTestDataSize);
std::vector<Status> s7(kTestDataSize);
db_->MultiGet(read_opts, kTestDataSize, cfs.data(), keys.data(),
values_ps7.data(), s7.data());
AssertVisibility(ts, seq, s7);
std::vector<PinnableSlice> values_ps8(kTestDataSize);
std::vector<Status> s8(kTestDataSize);
db_->MultiGet(read_opts, kTestDataSize, cfs.data(), keys.data(),
values_ps8.data(), timestamps_array.data(), s8.data());
AssertVisibility(ts, seq, s8);
}
void VerifyDefaultCF(const Snapshot* snap = nullptr) {
for (int i = 0; i <= kTestDataSize; i++) {
VerifyDefaultCF(i, snap);
}
}
};
constexpr int DataVisibilityTest::kTestDataSize;
// Application specifies timestamp but not snapshot.
// reader writer
// ts'=90
// ts=100
// seq=10
// seq'=11
// write finishes
// GetImpl(ts,seq)
// It is OK to return <k, t1, s1> if ts>=t1 AND seq>=s1. If ts>=t1 but seq<s1,
// the key should not be returned.
TEST_F(DataVisibilityTest, PointLookupWithoutSnapshot1) {
Options options = CurrentOptions();
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
DestroyAndReopen(options);
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->LoadDependency({
{"DBImpl::GetImpl:3",
"DataVisibilityTest::PointLookupWithoutSnapshot1:BeforePut"},
{"DataVisibilityTest::PointLookupWithoutSnapshot1:AfterPut",
"DBImpl::GetImpl:4"},
});
SyncPoint::GetInstance()->EnableProcessing();
port::Thread writer_thread([this]() {
std::string write_ts = Timestamp(1, 0);
WriteOptions write_opts;
TEST_SYNC_POINT(
"DataVisibilityTest::PointLookupWithoutSnapshot1:BeforePut");
Status s = db_->Put(write_opts, "foo", write_ts, "value");
ASSERT_OK(s);
TEST_SYNC_POINT("DataVisibilityTest::PointLookupWithoutSnapshot1:AfterPut");
});
ReadOptions read_opts;
std::string read_ts_str = Timestamp(3, 0);
Slice read_ts = read_ts_str;
read_opts.timestamp = &read_ts;
std::string value;
Status s = db_->Get(read_opts, "foo", &value);
writer_thread.join();
ASSERT_TRUE(s.IsNotFound());
Close();
}
// Application specifies timestamp but not snapshot.
// reader writer
// ts'=90
// ts=100
// seq=10
// seq'=11
// write finishes
// Flush
// GetImpl(ts,seq)
// It is OK to return <k, t1, s1> if ts>=t1 AND seq>=s1. If ts>=t1 but seq<s1,
// the key should not be returned.
TEST_F(DataVisibilityTest, PointLookupWithoutSnapshot2) {
Options options = CurrentOptions();
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
DestroyAndReopen(options);
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->LoadDependency({
{"DBImpl::GetImpl:3",
"DataVisibilityTest::PointLookupWithoutSnapshot2:BeforePut"},
{"DataVisibilityTest::PointLookupWithoutSnapshot2:AfterPut",
"DBImpl::GetImpl:4"},
});
SyncPoint::GetInstance()->EnableProcessing();
port::Thread writer_thread([this]() {
std::string write_ts = Timestamp(1, 0);
WriteOptions write_opts;
TEST_SYNC_POINT(
"DataVisibilityTest::PointLookupWithoutSnapshot2:BeforePut");
Status s = db_->Put(write_opts, "foo", write_ts, "value");
ASSERT_OK(s);
ASSERT_OK(Flush());
write_ts = Timestamp(2, 0);
s = db_->Put(write_opts, "bar", write_ts, "value");
ASSERT_OK(s);
TEST_SYNC_POINT("DataVisibilityTest::PointLookupWithoutSnapshot2:AfterPut");
});
ReadOptions read_opts;
std::string read_ts_str = Timestamp(3, 0);
Slice read_ts = read_ts_str;
read_opts.timestamp = &read_ts;
std::string value;
Status s = db_->Get(read_opts, "foo", &value);
writer_thread.join();
ASSERT_TRUE(s.IsNotFound());
Close();
}
// Application specifies both timestamp and snapshot.
// reader writer
// seq=10
// ts'=90
// ts=100
// seq'=11
// write finishes
// GetImpl(ts,seq)
// Since application specifies both timestamp and snapshot, application expects
// to see data that visible in BOTH timestamp and sequence number. Therefore,
// <k, t1, s1> can be returned only if t1<=ts AND s1<=seq.
TEST_F(DataVisibilityTest, PointLookupWithSnapshot1) {
Options options = CurrentOptions();
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
DestroyAndReopen(options);
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->LoadDependency({
{"DataVisibilityTest::PointLookupWithSnapshot1:AfterTakingSnap",
"DataVisibilityTest::PointLookupWithSnapshot1:BeforePut"},
{"DataVisibilityTest::PointLookupWithSnapshot1:AfterPut",
"DBImpl::GetImpl:1"},
});
SyncPoint::GetInstance()->EnableProcessing();
port::Thread writer_thread([this]() {
std::string write_ts = Timestamp(1, 0);
WriteOptions write_opts;
TEST_SYNC_POINT("DataVisibilityTest::PointLookupWithSnapshot1:BeforePut");
Status s = db_->Put(write_opts, "foo", write_ts, "value");
TEST_SYNC_POINT("DataVisibilityTest::PointLookupWithSnapshot1:AfterPut");
ASSERT_OK(s);
});
ReadOptions read_opts;
const Snapshot* snap = db_->GetSnapshot();
TEST_SYNC_POINT(
"DataVisibilityTest::PointLookupWithSnapshot1:AfterTakingSnap");
read_opts.snapshot = snap;
std::string read_ts_str = Timestamp(3, 0);
Slice read_ts = read_ts_str;
read_opts.timestamp = &read_ts;
std::string value;
Status s = db_->Get(read_opts, "foo", &value);
writer_thread.join();
ASSERT_TRUE(s.IsNotFound());
db_->ReleaseSnapshot(snap);
Close();
}
// Application specifies both timestamp and snapshot.
// reader writer
// seq=10
// ts'=90
// ts=100
// seq'=11
// write finishes
// Flush
// GetImpl(ts,seq)
// Since application specifies both timestamp and snapshot, application expects
// to see data that visible in BOTH timestamp and sequence number. Therefore,
// <k, t1, s1> can be returned only if t1<=ts AND s1<=seq.
TEST_F(DataVisibilityTest, PointLookupWithSnapshot2) {
Options options = CurrentOptions();
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
DestroyAndReopen(options);
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->LoadDependency({
{"DataVisibilityTest::PointLookupWithSnapshot2:AfterTakingSnap",
"DataVisibilityTest::PointLookupWithSnapshot2:BeforePut"},
});
SyncPoint::GetInstance()->EnableProcessing();
port::Thread writer_thread([this]() {
std::string write_ts = Timestamp(1, 0);
WriteOptions write_opts;
TEST_SYNC_POINT("DataVisibilityTest::PointLookupWithSnapshot2:BeforePut");
Status s = db_->Put(write_opts, "foo", write_ts, "value1");
ASSERT_OK(s);
ASSERT_OK(Flush());
write_ts = Timestamp(2, 0);
s = db_->Put(write_opts, "bar", write_ts, "value2");
ASSERT_OK(s);
});
const Snapshot* snap = db_->GetSnapshot();
TEST_SYNC_POINT(
"DataVisibilityTest::PointLookupWithSnapshot2:AfterTakingSnap");
writer_thread.join();
std::string read_ts_str = Timestamp(3, 0);
Slice read_ts = read_ts_str;
ReadOptions read_opts;
read_opts.snapshot = snap;
read_opts.timestamp = &read_ts;
std::string value;
Status s = db_->Get(read_opts, "foo", &value);
ASSERT_TRUE(s.IsNotFound());
db_->ReleaseSnapshot(snap);
Close();
}
// Application specifies timestamp but not snapshot.
// reader writer
// ts'=90
// ts=100
// seq=10
// seq'=11
// write finishes
// scan(ts,seq)
// <k, t1, s1> can be seen in scan as long as ts>=t1 AND seq>=s1. If ts>=t1 but
// seq<s1, then the key should not be returned.
TEST_F(DataVisibilityTest, RangeScanWithoutSnapshot) {
Options options = CurrentOptions();
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
DestroyAndReopen(options);
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->LoadDependency({
{"DBImpl::NewIterator:3",
"DataVisibilityTest::RangeScanWithoutSnapshot:BeforePut"},
});
SyncPoint::GetInstance()->EnableProcessing();
port::Thread writer_thread([this]() {
WriteOptions write_opts;
TEST_SYNC_POINT("DataVisibilityTest::RangeScanWithoutSnapshot:BeforePut");
for (int i = 0; i < 3; ++i) {
std::string write_ts = Timestamp(i + 1, 0);
Status s = db_->Put(write_opts, "key" + std::to_string(i), write_ts,
"value" + std::to_string(i));
ASSERT_OK(s);
}
});
std::string read_ts_str = Timestamp(10, 0);
Slice read_ts = read_ts_str;
ReadOptions read_opts;
read_opts.total_order_seek = true;
read_opts.timestamp = &read_ts;
Iterator* it = db_->NewIterator(read_opts);
ASSERT_NE(nullptr, it);
writer_thread.join();
it->SeekToFirst();
ASSERT_FALSE(it->Valid());
delete it;
Close();
}
// Application specifies both timestamp and snapshot.
// reader writer
// seq=10
// ts'=90
// ts=100 seq'=11
// write finishes
// scan(ts,seq)
// <k, t1, s1> can be seen by the scan only if t1<=ts AND s1<=seq. If t1<=ts
// but s1>seq, then the key should not be returned.
TEST_F(DataVisibilityTest, RangeScanWithSnapshot) {
Options options = CurrentOptions();
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
DestroyAndReopen(options);
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->LoadDependency({
{"DataVisibilityTest::RangeScanWithSnapshot:AfterTakingSnapshot",
"DataVisibilityTest::RangeScanWithSnapshot:BeforePut"},
});
SyncPoint::GetInstance()->EnableProcessing();
port::Thread writer_thread([this]() {
WriteOptions write_opts;
TEST_SYNC_POINT("DataVisibilityTest::RangeScanWithSnapshot:BeforePut");
for (int i = 0; i < 3; ++i) {
std::string write_ts = Timestamp(i + 1, 0);
Status s = db_->Put(write_opts, "key" + std::to_string(i), write_ts,
"value" + std::to_string(i));
ASSERT_OK(s);
}
});
const Snapshot* snap = db_->GetSnapshot();
TEST_SYNC_POINT(
"DataVisibilityTest::RangeScanWithSnapshot:AfterTakingSnapshot");
writer_thread.join();
std::string read_ts_str = Timestamp(10, 0);
Slice read_ts = read_ts_str;
ReadOptions read_opts;
read_opts.snapshot = snap;
read_opts.total_order_seek = true;
read_opts.timestamp = &read_ts;
Iterator* it = db_->NewIterator(read_opts);
ASSERT_NE(nullptr, it);
it->Seek("key0");
ASSERT_FALSE(it->Valid());
delete it;
db_->ReleaseSnapshot(snap);
Close();
}
// Application specifies both timestamp and snapshot.
// Query each combination and make sure for MultiGet key <k, t1, s1>, only
// return keys that ts>=t1 AND seq>=s1.
TEST_F(DataVisibilityTest, MultiGetWithTimestamp) {
Options options = CurrentOptions();
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
DestroyAndReopen(options);
const Snapshot* snap0 = db_->GetSnapshot();
PutTestData(0);
VerifyDefaultCF();
VerifyDefaultCF(snap0);
const Snapshot* snap1 = db_->GetSnapshot();
PutTestData(1);
VerifyDefaultCF();
VerifyDefaultCF(snap0);
VerifyDefaultCF(snap1);
ASSERT_OK(Flush());
const Snapshot* snap2 = db_->GetSnapshot();
PutTestData(2);
VerifyDefaultCF();
VerifyDefaultCF(snap0);
VerifyDefaultCF(snap1);
VerifyDefaultCF(snap2);
db_->ReleaseSnapshot(snap0);
db_->ReleaseSnapshot(snap1);
db_->ReleaseSnapshot(snap2);
Close();
}
// Application specifies timestamp but not snapshot.
// reader writer
// ts'=0, 1
// ts=3
// seq=10
// seq'=11, 12
// write finishes
// MultiGet(ts,seq)
// For MultiGet <k, t1, s1>, only return keys that ts>=t1 AND seq>=s1.
TEST_F(DataVisibilityTest, MultiGetWithoutSnapshot) {
Options options = CurrentOptions();
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
DestroyAndReopen(options);
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->LoadDependency({
{"DBImpl::MultiGet:AfterGetSeqNum1",
"DataVisibilityTest::MultiGetWithoutSnapshot:BeforePut"},
{"DataVisibilityTest::MultiGetWithoutSnapshot:AfterPut",
"DBImpl::MultiGet:AfterGetSeqNum2"},
});
SyncPoint::GetInstance()->EnableProcessing();
port::Thread writer_thread([this]() {
TEST_SYNC_POINT("DataVisibilityTest::MultiGetWithoutSnapshot:BeforePut");
PutTestData(0);
PutTestData(1);
TEST_SYNC_POINT("DataVisibilityTest::MultiGetWithoutSnapshot:AfterPut");
});
ReadOptions read_opts;
std::string read_ts = Timestamp(kTestDataSize, 0);
Slice read_ts_slice = read_ts;
read_opts.timestamp = &read_ts_slice;
auto keys = GetKeys();
std::vector<std::string> values;
auto ss = db_->MultiGet(read_opts, keys, &values);
writer_thread.join();
for (auto s : ss) {
ASSERT_TRUE(s.IsNotFound());
}
VerifyDefaultCF();
Close();
}
TEST_F(DataVisibilityTest, MultiGetCrossCF) {
Options options = CurrentOptions();
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
DestroyAndReopen(options);
CreateAndReopenWithCF({"second"}, options);
ColumnFamilyHandle* second_cf = handles_[1];
const Snapshot* snap0 = db_->GetSnapshot();
PutTestData(0);
PutTestData(0, second_cf);
VerifyDefaultCF();
VerifyDefaultCF(snap0);
const Snapshot* snap1 = db_->GetSnapshot();
PutTestData(1);
PutTestData(1, second_cf);
VerifyDefaultCF();
VerifyDefaultCF(snap0);
VerifyDefaultCF(snap1);
ASSERT_OK(Flush());
const Snapshot* snap2 = db_->GetSnapshot();
PutTestData(2);
PutTestData(2, second_cf);
VerifyDefaultCF();
VerifyDefaultCF(snap0);
VerifyDefaultCF(snap1);
VerifyDefaultCF(snap2);
ReadOptions read_opts;
std::string read_ts = Timestamp(kTestDataSize, 0);
Slice read_ts_slice = read_ts;
read_opts.timestamp = &read_ts_slice;
read_opts.snapshot = snap1;
auto keys = GetKeys();
auto keys2 = GetKeys();
keys.insert(keys.end(), keys2.begin(), keys2.end());
std::vector<ColumnFamilyHandle*> cfs(kTestDataSize,
db_->DefaultColumnFamily());
std::vector<ColumnFamilyHandle*> cfs2(kTestDataSize, second_cf);
cfs.insert(cfs.end(), cfs2.begin(), cfs2.end());
std::vector<std::string> values;
auto ss = db_->MultiGet(read_opts, cfs, keys, &values);
for (int i = 0; i < 2 * kTestDataSize; i++) {
if (i % 3 == 0) {
// only the first key for each column family should be returned
ASSERT_OK(ss[i]);
} else {
ASSERT_TRUE(ss[i].IsNotFound());
}
}
db_->ReleaseSnapshot(snap0);
db_->ReleaseSnapshot(snap1);
db_->ReleaseSnapshot(snap2);
Close();
}
#if !defined(ROCKSDB_VALGRIND_RUN) || defined(ROCKSDB_FULL_VALGRIND_RUN)
class DBBasicTestWithTimestampCompressionSettings
: public DBBasicTestWithTimestampBase,
public testing::WithParamInterface<
std::tuple<std::shared_ptr<const FilterPolicy>, CompressionType,
uint32_t, uint32_t>> {
public:
DBBasicTestWithTimestampCompressionSettings()
: DBBasicTestWithTimestampBase(
"db_basic_test_with_timestamp_compression") {}
};
TEST_P(DBBasicTestWithTimestampCompressionSettings, PutAndGet) {
const int kNumKeysPerFile = 1024;
const size_t kNumTimestamps = 4;
Options options = CurrentOptions();
options.create_if_missing = true;
options.env = env_;
options.memtable_factory.reset(
test::NewSpecialSkipListFactory(kNumKeysPerFile));
size_t ts_sz = Timestamp(0, 0).size();
TestComparator test_cmp(ts_sz);
options.comparator = &test_cmp;
BlockBasedTableOptions bbto;
bbto.filter_policy = std::get<0>(GetParam());
bbto.whole_key_filtering = true;
options.table_factory.reset(NewBlockBasedTableFactory(bbto));
const CompressionType comp_type = std::get<1>(GetParam());
#if LZ4_VERSION_NUMBER < 10400 // r124+
if (comp_type == kLZ4Compression || comp_type == kLZ4HCCompression) {
return;
}
#endif // LZ4_VERSION_NUMBER >= 10400
if (!ZSTD_Supported() && comp_type == kZSTD) {
return;
}
if (!Zlib_Supported() && comp_type == kZlibCompression) {
return;
}
options.compression = comp_type;
options.compression_opts.max_dict_bytes = std::get<2>(GetParam());
if (comp_type == kZSTD) {
options.compression_opts.zstd_max_train_bytes = std::get<2>(GetParam());
}
options.compression_opts.parallel_threads = std::get<3>(GetParam());
options.target_file_size_base = 1 << 26; // 64MB
DestroyAndReopen(options);
CreateAndReopenWithCF({"pikachu"}, options);
size_t num_cfs = handles_.size();
ASSERT_EQ(2, num_cfs);
std::vector<std::string> write_ts_list;
std::vector<std::string> read_ts_list;
for (size_t i = 0; i != kNumTimestamps; ++i) {
write_ts_list.push_back(Timestamp(i * 2, 0));
read_ts_list.push_back(Timestamp(1 + i * 2, 0));
const Slice write_ts = write_ts_list.back();
WriteOptions wopts;
for (int cf = 0; cf != static_cast<int>(num_cfs); ++cf) {
for (size_t j = 0; j != (kNumKeysPerFile - 1) / kNumTimestamps; ++j) {
ASSERT_OK(
db_->Put(wopts, handles_[cf], Key1(j), write_ts,
"value_" + std::to_string(j) + "_" + std::to_string(i)));
}
}
}
const auto& verify_db_func = [&]() {
for (size_t i = 0; i != kNumTimestamps; ++i) {
ReadOptions ropts;
const Slice read_ts = read_ts_list[i];
ropts.timestamp = &read_ts;
for (int cf = 0; cf != static_cast<int>(num_cfs); ++cf) {
ColumnFamilyHandle* cfh = handles_[cf];
for (size_t j = 0; j != (kNumKeysPerFile - 1) / kNumTimestamps; ++j) {
std::string value;
ASSERT_OK(db_->Get(ropts, cfh, Key1(j), &value));
ASSERT_EQ("value_" + std::to_string(j) + "_" + std::to_string(i),
value);
}
}
}
};
verify_db_func();
Close();
}
TEST_P(DBBasicTestWithTimestampCompressionSettings, PutDeleteGet) {
Options options = CurrentOptions();
options.env = env_;
options.create_if_missing = true;
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
const int kNumKeysPerFile = 1024;
options.memtable_factory.reset(
test::NewSpecialSkipListFactory(kNumKeysPerFile));
BlockBasedTableOptions bbto;
bbto.filter_policy = std::get<0>(GetParam());
bbto.whole_key_filtering = true;
options.table_factory.reset(NewBlockBasedTableFactory(bbto));
const CompressionType comp_type = std::get<1>(GetParam());
#if LZ4_VERSION_NUMBER < 10400 // r124+
if (comp_type == kLZ4Compression || comp_type == kLZ4HCCompression) {
return;
}
#endif // LZ4_VERSION_NUMBER >= 10400
if (!ZSTD_Supported() && comp_type == kZSTD) {
return;
}
if (!Zlib_Supported() && comp_type == kZlibCompression) {
return;
}
options.compression = comp_type;
options.compression_opts.max_dict_bytes = std::get<2>(GetParam());
if (comp_type == kZSTD) {
options.compression_opts.zstd_max_train_bytes = std::get<2>(GetParam());
}
options.compression_opts.parallel_threads = std::get<3>(GetParam());
options.target_file_size_base = 1 << 26; // 64MB
DestroyAndReopen(options);
const size_t kNumL0Files =
static_cast<size_t>(Options().level0_file_num_compaction_trigger);
{
// Half of the keys will go through Deletion and remaining half with
// SingleDeletion. Generate enough L0 files with ts=1 to trigger compaction
// to L1
std::string ts = Timestamp(1, 0);
WriteOptions wopts;
for (size_t i = 0; i < kNumL0Files; ++i) {
for (int j = 0; j < kNumKeysPerFile; ++j) {
ASSERT_OK(db_->Put(wopts, Key1(j), ts, "value" + std::to_string(i)));
}
ASSERT_OK(db_->Flush(FlushOptions()));
}
ASSERT_OK(dbfull()->TEST_WaitForCompact());
// Generate another L0 at ts=3
ts = Timestamp(3, 0);
for (int i = 0; i < kNumKeysPerFile; ++i) {
std::string key_str = Key1(i);
Slice key(key_str);
if ((i % 3) == 0) {
if (i < kNumKeysPerFile / 2) {
ASSERT_OK(db_->Delete(wopts, key, ts));
} else {
ASSERT_OK(db_->SingleDelete(wopts, key, ts));
}
} else {
ASSERT_OK(db_->Put(wopts, key, ts, "new_value"));
}
}
ASSERT_OK(db_->Flush(FlushOptions()));
// Populate memtable at ts=5
ts = Timestamp(5, 0);
for (int i = 0; i != kNumKeysPerFile; ++i) {
std::string key_str = Key1(i);
Slice key(key_str);
if ((i % 3) == 1) {
if (i < kNumKeysPerFile / 2) {
ASSERT_OK(db_->Delete(wopts, key, ts));
} else {
ASSERT_OK(db_->SingleDelete(wopts, key, ts));
}
} else if ((i % 3) == 2) {
ASSERT_OK(db_->Put(wopts, key, ts, "new_value_2"));
}
}
}
{
std::string ts_str = Timestamp(6, 0);
Slice ts = ts_str;
ReadOptions ropts;
ropts.timestamp = &ts;
for (uint64_t i = 0; i != static_cast<uint64_t>(kNumKeysPerFile); ++i) {
std::string value;
std::string key_ts;
Status s = db_->Get(ropts, Key1(i), &value, &key_ts);
if ((i % 3) == 2) {
ASSERT_OK(s);
ASSERT_EQ("new_value_2", value);
ASSERT_EQ(Timestamp(5, 0), key_ts);
} else if ((i % 3) == 1) {
ASSERT_TRUE(s.IsNotFound());
ASSERT_EQ(Timestamp(5, 0), key_ts);
} else {
ASSERT_TRUE(s.IsNotFound());
ASSERT_EQ(Timestamp(3, 0), key_ts);
}
}
}
}
// A class which remembers the name of each flushed file.
class FlushedFileCollector : public EventListener {
public:
FlushedFileCollector() {}
~FlushedFileCollector() override {}
void OnFlushCompleted(DB* /*db*/, const FlushJobInfo& info) override {
InstrumentedMutexLock lock(&mutex_);
flushed_files_.push_back(info.file_path);
}
std::vector<std::string> GetFlushedFiles() {
std::vector<std::string> result;
{
InstrumentedMutexLock lock(&mutex_);
result = flushed_files_;
}
return result;
}
void ClearFlushedFiles() {
InstrumentedMutexLock lock(&mutex_);
flushed_files_.clear();
}
private:
std::vector<std::string> flushed_files_;
InstrumentedMutex mutex_;
};
TEST_P(DBBasicTestWithTimestampCompressionSettings, PutAndGetWithCompaction) {
const int kNumKeysPerFile = 1024;
const size_t kNumTimestamps = 2;
const size_t kNumKeysPerTimestamp = (kNumKeysPerFile - 1) / kNumTimestamps;
const size_t kSplitPosBase = kNumKeysPerTimestamp / 2;
Options options = CurrentOptions();
options.create_if_missing = true;
options.env = env_;
options.memtable_factory.reset(
test::NewSpecialSkipListFactory(kNumKeysPerFile));
FlushedFileCollector* collector = new FlushedFileCollector();
options.listeners.emplace_back(collector);
size_t ts_sz = Timestamp(0, 0).size();
TestComparator test_cmp(ts_sz);
options.comparator = &test_cmp;
BlockBasedTableOptions bbto;
bbto.filter_policy = std::get<0>(GetParam());
bbto.whole_key_filtering = true;
options.table_factory.reset(NewBlockBasedTableFactory(bbto));
const CompressionType comp_type = std::get<1>(GetParam());
#if LZ4_VERSION_NUMBER < 10400 // r124+
if (comp_type == kLZ4Compression || comp_type == kLZ4HCCompression) {
return;
}
#endif // LZ4_VERSION_NUMBER >= 10400
if (!ZSTD_Supported() && comp_type == kZSTD) {
return;
}
if (!Zlib_Supported() && comp_type == kZlibCompression) {
return;
}
options.compression = comp_type;
options.compression_opts.max_dict_bytes = std::get<2>(GetParam());
if (comp_type == kZSTD) {
options.compression_opts.zstd_max_train_bytes = std::get<2>(GetParam());
}
options.compression_opts.parallel_threads = std::get<3>(GetParam());
DestroyAndReopen(options);
CreateAndReopenWithCF({"pikachu"}, options);
size_t num_cfs = handles_.size();
ASSERT_EQ(2, num_cfs);
std::vector<std::string> write_ts_list;
std::vector<std::string> read_ts_list;
const auto& verify_records_func = [&](size_t i, size_t begin, size_t end,
ColumnFamilyHandle* cfh) {
std::string value;
std::string timestamp;
ReadOptions ropts;
const Slice read_ts = read_ts_list[i];
ropts.timestamp = &read_ts;
std::string expected_timestamp =
std::string(write_ts_list[i].data(), write_ts_list[i].size());
for (size_t j = begin; j <= end; ++j) {
ASSERT_OK(db_->Get(ropts, cfh, Key1(j), &value, &timestamp));
ASSERT_EQ("value_" + std::to_string(j) + "_" + std::to_string(i), value);
ASSERT_EQ(expected_timestamp, timestamp);
}
};
for (size_t i = 0; i != kNumTimestamps; ++i) {
write_ts_list.push_back(Timestamp(i * 2, 0));
read_ts_list.push_back(Timestamp(1 + i * 2, 0));
const Slice write_ts = write_ts_list.back();
WriteOptions wopts;
for (int cf = 0; cf != static_cast<int>(num_cfs); ++cf) {
size_t memtable_get_start = 0;
for (size_t j = 0; j != kNumKeysPerTimestamp; ++j) {
ASSERT_OK(
db_->Put(wopts, handles_[cf], Key1(j), write_ts,
"value_" + std::to_string(j) + "_" + std::to_string(i)));
if (j == kSplitPosBase + i || j == kNumKeysPerTimestamp - 1) {
verify_records_func(i, memtable_get_start, j, handles_[cf]);
memtable_get_start = j + 1;
// flush all keys with the same timestamp to two sst files, split at
// incremental positions such that lowerlevel[1].smallest.userkey ==
// higherlevel[0].largest.userkey
ASSERT_OK(Flush(cf));
ASSERT_OK(dbfull()->TEST_WaitForCompact()); // wait for flush (which
// is also a compaction)
// compact files (2 at each level) to a lower level such that all
// keys with the same timestamp is at one level, with newer versions
// at higher levels.
CompactionOptions compact_opt;
compact_opt.compression = kNoCompression;
ASSERT_OK(db_->CompactFiles(compact_opt, handles_[cf],
collector->GetFlushedFiles(),
static_cast<int>(kNumTimestamps - i)));
collector->ClearFlushedFiles();
}
}
}
}
const auto& verify_db_func = [&]() {
for (size_t i = 0; i != kNumTimestamps; ++i) {
ReadOptions ropts;
const Slice read_ts = read_ts_list[i];
ropts.timestamp = &read_ts;
std::string expected_timestamp(write_ts_list[i].data(),
write_ts_list[i].size());
for (int cf = 0; cf != static_cast<int>(num_cfs); ++cf) {
ColumnFamilyHandle* cfh = handles_[cf];
verify_records_func(i, 0, kNumKeysPerTimestamp - 1, cfh);
}
}
};
verify_db_func();
Close();
}
TEST_F(DBBasicTestWithTimestamp, BatchWriteAndMultiGet) {
const int kNumKeysPerFile = 8192;
const size_t kNumTimestamps = 2;
const size_t kNumKeysPerTimestamp = (kNumKeysPerFile - 1) / kNumTimestamps;
Options options = CurrentOptions();
options.create_if_missing = true;
options.env = env_;
options.memtable_factory.reset(
test::NewSpecialSkipListFactory(kNumKeysPerFile));
options.memtable_prefix_bloom_size_ratio = 0.1;
options.memtable_whole_key_filtering = true;
size_t ts_sz = Timestamp(0, 0).size();
TestComparator test_cmp(ts_sz);
options.comparator = &test_cmp;
BlockBasedTableOptions bbto;
bbto.filter_policy.reset(NewBloomFilterPolicy(
10 /*bits_per_key*/, false /*use_block_based_builder*/));
bbto.whole_key_filtering = true;
options.table_factory.reset(NewBlockBasedTableFactory(bbto));
DestroyAndReopen(options);
CreateAndReopenWithCF({"pikachu"}, options);
size_t num_cfs = handles_.size();
ASSERT_EQ(2, num_cfs);
std::vector<std::string> write_ts_list;
std::vector<std::string> read_ts_list;
const auto& verify_records_func = [&](size_t i, ColumnFamilyHandle* cfh) {
std::vector<Slice> keys;
std::vector<std::string> key_vals;
std::vector<std::string> values;
std::vector<std::string> timestamps;
for (size_t j = 0; j != kNumKeysPerTimestamp; ++j) {
key_vals.push_back(Key1(j));
}
for (size_t j = 0; j != kNumKeysPerTimestamp; ++j) {
keys.push_back(key_vals[j]);
}
ReadOptions ropts;
const Slice read_ts = read_ts_list[i];
ropts.timestamp = &read_ts;
std::string expected_timestamp(write_ts_list[i].data(),
write_ts_list[i].size());
std::vector<ColumnFamilyHandle*> cfhs(keys.size(), cfh);
std::vector<Status> statuses =
db_->MultiGet(ropts, cfhs, keys, &values, &timestamps);
for (size_t j = 0; j != kNumKeysPerTimestamp; ++j) {
ASSERT_OK(statuses[j]);
ASSERT_EQ("value_" + std::to_string(j) + "_" + std::to_string(i),
values[j]);
ASSERT_EQ(expected_timestamp, timestamps[j]);
}
};
const std::string dummy_ts(ts_sz, '\0');
for (size_t i = 0; i != kNumTimestamps; ++i) {
write_ts_list.push_back(Timestamp(i * 2, 0));
read_ts_list.push_back(Timestamp(1 + i * 2, 0));
const Slice& write_ts = write_ts_list.back();
for (int cf = 0; cf != static_cast<int>(num_cfs); ++cf) {
WriteOptions wopts;
WriteBatch batch(0, 0, 0, ts_sz);
for (size_t j = 0; j != kNumKeysPerTimestamp; ++j) {
const std::string key = Key1(j);
const std::string value =
"value_" + std::to_string(j) + "_" + std::to_string(i);
ASSERT_OK(batch.Put(handles_[cf], key, value));
}
ASSERT_OK(batch.UpdateTimestamps(write_ts,
[ts_sz](uint32_t) { return ts_sz; }));
ASSERT_OK(db_->Write(wopts, &batch));
verify_records_func(i, handles_[cf]);
ASSERT_OK(Flush(cf));
}
}
const auto& verify_db_func = [&]() {
for (size_t i = 0; i != kNumTimestamps; ++i) {
ReadOptions ropts;
const Slice read_ts = read_ts_list[i];
ropts.timestamp = &read_ts;
for (int cf = 0; cf != static_cast<int>(num_cfs); ++cf) {
ColumnFamilyHandle* cfh = handles_[cf];
verify_records_func(i, cfh);
}
}
};
verify_db_func();
Close();
}
TEST_F(DBBasicTestWithTimestamp, MultiGetNoReturnTs) {
Options options = CurrentOptions();
options.env = env_;
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
DestroyAndReopen(options);
WriteOptions write_opts;
std::string ts = Timestamp(1, 0);
ASSERT_OK(db_->Put(write_opts, "foo", ts, "value"));
ASSERT_OK(db_->Put(write_opts, "bar", ts, "value"));
ASSERT_OK(db_->Put(write_opts, "fooxxxxxxxxxxxxxxxx", ts, "value"));
ASSERT_OK(db_->Put(write_opts, "barxxxxxxxxxxxxxxxx", ts, "value"));
ColumnFamilyHandle* cfh = dbfull()->DefaultColumnFamily();
ts = Timestamp(2, 0);
Slice read_ts = ts;
ReadOptions read_opts;
read_opts.timestamp = &read_ts;
{
ColumnFamilyHandle* column_families[] = {cfh, cfh};
Slice keys[] = {"foo", "bar"};
PinnableSlice values[] = {PinnableSlice(), PinnableSlice()};
Status statuses[] = {Status::OK(), Status::OK()};
dbfull()->MultiGet(read_opts, /*num_keys=*/2, &column_families[0], &keys[0],
&values[0], &statuses[0], /*sorted_input=*/false);
for (const auto& s : statuses) {
ASSERT_OK(s);
}
}
{
ColumnFamilyHandle* column_families[] = {cfh, cfh, cfh, cfh};
// Make user keys longer than configured timestamp size (16 bytes) to
// verify RocksDB does not use the trailing bytes 'x' as timestamp.
Slice keys[] = {"fooxxxxxxxxxxxxxxxx", "barxxxxxxxxxxxxxxxx", "foo", "bar"};
PinnableSlice values[] = {PinnableSlice(), PinnableSlice(), PinnableSlice(),
PinnableSlice()};
Status statuses[] = {Status::OK(), Status::OK(), Status::OK(),
Status::OK()};
dbfull()->MultiGet(read_opts, /*num_keys=*/4, &column_families[0], &keys[0],
&values[0], &statuses[0], /*sorted_input=*/false);
for (const auto& s : statuses) {
ASSERT_OK(s);
}
}
Close();
}
INSTANTIATE_TEST_CASE_P(
Timestamp, DBBasicTestWithTimestampCompressionSettings,
::testing::Combine(
::testing::Values(std::shared_ptr<const FilterPolicy>(nullptr),
std::shared_ptr<const FilterPolicy>(
NewBloomFilterPolicy(10, false))),
::testing::Values(kNoCompression, kZlibCompression, kLZ4Compression,
kLZ4HCCompression, kZSTD),
::testing::Values(0, 1 << 14), ::testing::Values(1, 4)));
class DBBasicTestWithTimestampPrefixSeek
: public DBBasicTestWithTimestampBase,
public testing::WithParamInterface<
std::tuple<std::shared_ptr<const SliceTransform>,
std::shared_ptr<const FilterPolicy>, bool,
BlockBasedTableOptions::IndexType>> {
public:
DBBasicTestWithTimestampPrefixSeek()
: DBBasicTestWithTimestampBase(
"/db_basic_test_with_timestamp_prefix_seek") {}
};
TEST_P(DBBasicTestWithTimestampPrefixSeek, IterateWithPrefix) {
const size_t kNumKeysPerFile = 128;
Options options = CurrentOptions();
options.env = env_;
options.create_if_missing = true;
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
options.prefix_extractor = std::get<0>(GetParam());
options.memtable_factory.reset(
test::NewSpecialSkipListFactory(kNumKeysPerFile));
BlockBasedTableOptions bbto;
bbto.filter_policy = std::get<1>(GetParam());
bbto.index_type = std::get<3>(GetParam());
options.table_factory.reset(NewBlockBasedTableFactory(bbto));
DestroyAndReopen(options);
const uint64_t kMaxKey = 0xffffffffffffffff;
const uint64_t kMinKey = 0xfffffffffffff000;
const std::vector<std::string> write_ts_list = {Timestamp(3, 0xffffffff),
Timestamp(6, 0xffffffff)};
WriteOptions write_opts;
{
for (size_t i = 0; i != write_ts_list.size(); ++i) {
for (uint64_t key = kMaxKey; key >= kMinKey; --key) {
Status s = db_->Put(write_opts, Key1(key), write_ts_list[i],
"value" + std::to_string(i));
ASSERT_OK(s);
}
}
}
const std::vector<std::string> read_ts_list = {Timestamp(5, 0xffffffff),
Timestamp(9, 0xffffffff)};
{
ReadOptions read_opts;
read_opts.total_order_seek = false;
read_opts.prefix_same_as_start = std::get<2>(GetParam());
fprintf(stdout, "%s %s %d\n", options.prefix_extractor->Name(),
bbto.filter_policy ? bbto.filter_policy->Name() : "null",
static_cast<int>(read_opts.prefix_same_as_start));
for (size_t i = 0; i != read_ts_list.size(); ++i) {
Slice read_ts = read_ts_list[i];
read_opts.timestamp = &read_ts;
std::unique_ptr<Iterator> iter(db_->NewIterator(read_opts));
// Seek to kMaxKey
iter->Seek(Key1(kMaxKey));
CheckIterUserEntry(iter.get(), Key1(kMaxKey), kTypeValue,
"value" + std::to_string(i), write_ts_list[i]);
iter->Next();
ASSERT_FALSE(iter->Valid());
// Seek to kMinKey
iter->Seek(Key1(kMinKey));
CheckIterUserEntry(iter.get(), Key1(kMinKey), kTypeValue,
"value" + std::to_string(i), write_ts_list[i]);
iter->Prev();
ASSERT_FALSE(iter->Valid());
}
const std::vector<uint64_t> targets = {kMinKey, kMinKey + 0x10,
kMinKey + 0x100, kMaxKey};
const SliceTransform* const pe = options.prefix_extractor.get();
ASSERT_NE(nullptr, pe);
const size_t kPrefixShift =
8 * (Key1(0).size() - pe->Transform(Key1(0)).size());
const uint64_t kPrefixMask =
~((static_cast<uint64_t>(1) << kPrefixShift) - 1);
const uint64_t kNumKeysWithinPrefix =
(static_cast<uint64_t>(1) << kPrefixShift);
for (size_t i = 0; i != read_ts_list.size(); ++i) {
Slice read_ts = read_ts_list[i];
read_opts.timestamp = &read_ts;
std::unique_ptr<Iterator> it(db_->NewIterator(read_opts));
// Forward and backward iterate.
for (size_t j = 0; j != targets.size(); ++j) {
std::string start_key = Key1(targets[j]);
uint64_t expected_ub =
(targets[j] & kPrefixMask) - 1 + kNumKeysWithinPrefix;
uint64_t expected_key = targets[j];
size_t count = 0;
it->Seek(Key1(targets[j]));
while (it->Valid()) {
std::string saved_prev_key;
saved_prev_key.assign(it->key().data(), it->key().size());
// Out of prefix
if (!read_opts.prefix_same_as_start &&
pe->Transform(saved_prev_key) != pe->Transform(start_key)) {
break;
}
CheckIterUserEntry(it.get(), Key1(expected_key), kTypeValue,
"value" + std::to_string(i), write_ts_list[i]);
++count;
++expected_key;
it->Next();
}
ASSERT_EQ(expected_ub - targets[j] + 1, count);
count = 0;
expected_key = targets[j];
it->SeekForPrev(start_key);
uint64_t expected_lb = (targets[j] & kPrefixMask);
while (it->Valid()) {
// Out of prefix
if (!read_opts.prefix_same_as_start &&
pe->Transform(it->key()) != pe->Transform(start_key)) {
break;
}
CheckIterUserEntry(it.get(), Key1(expected_key), kTypeValue,
"value" + std::to_string(i), write_ts_list[i]);
++count;
--expected_key;
it->Prev();
}
ASSERT_EQ(targets[j] - std::max(expected_lb, kMinKey) + 1, count);
}
}
}
Close();
}
// TODO(yanqin): consider handling non-fixed-length prefix extractors, e.g.
// NoopTransform.
INSTANTIATE_TEST_CASE_P(
Timestamp, DBBasicTestWithTimestampPrefixSeek,
::testing::Combine(
::testing::Values(
std::shared_ptr<const SliceTransform>(NewFixedPrefixTransform(1)),
std::shared_ptr<const SliceTransform>(NewFixedPrefixTransform(4)),
std::shared_ptr<const SliceTransform>(NewFixedPrefixTransform(7)),
std::shared_ptr<const SliceTransform>(NewFixedPrefixTransform(8))),
::testing::Values(std::shared_ptr<const FilterPolicy>(nullptr),
std::shared_ptr<const FilterPolicy>(
NewBloomFilterPolicy(10 /*bits_per_key*/, false)),
std::shared_ptr<const FilterPolicy>(
NewBloomFilterPolicy(20 /*bits_per_key*/,
false))),
::testing::Bool(),
::testing::Values(
BlockBasedTableOptions::IndexType::kBinarySearch,
BlockBasedTableOptions::IndexType::kHashSearch,
BlockBasedTableOptions::IndexType::kTwoLevelIndexSearch,
BlockBasedTableOptions::IndexType::kBinarySearchWithFirstKey)));
class DBBasicTestWithTsIterTombstones
: public DBBasicTestWithTimestampBase,
public testing::WithParamInterface<
std::tuple<std::shared_ptr<const SliceTransform>,
std::shared_ptr<const FilterPolicy>, int,
BlockBasedTableOptions::IndexType>> {
public:
DBBasicTestWithTsIterTombstones()
: DBBasicTestWithTimestampBase("/db_basic_ts_iter_tombstones") {}
};
TEST_P(DBBasicTestWithTsIterTombstones, IterWithDelete) {
constexpr size_t kNumKeysPerFile = 128;
Options options = CurrentOptions();
options.env = env_;
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
options.prefix_extractor = std::get<0>(GetParam());
options.memtable_factory.reset(
test::NewSpecialSkipListFactory(kNumKeysPerFile));
BlockBasedTableOptions bbto;
bbto.filter_policy = std::get<1>(GetParam());
bbto.index_type = std::get<3>(GetParam());
options.table_factory.reset(NewBlockBasedTableFactory(bbto));
options.num_levels = std::get<2>(GetParam());
DestroyAndReopen(options);
std::vector<std::string> write_ts_strs = {Timestamp(2, 0), Timestamp(4, 0)};
constexpr uint64_t kMaxKey = 0xffffffffffffffff;
constexpr uint64_t kMinKey = 0xfffffffffffff000;
// Insert kMinKey...kMaxKey
uint64_t key = kMinKey;
WriteOptions write_opts;
Slice ts = write_ts_strs[0];
do {
Status s = db_->Put(write_opts, Key1(key), write_ts_strs[0],
"value" + std::to_string(key));
ASSERT_OK(s);
if (kMaxKey == key) {
break;
}
++key;
} while (true);
for (key = kMaxKey; key >= kMinKey; --key) {
Status s;
if (0 != (key % 2)) {
s = db_->Put(write_opts, Key1(key), write_ts_strs[1],
"value1" + std::to_string(key));
} else {
s = db_->Delete(write_opts, Key1(key), write_ts_strs[1]);
}
ASSERT_OK(s);
}
ASSERT_OK(dbfull()->TEST_WaitForCompact());
{
std::string read_ts = Timestamp(4, 0);
ts = read_ts;
ReadOptions read_opts;
read_opts.total_order_seek = true;
read_opts.timestamp = &ts;
std::unique_ptr<Iterator> iter(db_->NewIterator(read_opts));
size_t count = 0;
key = kMinKey + 1;
for (iter->SeekToFirst(); iter->Valid(); iter->Next(), ++count, key += 2) {
ASSERT_EQ(Key1(key), iter->key());
ASSERT_EQ("value1" + std::to_string(key), iter->value());
}
ASSERT_EQ((kMaxKey - kMinKey + 1) / 2, count);
for (iter->SeekToLast(), count = 0, key = kMaxKey; iter->Valid();
key -= 2, ++count, iter->Prev()) {
ASSERT_EQ(Key1(key), iter->key());
ASSERT_EQ("value1" + std::to_string(key), iter->value());
}
ASSERT_EQ((kMaxKey - kMinKey + 1) / 2, count);
}
Close();
}
INSTANTIATE_TEST_CASE_P(
Timestamp, DBBasicTestWithTsIterTombstones,
::testing::Combine(
::testing::Values(
std::shared_ptr<const SliceTransform>(NewFixedPrefixTransform(7)),
std::shared_ptr<const SliceTransform>(NewFixedPrefixTransform(8))),
::testing::Values(std::shared_ptr<const FilterPolicy>(nullptr),
std::shared_ptr<const FilterPolicy>(
NewBloomFilterPolicy(10, false)),
std::shared_ptr<const FilterPolicy>(
NewBloomFilterPolicy(20, false))),
::testing::Values(2, 6),
::testing::Values(
BlockBasedTableOptions::IndexType::kBinarySearch,
BlockBasedTableOptions::IndexType::kHashSearch,
BlockBasedTableOptions::IndexType::kTwoLevelIndexSearch,
BlockBasedTableOptions::IndexType::kBinarySearchWithFirstKey)));
#endif // !defined(ROCKSDB_VALGRIND_RUN) || defined(ROCKSDB_FULL_VALGRIND_RUN)
class UpdateFullHistoryTsLowTest : public DBBasicTestWithTimestampBase {
public:
UpdateFullHistoryTsLowTest()
: DBBasicTestWithTimestampBase("/update_full_history_ts_low_test") {}
};
TEST_F(UpdateFullHistoryTsLowTest, ConcurrentUpdate) {
Options options = CurrentOptions();
options.env = env_;
options.create_if_missing = true;
std::string lower_ts_low = Timestamp(10, 0);
std::string higher_ts_low = Timestamp(25, 0);
const size_t kTimestampSize = lower_ts_low.size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
DestroyAndReopen(options);
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->ClearAllCallBacks();
// This workaround swaps `lower_ts_low` originally used for update by the
// caller to `higher_ts_low` after its writer is queued to make sure
// the caller will always get a TryAgain error.
// It mimics cases where two threads update full_history_ts_low concurrently
// with one thread writing a higher ts_low and one thread writing a lower
// ts_low.
VersionEdit* version_edit;
SyncPoint::GetInstance()->SetCallBack(
"DBImpl::IncreaseFullHistoryTsLowImpl:BeforeEdit",
[&](void* arg) { version_edit = reinterpret_cast<VersionEdit*>(arg); });
SyncPoint::GetInstance()->SetCallBack(
"VersionSet::LogAndApply:BeforeWriterWaiting",
[&](void* /*arg*/) { version_edit->SetFullHistoryTsLow(higher_ts_low); });
SyncPoint::GetInstance()->EnableProcessing();
ASSERT_TRUE(
db_->IncreaseFullHistoryTsLow(db_->DefaultColumnFamily(), lower_ts_low)
.IsTryAgain());
SyncPoint::GetInstance()->DisableProcessing();
SyncPoint::GetInstance()->ClearAllCallBacks();
Close();
}
// Tests the effect of flag `persist_user_defined_timestamps` on the file
// boundaries contained in the Manifest, a.k.a FileMetaData.smallest,
// FileMetaData.largest.
class HandleFileBoundariesTest
: public DBBasicTestWithTimestampBase,
public testing::WithParamInterface<test::UserDefinedTimestampTestMode> {
public:
HandleFileBoundariesTest()
: DBBasicTestWithTimestampBase("/handle_file_boundaries") {}
};
TEST_P(HandleFileBoundariesTest, ConfigurePersistUdt) {
Options options = CurrentOptions();
options.env = env_;
// Write a timestamp that is not the min timestamp to help test the behavior
// of flag `persist_user_defined_timestamps`.
std::string write_ts;
std::string min_ts;
PutFixed64(&write_ts, 1);
PutFixed64(&min_ts, 0);
std::string smallest_ukey_without_ts = "bar";
std::string largest_ukey_without_ts = "foo";
options.comparator = test::BytewiseComparatorWithU64TsWrapper();
bool persist_udt = test::ShouldPersistUDT(GetParam());
options.persist_user_defined_timestamps = persist_udt;
if (!persist_udt) {
options.allow_concurrent_memtable_write = false;
}
DestroyAndReopen(options);
ASSERT_OK(
db_->Put(WriteOptions(), smallest_ukey_without_ts, write_ts, "val1"));
ASSERT_OK(
db_->Put(WriteOptions(), largest_ukey_without_ts, write_ts, "val2"));
// Create a L0 SST file and its record is added to the Manfiest.
ASSERT_OK(Flush());
Close();
options.create_if_missing = false;
// Reopen the DB and process manifest file.
Reopen(options);
std::vector<std::vector<FileMetaData>> level_to_files;
dbfull()->TEST_GetFilesMetaData(dbfull()->DefaultColumnFamily(),
&level_to_files);
ASSERT_GT(level_to_files.size(), 1);
// L0 only has one SST file.
ASSERT_EQ(level_to_files[0].size(), 1);
auto file_meta = level_to_files[0][0];
if (persist_udt) {
ASSERT_EQ(smallest_ukey_without_ts + write_ts,
file_meta.smallest.user_key());
ASSERT_EQ(largest_ukey_without_ts + write_ts, file_meta.largest.user_key());
} else {
// If `persist_user_defined_timestamps` is false, the file boundaries should
// have the min timestamp. Behind the scenes, when file boundaries in
// FileMetaData is persisted to Manifest, the original user-defined
// timestamps in user key are stripped. When manifest is read and processed
// during DB open, a min timestamp is padded to the file boundaries. This
// test's writes contain non min timestamp to verify this logic end-to-end.
ASSERT_EQ(smallest_ukey_without_ts + min_ts, file_meta.smallest.user_key());
ASSERT_EQ(largest_ukey_without_ts + min_ts, file_meta.largest.user_key());
}
Close();
}
INSTANTIATE_TEST_CASE_P(
ConfigurePersistUdt, HandleFileBoundariesTest,
::testing::Values(
test::UserDefinedTimestampTestMode::kStripUserDefinedTimestamp,
test::UserDefinedTimestampTestMode::kNormal));
TEST_F(DBBasicTestWithTimestamp, EnableDisableUDT) {
Options options = CurrentOptions();
options.env = env_;
// Create a column family without user-defined timestamps.
options.comparator = BytewiseComparator();
options.persist_user_defined_timestamps = true;
DestroyAndReopen(options);
// Create one SST file, its user keys have no user-defined timestamps.
ASSERT_OK(db_->Put(WriteOptions(), "foo", "val1"));
ASSERT_OK(Flush(0));
Close();
// Reopen the existing column family and enable user-defined timestamps
// feature for it.
options.comparator = test::BytewiseComparatorWithU64TsWrapper();
options.persist_user_defined_timestamps = false;
options.allow_concurrent_memtable_write = false;
Reopen(options);
std::string value;
ASSERT_TRUE(db_->Get(ReadOptions(), "foo", &value).IsInvalidArgument());
std::string read_ts;
PutFixed64(&read_ts, 0);
ReadOptions ropts;
Slice read_ts_slice = read_ts;
ropts.timestamp = &read_ts_slice;
std::string key_ts;
// Entries in pre-existing SST files are treated as if they have minimum
// user-defined timestamps.
ASSERT_OK(db_->Get(ropts, "foo", &value, &key_ts));
ASSERT_EQ("val1", value);
ASSERT_EQ(read_ts, key_ts);
// Do timestamped read / write.
std::string write_ts;
PutFixed64(&write_ts, 1);
ASSERT_OK(db_->Put(WriteOptions(), "foo", write_ts, "val2"));
read_ts.clear();
PutFixed64(&read_ts, 1);
ASSERT_OK(db_->Get(ropts, "foo", &value, &key_ts));
ASSERT_EQ("val2", value);
ASSERT_EQ(write_ts, key_ts);
// The user keys in this SST file don't have user-defined timestamps either,
// because `persist_user_defined_timestamps` flag is set to false.
ASSERT_OK(Flush(0));
Close();
// Reopen the existing column family while disabling user-defined timestamps.
options.comparator = BytewiseComparator();
Reopen(options);
ASSERT_TRUE(db_->Get(ropts, "foo", &value).IsInvalidArgument());
ASSERT_OK(db_->Get(ReadOptions(), "foo", &value));
ASSERT_EQ("val2", value);
// Continue to write / read the column family without user-defined timestamps.
ASSERT_OK(db_->Put(WriteOptions(), "foo", "val3"));
ASSERT_OK(db_->Get(ReadOptions(), "foo", &value));
ASSERT_EQ("val3", value);
Close();
}
TEST_F(DBBasicTestWithTimestamp,
GCPreserveRangeTombstoneWhenNoOrSmallFullHistoryLow) {
Options options = CurrentOptions();
options.env = env_;
options.create_if_missing = true;
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
DestroyAndReopen(options);
std::string ts_str = Timestamp(1, 0);
WriteOptions wopts;
ASSERT_OK(db_->Put(wopts, "k1", ts_str, "v1"));
ASSERT_OK(db_->Put(wopts, "k2", ts_str, "v2"));
ASSERT_OK(db_->Put(wopts, "k3", ts_str, "v3"));
ts_str = Timestamp(2, 0);
ASSERT_OK(
db_->DeleteRange(wopts, db_->DefaultColumnFamily(), "k1", "k3", ts_str));
ts_str = Timestamp(3, 0);
Slice ts = ts_str;
ReadOptions ropts;
ropts.timestamp = &ts;
CompactRangeOptions cro;
cro.full_history_ts_low = nullptr;
std::string value, key_ts;
Status s;
auto verify = [&] {
s = db_->Get(ropts, "k1", &value);
ASSERT_TRUE(s.IsNotFound());
s = db_->Get(ropts, "k2", &value, &key_ts);
ASSERT_TRUE(s.IsNotFound());
ASSERT_EQ(key_ts, Timestamp(2, 0));
ASSERT_OK(db_->Get(ropts, "k3", &value, &key_ts));
ASSERT_EQ(value, "v3");
ASSERT_EQ(Timestamp(1, 0), key_ts);
size_t batch_size = 3;
std::vector<std::string> key_strs = {"k1", "k2", "k3"};
std::vector<Slice> keys{key_strs.begin(), key_strs.end()};
std::vector<PinnableSlice> values(batch_size);
std::vector<Status> statuses(batch_size);
db_->MultiGet(ropts, db_->DefaultColumnFamily(), batch_size, keys.data(),
values.data(), statuses.data(), true /* sorted_input */);
ASSERT_TRUE(statuses[0].IsNotFound());
ASSERT_TRUE(statuses[1].IsNotFound());
ASSERT_OK(statuses[2]);
;
ASSERT_EQ(values[2], "v3");
};
verify();
ASSERT_OK(db_->CompactRange(cro, nullptr, nullptr));
verify();
std::string lb = Timestamp(0, 0);
Slice lb_slice = lb;
cro.full_history_ts_low = &lb_slice;
ASSERT_OK(db_->CompactRange(cro, nullptr, nullptr));
verify();
Close();
}
TEST_F(DBBasicTestWithTimestamp,
GCRangeTombstonesAndCoveredKeysRespectingTslow) {
Options options = CurrentOptions();
options.env = env_;
options.create_if_missing = true;
BlockBasedTableOptions bbto;
bbto.filter_policy.reset(NewBloomFilterPolicy(10, false));
bbto.cache_index_and_filter_blocks = true;
bbto.whole_key_filtering = true;
options.table_factory.reset(NewBlockBasedTableFactory(bbto));
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
options.num_levels = 2;
DestroyAndReopen(options);
WriteOptions wopts;
ASSERT_OK(db_->Put(wopts, "k1", Timestamp(1, 0), "v1"));
ASSERT_OK(db_->Delete(wopts, "k2", Timestamp(2, 0)));
ASSERT_OK(db_->DeleteRange(wopts, db_->DefaultColumnFamily(), "k1", "k3",
Timestamp(3, 0)));
ASSERT_OK(db_->Put(wopts, "k3", Timestamp(4, 0), "v3"));
ReadOptions ropts;
std::string read_ts = Timestamp(5, 0);
Slice read_ts_slice = read_ts;
ropts.timestamp = &read_ts_slice;
size_t batch_size = 3;
std::vector<std::string> key_strs = {"k1", "k2", "k3"};
std::vector<Slice> keys = {key_strs.begin(), key_strs.end()};
std::vector<PinnableSlice> values(batch_size);
std::vector<Status> statuses(batch_size);
std::vector<std::string> timestamps(batch_size);
db_->MultiGet(ropts, db_->DefaultColumnFamily(), batch_size, keys.data(),
values.data(), timestamps.data(), statuses.data(),
true /* sorted_input */);
ASSERT_TRUE(statuses[0].IsNotFound());
ASSERT_EQ(timestamps[0], Timestamp(3, 0));
ASSERT_TRUE(statuses[1].IsNotFound());
// DeleteRange has a higher timestamp than Delete for "k2"
ASSERT_EQ(timestamps[1], Timestamp(3, 0));
ASSERT_OK(statuses[2]);
ASSERT_EQ(values[2], "v3");
ASSERT_EQ(timestamps[2], Timestamp(4, 0));
CompactRangeOptions cro;
// Range tombstone has timestamp >= full_history_ts_low, covered keys
// are not dropped.
std::string compaction_ts_str = Timestamp(2, 0);
Slice compaction_ts = compaction_ts_str;
cro.full_history_ts_low = &compaction_ts;
cro.bottommost_level_compaction = BottommostLevelCompaction::kForce;
ASSERT_OK(db_->CompactRange(cro, nullptr, nullptr));
ropts.timestamp = &compaction_ts;
std::string value, ts;
ASSERT_OK(db_->Get(ropts, "k1", &value, &ts));
ASSERT_EQ(value, "v1");
// timestamp is below full_history_ts_low, zeroed out as the key goes into
// bottommost level
ASSERT_EQ(ts, Timestamp(0, 0));
ASSERT_TRUE(db_->Get(ropts, "k2", &value, &ts).IsNotFound());
ASSERT_EQ(ts, Timestamp(2, 0));
compaction_ts_str = Timestamp(4, 0);
compaction_ts = compaction_ts_str;
cro.full_history_ts_low = &compaction_ts;
ASSERT_OK(db_->CompactRange(cro, nullptr, nullptr));
ropts.timestamp = &read_ts_slice;
// k1, k2 and the range tombstone should be dropped
// k3 should still exist
db_->MultiGet(ropts, db_->DefaultColumnFamily(), batch_size, keys.data(),
values.data(), timestamps.data(), statuses.data(),
true /* sorted_input */);
ASSERT_TRUE(statuses[0].IsNotFound());
ASSERT_TRUE(timestamps[0].empty());
ASSERT_TRUE(statuses[1].IsNotFound());
ASSERT_TRUE(timestamps[1].empty());
ASSERT_OK(statuses[2]);
ASSERT_EQ(values[2], "v3");
ASSERT_EQ(timestamps[2], Timestamp(4, 0));
Close();
}
TEST_P(DBBasicTestWithTimestampTableOptions, DeleteRangeBaiscReadAndIterate) {
const int kNum = 200, kRangeBegin = 50, kRangeEnd = 150, kNumPerFile = 25;
Options options = CurrentOptions();
options.prefix_extractor.reset(NewFixedPrefixTransform(3));
options.compression = kNoCompression;
BlockBasedTableOptions bbto;
bbto.index_type = GetParam();
bbto.block_size = 100;
options.table_factory.reset(NewBlockBasedTableFactory(bbto));
options.env = env_;
options.create_if_missing = true;
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
options.memtable_factory.reset(test::NewSpecialSkipListFactory(kNumPerFile));
DestroyAndReopen(options);
// Write half of the keys before the tombstone and half after the tombstone.
// Only covered keys (i.e., within the range and older than the tombstone)
// should be deleted.
for (int i = 0; i < kNum; ++i) {
if (i == kNum / 2) {
ASSERT_OK(db_->DeleteRange(WriteOptions(), db_->DefaultColumnFamily(),
Key1(kRangeBegin), Key1(kRangeEnd),
Timestamp(i, 0)));
}
ASSERT_OK(db_->Put(WriteOptions(), Key1(i), Timestamp(i, 0),
"val" + std::to_string(i)));
if (i == kNum - kNumPerFile) {
ASSERT_OK(Flush());
}
}
ReadOptions read_opts;
read_opts.total_order_seek = true;
std::string read_ts = Timestamp(kNum, 0);
Slice read_ts_slice = read_ts;
read_opts.timestamp = &read_ts_slice;
{
std::unique_ptr<Iterator> iter(db_->NewIterator(read_opts));
ASSERT_OK(iter->status());
int expected = 0;
for (iter->SeekToFirst(); iter->Valid(); iter->Next()) {
ASSERT_EQ(Key1(expected), iter->key());
if (expected == kRangeBegin - 1) {
expected = kNum / 2;
} else {
++expected;
}
}
ASSERT_EQ(kNum, expected);
expected = kNum / 2;
for (iter->Seek(Key1(kNum / 2)); iter->Valid(); iter->Next()) {
ASSERT_EQ(Key1(expected), iter->key());
++expected;
}
ASSERT_EQ(kNum, expected);
expected = kRangeBegin - 1;
for (iter->SeekForPrev(Key1(kNum / 2 - 1)); iter->Valid(); iter->Prev()) {
ASSERT_EQ(Key1(expected), iter->key());
--expected;
}
ASSERT_EQ(-1, expected);
read_ts = Timestamp(0, 0);
read_ts_slice = read_ts;
read_opts.timestamp = &read_ts_slice;
iter.reset(db_->NewIterator(read_opts));
iter->SeekToFirst();
ASSERT_TRUE(iter->Valid());
ASSERT_EQ(iter->key(), Key1(0));
iter->Next();
ASSERT_FALSE(iter->Valid());
ASSERT_OK(iter->status());
}
read_ts = Timestamp(kNum, 0);
read_ts_slice = read_ts;
read_opts.timestamp = &read_ts_slice;
std::string value, timestamp;
Status s;
for (int i = 0; i < kNum; ++i) {
s = db_->Get(read_opts, Key1(i), &value, &timestamp);
if (i >= kRangeBegin && i < kNum / 2) {
ASSERT_TRUE(s.IsNotFound());
ASSERT_EQ(timestamp, Timestamp(kNum / 2, 0));
} else {
ASSERT_OK(s);
ASSERT_EQ(value, "val" + std::to_string(i));
ASSERT_EQ(timestamp, Timestamp(i, 0));
}
}
size_t batch_size = kNum;
std::vector<std::string> key_strs(batch_size);
std::vector<Slice> keys(batch_size);
std::vector<PinnableSlice> values(batch_size);
std::vector<Status> statuses(batch_size);
std::vector<std::string> timestamps(batch_size);
for (int i = 0; i < kNum; ++i) {
key_strs[i] = Key1(i);
keys[i] = key_strs[i];
}
db_->MultiGet(read_opts, db_->DefaultColumnFamily(), batch_size, keys.data(),
values.data(), timestamps.data(), statuses.data(),
true /* sorted_input */);
for (int i = 0; i < kNum; ++i) {
if (i >= kRangeBegin && i < kNum / 2) {
ASSERT_TRUE(statuses[i].IsNotFound());
ASSERT_EQ(timestamps[i], Timestamp(kNum / 2, 0));
} else {
ASSERT_OK(statuses[i]);
ASSERT_EQ(values[i], "val" + std::to_string(i));
ASSERT_EQ(timestamps[i], Timestamp(i, 0));
}
}
Close();
}
TEST_F(DBBasicTestWithTimestamp, DeleteRangeGetIteratorWithSnapshot) {
// 4 keys 0, 1, 2, 3 at timestamps 0, 1, 2, 3 respectively.
// A range tombstone [1, 3) at timestamp 1 and has a sequence number between
// key 1 and 2.
Options options = CurrentOptions();
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
DestroyAndReopen(options);
WriteOptions write_opts;
std::string put_ts = Timestamp(0, 0);
const int kNum = 4, kNumPerFile = 1, kRangeBegin = 1, kRangeEnd = 3;
options.memtable_factory.reset(test::NewSpecialSkipListFactory(kNumPerFile));
const Snapshot* before_tombstone = nullptr;
const Snapshot* after_tombstone = nullptr;
for (int i = 0; i < kNum; ++i) {
ASSERT_OK(db_->Put(WriteOptions(), Key1(i), Timestamp(i, 0),
"val" + std::to_string(i)));
if (i == kRangeBegin) {
before_tombstone = db_->GetSnapshot();
ASSERT_OK(db_->DeleteRange(WriteOptions(), db_->DefaultColumnFamily(),
Key1(kRangeBegin), Key1(kRangeEnd),
Timestamp(kRangeBegin, 0)));
}
if (i == kNum / 2) {
ASSERT_OK(Flush());
}
}
assert(before_tombstone);
after_tombstone = db_->GetSnapshot();
// snapshot and ts before tombstone
std::string read_ts_str = Timestamp(kRangeBegin - 1, 0); // (0, 0)
Slice read_ts = read_ts_str;
ReadOptions read_opts;
read_opts.timestamp = &read_ts;
read_opts.snapshot = before_tombstone;
std::vector<Status> expected_status = {
Status::OK(), Status::NotFound(), Status::NotFound(), Status::NotFound()};
std::vector<std::string> expected_values(kNum);
expected_values[0] = "val" + std::to_string(0);
std::vector<std::string> expected_timestamps(kNum);
expected_timestamps[0] = Timestamp(0, 0);
size_t batch_size = kNum;
std::vector<std::string> key_strs(batch_size);
std::vector<Slice> keys(batch_size);
std::vector<PinnableSlice> values(batch_size);
std::vector<Status> statuses(batch_size);
std::vector<std::string> timestamps(batch_size);
for (int i = 0; i < kNum; ++i) {
key_strs[i] = Key1(i);
keys[i] = key_strs[i];
}
auto verify = [&] {
db_->MultiGet(read_opts, db_->DefaultColumnFamily(), batch_size,
keys.data(), values.data(), timestamps.data(),
statuses.data(), true /* sorted_input */);
std::string value, timestamp;
Status s;
for (int i = 0; i < kNum; ++i) {
s = db_->Get(read_opts, Key1(i), &value, &timestamp);
ASSERT_EQ(s, expected_status[i]);
ASSERT_EQ(statuses[i], expected_status[i]);
if (s.ok()) {
ASSERT_EQ(value, expected_values[i]);
ASSERT_EQ(values[i], expected_values[i]);
}
if (!timestamp.empty()) {
ASSERT_EQ(timestamp, expected_timestamps[i]);
ASSERT_EQ(timestamps[i], expected_timestamps[i]);
} else {
ASSERT_TRUE(timestamps[i].empty());
}
}
std::unique_ptr<Iterator> iter(db_->NewIterator(read_opts));
std::unique_ptr<Iterator> iter_for_seek(db_->NewIterator(read_opts));
iter->SeekToFirst();
for (int i = 0; i < kNum; ++i) {
if (expected_status[i].ok()) {
auto verify_iter = [&](Iterator* iter_ptr) {
ASSERT_TRUE(iter_ptr->Valid());
ASSERT_EQ(iter_ptr->key(), keys[i]);
ASSERT_EQ(iter_ptr->value(), expected_values[i]);
ASSERT_EQ(iter_ptr->timestamp(), expected_timestamps[i]);
};
verify_iter(iter.get());
iter->Next();
iter_for_seek->Seek(keys[i]);
verify_iter(iter_for_seek.get());
iter_for_seek->SeekForPrev(keys[i]);
verify_iter(iter_for_seek.get());
}
}
ASSERT_FALSE(iter->Valid());
ASSERT_OK(iter->status());
};
verify();
// snapshot before tombstone and ts after tombstone
read_ts_str = Timestamp(kNum, 0); // (4, 0)
read_ts = read_ts_str;
read_opts.timestamp = &read_ts;
read_opts.snapshot = before_tombstone;
expected_status[1] = Status::OK();
expected_timestamps[1] = Timestamp(1, 0);
expected_values[1] = "val" + std::to_string(1);
verify();
// snapshot after tombstone and ts before tombstone
read_ts_str = Timestamp(kRangeBegin - 1, 0); // (0, 0)
read_ts = read_ts_str;
read_opts.timestamp = &read_ts;
read_opts.snapshot = after_tombstone;
expected_status[1] = Status::NotFound();
expected_timestamps[1].clear();
expected_values[1].clear();
verify();
// snapshot and ts after tombstone
read_ts_str = Timestamp(kNum, 0); // (4, 0)
read_ts = read_ts_str;
read_opts.timestamp = &read_ts;
read_opts.snapshot = after_tombstone;
for (int i = 0; i < kNum; ++i) {
if (i == kRangeBegin) {
expected_status[i] = Status::NotFound();
expected_values[i].clear();
} else {
expected_status[i] = Status::OK();
expected_values[i] = "val" + std::to_string(i);
}
expected_timestamps[i] = Timestamp(i, 0);
}
verify();
db_->ReleaseSnapshot(before_tombstone);
db_->ReleaseSnapshot(after_tombstone);
Close();
}
TEST_F(DBBasicTestWithTimestamp, MergeBasic) {
Options options = GetDefaultOptions();
options.create_if_missing = true;
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
options.merge_operator = std::make_shared<StringAppendTESTOperator>('.');
DestroyAndReopen(options);
const std::array<std::string, 3> write_ts_strs = {
Timestamp(100, 0), Timestamp(200, 0), Timestamp(300, 0)};
constexpr size_t kNumOfUniqKeys = 100;
ColumnFamilyHandle* default_cf = db_->DefaultColumnFamily();
for (size_t i = 0; i < write_ts_strs.size(); ++i) {
for (size_t j = 0; j < kNumOfUniqKeys; ++j) {
Status s;
if (i == 0) {
const std::string val = "v" + std::to_string(j) + "_0";
s = db_->Put(WriteOptions(), Key1(j), write_ts_strs[i], val);
} else {
const std::string merge_op = std::to_string(i);
s = db_->Merge(WriteOptions(), default_cf, Key1(j), write_ts_strs[i],
merge_op);
}
ASSERT_OK(s);
}
}
std::array<std::string, 3> read_ts_strs = {
Timestamp(150, 0), Timestamp(250, 0), Timestamp(350, 0)};
const auto verify_db_with_get = [&]() {
for (size_t i = 0; i < kNumOfUniqKeys; ++i) {
const std::string base_val = "v" + std::to_string(i) + "_0";
const std::array<std::string, 3> expected_values = {
base_val, base_val + ".1", base_val + ".1.2"};
const std::array<std::string, 3>& expected_ts = write_ts_strs;
ReadOptions read_opts;
for (size_t j = 0; j < read_ts_strs.size(); ++j) {
Slice read_ts = read_ts_strs[j];
read_opts.timestamp = &read_ts;
std::string value;
std::string ts;
const Status s = db_->Get(read_opts, Key1(i), &value, &ts);
ASSERT_OK(s);
ASSERT_EQ(expected_values[j], value);
ASSERT_EQ(expected_ts[j], ts);
// Do Seek/SeekForPrev
std::unique_ptr<Iterator> it(db_->NewIterator(read_opts));
it->Seek(Key1(i));
ASSERT_TRUE(it->Valid());
ASSERT_EQ(expected_values[j], it->value());
ASSERT_EQ(expected_ts[j], it->timestamp());
it->SeekForPrev(Key1(i));
ASSERT_TRUE(it->Valid());
ASSERT_EQ(expected_values[j], it->value());
ASSERT_EQ(expected_ts[j], it->timestamp());
}
}
};
const auto verify_db_with_iterator = [&]() {
std::string value_suffix;
for (size_t i = 0; i < read_ts_strs.size(); ++i) {
ReadOptions read_opts;
Slice read_ts = read_ts_strs[i];
read_opts.timestamp = &read_ts;
std::unique_ptr<Iterator> it(db_->NewIterator(read_opts));
size_t key_int_val = 0;
for (it->SeekToFirst(); it->Valid(); it->Next(), ++key_int_val) {
const std::string key = Key1(key_int_val);
const std::string value =
"v" + std::to_string(key_int_val) + "_0" + value_suffix;
ASSERT_EQ(key, it->key());
ASSERT_EQ(value, it->value());
ASSERT_EQ(write_ts_strs[i], it->timestamp());
}
ASSERT_EQ(kNumOfUniqKeys, key_int_val);
key_int_val = kNumOfUniqKeys - 1;
for (it->SeekToLast(); it->Valid(); it->Prev(), --key_int_val) {
const std::string key = Key1(key_int_val);
const std::string value =
"v" + std::to_string(key_int_val) + "_0" + value_suffix;
ASSERT_EQ(key, it->key());
ASSERT_EQ(value, it->value());
ASSERT_EQ(write_ts_strs[i], it->timestamp());
}
ASSERT_EQ(std::numeric_limits<size_t>::max(), key_int_val);
value_suffix = value_suffix + "." + std::to_string(i + 1);
}
};
verify_db_with_get();
verify_db_with_iterator();
ASSERT_OK(db_->Flush(FlushOptions()));
verify_db_with_get();
verify_db_with_iterator();
Close();
}
TEST_F(DBBasicTestWithTimestamp, MergeAfterDeletion) {
Options options = GetDefaultOptions();
options.create_if_missing = true;
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
options.merge_operator = std::make_shared<StringAppendTESTOperator>('.');
DestroyAndReopen(options);
ColumnFamilyHandle* const column_family = db_->DefaultColumnFamily();
const size_t num_keys_per_file = 10;
const size_t num_merges_per_key = 2;
for (size_t i = 0; i < num_keys_per_file; ++i) {
std::string ts = Timestamp(i + 10000, 0);
Status s = db_->Delete(WriteOptions(), Key1(i), ts);
ASSERT_OK(s);
for (size_t j = 1; j <= num_merges_per_key; ++j) {
ts = Timestamp(i + 10000 + j, 0);
s = db_->Merge(WriteOptions(), column_family, Key1(i), ts,
std::to_string(j));
ASSERT_OK(s);
}
}
const auto verify_db = [&]() {
ReadOptions read_opts;
std::string read_ts_str = Timestamp(20000, 0);
Slice ts = read_ts_str;
read_opts.timestamp = &ts;
std::unique_ptr<Iterator> it(db_->NewIterator(read_opts));
size_t count = 0;
for (it->SeekToFirst(); it->Valid(); it->Next(), ++count) {
std::string key = Key1(count);
ASSERT_EQ(key, it->key());
std::string value;
for (size_t j = 1; j <= num_merges_per_key; ++j) {
value.append(std::to_string(j));
if (j < num_merges_per_key) {
value.push_back('.');
}
}
ASSERT_EQ(value, it->value());
std::string ts1 = Timestamp(count + 10000 + num_merges_per_key, 0);
ASSERT_EQ(ts1, it->timestamp());
}
ASSERT_OK(it->status());
ASSERT_EQ(num_keys_per_file, count);
for (it->SeekToLast(); it->Valid(); it->Prev(), --count) {
std::string key = Key1(count - 1);
ASSERT_EQ(key, it->key());
std::string value;
for (size_t j = 1; j <= num_merges_per_key; ++j) {
value.append(std::to_string(j));
if (j < num_merges_per_key) {
value.push_back('.');
}
}
ASSERT_EQ(value, it->value());
std::string ts1 = Timestamp(count - 1 + 10000 + num_merges_per_key, 0);
ASSERT_EQ(ts1, it->timestamp());
}
ASSERT_OK(it->status());
ASSERT_EQ(0, count);
};
verify_db();
Close();
}
TEST_F(DBBasicTestWithTimestamp, RangeTombstoneApproximateSize) {
// Test code path for calculating range tombstone compensated size
// during flush and compaction.
Options options = CurrentOptions();
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
DestroyAndReopen(options);
// So that the compaction below is non-bottommost and will calcualte
// compensated range tombstone size.
ASSERT_OK(db_->Put(WriteOptions(), Key(1), Timestamp(1, 0), "val"));
ASSERT_OK(Flush());
MoveFilesToLevel(5);
ASSERT_OK(db_->DeleteRange(WriteOptions(), db_->DefaultColumnFamily(), Key(0),
Key(1), Timestamp(1, 0)));
ASSERT_OK(db_->DeleteRange(WriteOptions(), db_->DefaultColumnFamily(), Key(1),
Key(2), Timestamp(2, 0)));
ASSERT_OK(Flush());
ASSERT_OK(dbfull()->RunManualCompaction(
static_cast_with_check<ColumnFamilyHandleImpl>(db_->DefaultColumnFamily())
->cfd(),
0 /* input_level */, 1 /* output_level */, CompactRangeOptions(),
nullptr /* begin */, nullptr /* end */, true /* exclusive */,
true /* disallow_trivial_move */,
std::numeric_limits<uint64_t>::max() /* max_file_num_to_ignore */,
"" /*trim_ts*/));
}
TEST_F(DBBasicTestWithTimestamp, IterSeekToLastWithIterateUpperbound) {
// Test for a bug fix where DBIter::SeekToLast() could fail when
// iterate_upper_bound and iter_start_ts are both set.
Options options = CurrentOptions();
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
DestroyAndReopen(options);
ASSERT_OK(db_->Put(WriteOptions(), Key(1), Timestamp(2, 0), "val"));
ReadOptions ro;
std::string k = Key(1);
Slice k_slice = k;
ro.iterate_upper_bound = &k_slice;
std::string ts = Timestamp(3, 0);
Slice read_ts = ts;
ro.timestamp = &read_ts;
std::string start_ts = Timestamp(0, 0);
Slice start_ts_slice = start_ts;
ro.iter_start_ts = &start_ts_slice;
std::unique_ptr<Iterator> iter{db_->NewIterator(ro)};
iter->SeekToLast();
ASSERT_FALSE(iter->Valid());
ASSERT_OK(iter->status());
}
TEST_F(DBBasicTestWithTimestamp, TimestampFilterTableReadOnGet) {
Options options = CurrentOptions();
options.env = env_;
options.create_if_missing = true;
options.statistics = ROCKSDB_NAMESPACE::CreateDBStatistics();
const size_t kTimestampSize = Timestamp(0, 0).size();
TestComparator test_cmp(kTimestampSize);
options.comparator = &test_cmp;
BlockBasedTableOptions bbto;
bbto.block_size = 100;
options.table_factory.reset(NewBlockBasedTableFactory(bbto));
DestroyAndReopen(options);
// Put
// Create two SST files
// file1: key => [1, 3], timestamp => [10, 20]
// file2, key => [2, 4], timestamp => [30, 40]
{
WriteOptions write_opts;
std::string write_ts = Timestamp(10, 0);
ASSERT_OK(db_->Put(write_opts, Key1(1), write_ts, "value1"));
write_ts = Timestamp(20, 0);
ASSERT_OK(db_->Put(write_opts, Key1(3), write_ts, "value3"));
ASSERT_OK(Flush());
write_ts = Timestamp(30, 0);
ASSERT_OK(db_->Put(write_opts, Key1(2), write_ts, "value2"));
write_ts = Timestamp(40, 0);
ASSERT_OK(db_->Put(write_opts, Key1(4), write_ts, "value4"));
ASSERT_OK(Flush());
}
// Get with timestamp
{
auto prev_checked_events = options.statistics->getTickerCount(
Tickers::TIMESTAMP_FILTER_TABLE_CHECKED);
auto prev_filtered_events = options.statistics->getTickerCount(
Tickers::TIMESTAMP_FILTER_TABLE_FILTERED);
// key=3 (ts=20) does not exist at timestamp=1
std::string read_ts_str = Timestamp(1, 0);
Slice read_ts_slice = Slice(read_ts_str);
ReadOptions read_opts;
read_opts.timestamp = &read_ts_slice;
std::string value_from_get = "";
std::string timestamp_from_get = "";
auto status =
db_->Get(read_opts, Key1(3), &value_from_get, &timestamp_from_get);
ASSERT_TRUE(status.IsNotFound());
ASSERT_EQ(value_from_get, std::string(""));
ASSERT_EQ(timestamp_from_get, std::string(""));
// key=3 is in the key ranges for both files, so both files will be queried.
// The table read was skipped because the timestamp is out of the table
// range, i.e.., 1 < [10,20], [30,40].
// The tickers increase by 2 due to 2 files.
ASSERT_EQ(prev_checked_events + 2,
options.statistics->getTickerCount(
Tickers::TIMESTAMP_FILTER_TABLE_CHECKED));
ASSERT_EQ(prev_filtered_events + 2,
options.statistics->getTickerCount(
Tickers::TIMESTAMP_FILTER_TABLE_FILTERED));
// key=3 (ts=20) exists at timestamp = 25
read_ts_str = Timestamp(25, 0);
read_ts_slice = Slice(read_ts_str);
read_opts.timestamp = &read_ts_slice;
ASSERT_OK(
db_->Get(read_opts, Key1(3), &value_from_get, &timestamp_from_get));
ASSERT_EQ("value3", value_from_get);
ASSERT_EQ(Timestamp(20, 0), timestamp_from_get);
// file1 was not skipped, because the timestamp is in range, [10,20] < 25.
// file2 was skipped, because the timestamp is not in range, 25 < [30,40].
// So the checked ticker increase by 2 due to 2 files;
// filtered ticker increase by 1 because file2 was skipped
ASSERT_EQ(prev_checked_events + 4,
options.statistics->getTickerCount(
Tickers::TIMESTAMP_FILTER_TABLE_CHECKED));
ASSERT_EQ(prev_filtered_events + 3,
options.statistics->getTickerCount(
Tickers::TIMESTAMP_FILTER_TABLE_FILTERED));
}
Close();
}
} // namespace ROCKSDB_NAMESPACE
int main(int argc, char** argv) {
ROCKSDB_NAMESPACE::port::InstallStackTraceHandler();
::testing::InitGoogleTest(&argc, argv);
RegisterCustomObjects(argc, argv);
return RUN_ALL_TESTS();
}