You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 
 

583 lines
22 KiB

// Copyright (c) 2016-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
#pragma once
#include <functional>
#include <map>
#include <memory>
#include <mutex>
#include <string>
#include <unordered_map>
#include <unordered_set>
#include <vector>
#include "rocksdb/status.h"
namespace ROCKSDB_NAMESPACE {
class Customizable;
class Logger;
class ObjectLibrary;
// Returns a new T when called with a string. Populates the std::unique_ptr
// argument if granting ownership to caller.
template <typename T>
using FactoryFunc =
std::function<T*(const std::string&, std::unique_ptr<T>*, std::string*)>;
// The signature of the function for loading factories
// into an object library. This method is expected to register
// factory functions in the supplied ObjectLibrary.
// The ObjectLibrary is the library in which the factories will be loaded.
// The std::string is the argument passed to the loader function.
// The RegistrarFunc should return the number of objects loaded into this
// library
using RegistrarFunc = std::function<int(ObjectLibrary&, const std::string&)>;
template <typename T>
using ConfigureFunc = std::function<Status(T*)>;
class ObjectLibrary {
private:
// Base class for an Entry in the Registry.
class Entry {
public:
virtual ~Entry() {}
virtual bool Matches(const std::string& target) const = 0;
virtual const char* Name() const = 0;
};
public:
// Class for matching target strings to a pattern.
// Entries consist of a name that starts the pattern and attributes
// The following attributes can be added to the entry:
// -Suffix: Comparable to name(suffix)
// -Separator: Comparable to name(separator).+ or name(separator).*
// -Number: Comparable to name(separator).[0-9]+
// -AltName: Comparable to (name|alt)
// -Optional: Comparable to name(separator)?
// Multiple separators can be combined and cause multiple matches.
// For example, Pattern("A").AnotherName("B").AddSeparator("@").AddNumber("#")
// is roughly equivalent to "(A|B)@.+#.+"
//
// Note that though this class does provide some regex-style matching,
// it is not a full regex parser and has some key differences:
// - Separators are matched left-most. For example, an entry
// Name("Hello").AddSeparator(" ").AddSuffix("!") would match
// "Hello world!", but not "Hello world!!"
// - No backtracking is necessary, enabling reliably efficient matching
class PatternEntry : public Entry {
private:
enum Quantifier {
kMatchZeroOrMore, // [suffix].*
kMatchAtLeastOne, // [suffix].+
kMatchExact, // [suffix]
kMatchInteger, // [suffix][0-9]+
kMatchDecimal, // [suffix][0-9]+[.][0-9]+
};
public:
// Short-cut for creating an entry that matches to a
// Customizable::IndividualId
static PatternEntry AsIndividualId(const std::string& name) {
PatternEntry entry(name, true);
entry.AddSeparator("@");
entry.AddSeparator("#");
return entry;
}
// Creates a new PatternEntry for "name". If optional is true,
// Matches will also return true if name==target
explicit PatternEntry(const std::string& name, bool optional = true)
: name_(name), optional_(optional), slength_(0) {
nlength_ = name_.size();
}
// Adds a suffix (exact match of separator with no trailing characters) to
// the separator
PatternEntry& AddSuffix(const std::string& suffix) {
separators_.emplace_back(suffix, kMatchExact);
slength_ += suffix.size();
return *this;
}
// Adds a separator (exact match of separator with trailing characters) to
// the entry
// If at_least_one is true, the separator must be followed by at least
// one character (e.g. separator.+).
// If at_least_one is false, the separator may be followed by zero or
// more characters (e.g. separator.*).
PatternEntry& AddSeparator(const std::string& separator,
bool at_least_one = true) {
slength_ += separator.size();
if (at_least_one) {
separators_.emplace_back(separator, kMatchAtLeastOne);
++slength_;
} else {
separators_.emplace_back(separator, kMatchZeroOrMore);
}
return *this;
}
// Adds a separator (exact match of separator with trailing numbers) to the
// entry
PatternEntry& AddNumber(const std::string& separator, bool is_int = true) {
separators_.emplace_back(separator,
(is_int) ? kMatchInteger : kMatchDecimal);
slength_ += separator.size() + 1;
return *this;
}
// Sets another name that this entry will match, similar to (name|alt)
PatternEntry& AnotherName(const std::string& alt) {
names_.emplace_back(alt);
return *this;
}
// Sets whether the separators are required -- similar to name(separator)?
// If optional is true, then name(separator)? would match
// If optional is false, then the separators must also match
PatternEntry& SetOptional(bool optional) {
optional_ = optional;
return *this;
}
// Checks to see if the target matches this entry
bool Matches(const std::string& target) const override;
const char* Name() const override { return name_.c_str(); }
private:
size_t MatchSeparatorAt(size_t start, Quantifier mode,
const std::string& target, size_t tlen,
const std::string& pattern) const;
bool MatchesTarget(const std::string& name, size_t nlen,
const std::string& target, size_t ylen) const;
std::string name_; // The base name for this entry
size_t nlength_; // The length of name_
std::vector<std::string> names_; // Alternative names for this entry
bool optional_; // Whether matching of separators is required
size_t slength_; // The minimum required length to match the separators
std::vector<std::pair<std::string, Quantifier>>
separators_; // What to match
}; // End class Entry
private:
// An Entry containing a FactoryFunc for creating new Objects
template <typename T>
class FactoryEntry : public Entry {
public:
FactoryEntry(Entry* e, FactoryFunc<T> f)
: entry_(e), factory_(std::move(f)) {}
bool Matches(const std::string& target) const override {
return entry_->Matches(target);
}
const char* Name() const override { return entry_->Name(); }
// Creates a new T object.
T* NewFactoryObject(const std::string& target, std::unique_ptr<T>* guard,
std::string* msg) const {
return factory_(target, guard, msg);
}
const FactoryFunc<T>& GetFactory() const { return factory_; }
private:
std::unique_ptr<Entry> entry_; // What to match for this entry
FactoryFunc<T> factory_;
}; // End class FactoryEntry
public:
explicit ObjectLibrary(const std::string& id) { id_ = id; }
const std::string& GetID() const { return id_; }
// Finds the factory function for the input target.
// @see PatternEntry for the matching rules to target
// @return If matched, the FactoryFunc for this target, else nullptr
template <typename T>
FactoryFunc<T> FindFactory(const std::string& target) const {
std::unique_lock<std::mutex> lock(mu_);
auto factories = factories_.find(T::Type());
if (factories != factories_.end()) {
for (const auto& e : factories->second) {
if (e->Matches(target)) {
const auto* fe =
static_cast<const ObjectLibrary::FactoryEntry<T>*>(e.get());
return fe->GetFactory();
}
}
}
return nullptr;
}
// Returns the total number of factories registered for this library.
// This method returns the sum of all factories registered for all types.
// @param num_types returns how many unique types are registered.
size_t GetFactoryCount(size_t* num_types) const;
// Returns the number of factories registered for this library
// for the input type.
// @param num_types returns how many unique types are registered.
size_t GetFactoryCount(const std::string& type) const;
// Returns the registered factory names for the input type
// names is updated to include the names for the type
void GetFactoryNames(const std::string& type,
std::vector<std::string>* names) const;
void GetFactoryTypes(std::unordered_set<std::string>* types) const;
void Dump(Logger* logger) const;
// Registers the factory with the library for the name.
// If name==target, the factory may be used to create a new object.
template <typename T>
const FactoryFunc<T>& AddFactory(const std::string& name,
const FactoryFunc<T>& func) {
std::unique_ptr<Entry> entry(
new FactoryEntry<T>(new PatternEntry(name), func));
AddFactoryEntry(T::Type(), std::move(entry));
return func;
}
// Registers the factory with the library for the entry.
// If the entry matches the target, the factory may be used to create a new
// object.
// @see PatternEntry for the matching rules.
// NOTE: This function replaces the old ObjectLibrary::Register()
template <typename T>
const FactoryFunc<T>& AddFactory(const PatternEntry& entry,
const FactoryFunc<T>& func) {
std::unique_ptr<Entry> factory(
new FactoryEntry<T>(new PatternEntry(entry), func));
AddFactoryEntry(T::Type(), std::move(factory));
return func;
}
// Invokes the registrar function with the supplied arg for this library.
int Register(const RegistrarFunc& registrar, const std::string& arg) {
return registrar(*this, arg);
}
// Returns the default ObjectLibrary
static std::shared_ptr<ObjectLibrary>& Default();
private:
void AddFactoryEntry(const char* type, std::unique_ptr<Entry>&& entry) {
std::unique_lock<std::mutex> lock(mu_);
auto& factories = factories_[type];
factories.emplace_back(std::move(entry));
}
// Protects the entry map
mutable std::mutex mu_;
// ** FactoryFunctions for this loader, organized by type
std::unordered_map<std::string, std::vector<std::unique_ptr<Entry>>>
factories_;
// The name for this library
std::string id_;
};
// The ObjectRegistry is used to register objects that can be created by a
// name/pattern at run-time where the specific implementation of the object may
// not be known in advance.
class ObjectRegistry {
public:
static std::shared_ptr<ObjectRegistry> NewInstance();
static std::shared_ptr<ObjectRegistry> NewInstance(
const std::shared_ptr<ObjectRegistry>& parent);
static std::shared_ptr<ObjectRegistry> Default();
explicit ObjectRegistry(const std::shared_ptr<ObjectRegistry>& parent)
: parent_(parent) {}
explicit ObjectRegistry(const std::shared_ptr<ObjectLibrary>& library);
std::shared_ptr<ObjectLibrary> AddLibrary(const std::string& id) {
auto library = std::make_shared<ObjectLibrary>(id);
AddLibrary(library);
return library;
}
void AddLibrary(const std::shared_ptr<ObjectLibrary>& library) {
std::unique_lock<std::mutex> lock(library_mutex_);
libraries_.push_back(library);
}
void AddLibrary(const std::string& id, const RegistrarFunc& registrar,
const std::string& arg) {
auto library = AddLibrary(id);
library->Register(registrar, arg);
}
// Finds the factory for target and instantiates a new T.
// Returns NotSupported if no factory is found
// Returns InvalidArgument if a factory is found but the factory failed.
template <typename T>
Status NewObject(const std::string& target, T** object,
std::unique_ptr<T>* guard) {
assert(guard != nullptr);
guard->reset();
auto factory = FindFactory<T>(target);
if (factory != nullptr) {
std::string errmsg;
*object = factory(target, guard, &errmsg);
if (*object != nullptr) {
return Status::OK();
} else if (errmsg.empty()) {
return Status::InvalidArgument(
std::string("Could not load ") + T::Type(), target);
} else {
return Status::InvalidArgument(errmsg, target);
}
} else {
return Status::NotSupported(std::string("Could not load ") + T::Type(),
target);
}
}
// Creates a new unique T using the input factory functions.
// Returns OK if a new unique T was successfully created
// Returns NotSupported if the type/target could not be created
// Returns InvalidArgument if the factory return an unguarded object
// (meaning it cannot be managed by a unique ptr)
template <typename T>
Status NewUniqueObject(const std::string& target,
std::unique_ptr<T>* result) {
T* ptr = nullptr;
std::unique_ptr<T> guard;
Status s = NewObject(target, &ptr, &guard);
if (!s.ok()) {
return s;
} else if (guard) {
result->reset(guard.release());
return Status::OK();
} else {
return Status::InvalidArgument(std::string("Cannot make a unique ") +
T::Type() + " from unguarded one ",
target);
}
}
// Creates a new shared T using the input factory functions.
// Returns OK if a new shared T was successfully created
// Returns NotSupported if the type/target could not be created
// Returns InvalidArgument if the factory return an unguarded object
// (meaning it cannot be managed by a shared ptr)
template <typename T>
Status NewSharedObject(const std::string& target,
std::shared_ptr<T>* result) {
std::unique_ptr<T> guard;
T* ptr = nullptr;
Status s = NewObject(target, &ptr, &guard);
if (!s.ok()) {
return s;
} else if (guard) {
result->reset(guard.release());
return Status::OK();
} else {
return Status::InvalidArgument(std::string("Cannot make a shared ") +
T::Type() + " from unguarded one ",
target);
}
}
// Creates a new static T using the input factory functions.
// Returns OK if a new static T was successfully created
// Returns NotSupported if the type/target could not be created
// Returns InvalidArgument if the factory return a guarded object
// (meaning it is managed by a unique ptr)
template <typename T>
Status NewStaticObject(const std::string& target, T** result) {
std::unique_ptr<T> guard;
T* ptr = nullptr;
Status s = NewObject(target, &ptr, &guard);
if (!s.ok()) {
return s;
} else if (guard.get()) {
return Status::InvalidArgument(std::string("Cannot make a static ") +
T::Type() + " from a guarded one ",
target);
} else {
*result = ptr;
return Status::OK();
}
}
// Sets the object for the given id/type to be the input object
// If the registry does not contain this id/type, the object is added and OK
// is returned. If the registry contains a different object, an error is
// returned. If the registry contains the input object, OK is returned.
template <typename T>
Status SetManagedObject(const std::shared_ptr<T>& object) {
assert(object != nullptr);
return SetManagedObject(object->GetId(), object);
}
template <typename T>
Status SetManagedObject(const std::string& id,
const std::shared_ptr<T>& object) {
const auto c = std::static_pointer_cast<Customizable>(object);
return SetManagedObject(T::Type(), id, c);
}
// Returns the object for the given id, if one exists.
// If the object is not found in the registry, a nullptr is returned
template <typename T>
std::shared_ptr<T> GetManagedObject(const std::string& id) const {
auto c = GetManagedObject(T::Type(), id);
return std::static_pointer_cast<T>(c);
}
// Returns the set of managed objects found in the registry matching
// the input type and ID.
// If the input id is not empty, then only objects of that class
// (IsInstanceOf(id)) will be returned (for example, only return LRUCache
// objects) If the input id is empty, then all objects of that type (all Cache
// objects)
template <typename T>
Status ListManagedObjects(const std::string& id,
std::vector<std::shared_ptr<T>>* results) const {
std::vector<std::shared_ptr<Customizable>> customizables;
results->clear();
Status s = ListManagedObjects(T::Type(), id, &customizables);
if (s.ok()) {
for (const auto& c : customizables) {
results->push_back(std::static_pointer_cast<T>(c));
}
}
return s;
}
template <typename T>
Status ListManagedObjects(std::vector<std::shared_ptr<T>>* results) const {
return ListManagedObjects("", results);
}
// Creates a new ManagedObject in the registry for the id if one does not
// currently exist. If an object with that ID already exists, the current
// object is returned.
//
// The ID is the identifier of the object to be returned/created and returned
// in result
// If a new object is created (using the object factories), the cfunc
// parameter will be invoked to configure the new object.
template <typename T>
Status GetOrCreateManagedObject(const std::string& id,
std::shared_ptr<T>* result,
const ConfigureFunc<T>& cfunc = nullptr) {
if (parent_ != nullptr) {
auto object = parent_->GetManagedObject(T::Type(), id);
if (object != nullptr) {
*result = std::static_pointer_cast<T>(object);
return Status::OK();
}
}
{
std::unique_lock<std::mutex> lock(objects_mutex_);
auto key = ToManagedObjectKey(T::Type(), id);
auto iter = managed_objects_.find(key);
if (iter != managed_objects_.end()) {
auto object = iter->second.lock();
if (object != nullptr) {
*result = std::static_pointer_cast<T>(object);
return Status::OK();
}
}
std::shared_ptr<T> object;
Status s = NewSharedObject(id, &object);
if (s.ok() && cfunc != nullptr) {
s = cfunc(object.get());
}
if (s.ok()) {
auto c = std::static_pointer_cast<Customizable>(object);
if (id != c->Name()) {
// If the ID is not the base name of the class, add the new
// object under the input ID
managed_objects_[key] = c;
}
if (id != c->GetId() && c->GetId() != c->Name()) {
// If the input and current ID do not match, and the
// current ID is not the base bame, add the new object under
// its new ID
key = ToManagedObjectKey(T::Type(), c->GetId());
managed_objects_[key] = c;
}
*result = object;
}
return s;
}
}
// Returns the number of factories registered for this library
// for the input type.
// @param num_types returns how many unique types are registered.
size_t GetFactoryCount(const std::string& type) const;
// Returns the names of registered factories for the input type.
// names is updated to include the names for the type
void GetFactoryNames(const std::string& type,
std::vector<std::string>* names) const;
void GetFactoryTypes(std::unordered_set<std::string>* types) const;
// Dump the contents of the registry to the logger
void Dump(Logger* logger) const;
// Invokes the input function to retrieve the properties for this plugin.
int RegisterPlugin(const std::string& name, const RegistrarFunc& func);
private:
static std::string ToManagedObjectKey(const std::string& type,
const std::string& id) {
return type + "://" + id;
}
// Returns the Customizable managed object associated with the key (Type/ID).
// If not found, nullptr is returned.
std::shared_ptr<Customizable> GetManagedObject(const std::string& type,
const std::string& id) const;
Status ListManagedObjects(
const std::string& type, const std::string& pattern,
std::vector<std::shared_ptr<Customizable>>* results) const;
// Sets the managed object associated with the key (Type/ID) to c.
// If the named managed object does not exist, the object is added and OK is
// returned If the object exists and is the same as c, OK is returned
// Otherwise, an error status is returned.
Status SetManagedObject(const std::string& type, const std::string& id,
const std::shared_ptr<Customizable>& c);
// Searches (from back to front) the libraries looking for the
// factory that matches this name.
// Returns the factory if it is found, and nullptr otherwise
template <typename T>
const FactoryFunc<T> FindFactory(const std::string& name) const {
{
std::unique_lock<std::mutex> lock(library_mutex_);
for (auto iter = libraries_.crbegin(); iter != libraries_.crend();
++iter) {
const auto factory = iter->get()->FindFactory<T>(name);
if (factory != nullptr) {
return factory;
}
}
}
if (parent_ == nullptr) {
return nullptr;
} else {
return parent_->FindFactory<T>(name);
}
}
// The set of libraries to search for factories for this registry.
// The libraries are searched in reverse order (back to front) when
// searching for entries.
std::vector<std::shared_ptr<ObjectLibrary>> libraries_;
std::vector<std::string> plugins_;
static std::unordered_map<std::string, RegistrarFunc> builtins_;
std::map<std::string, std::weak_ptr<Customizable>> managed_objects_;
std::shared_ptr<ObjectRegistry> parent_;
mutable std::mutex objects_mutex_; // Mutex for managed objects
mutable std::mutex library_mutex_; // Mutex for managed libraries
};
} // namespace ROCKSDB_NAMESPACE