Added mlocking for secret types.

master
DrPeterVanNostrand 7 years ago
parent 2d17d0e783
commit 8f6dce18f2
  1. 2
      Cargo.toml
  2. 28
      src/error.rs
  3. 316
      src/lib.rs
  4. 484
      src/poly.rs

@ -12,9 +12,11 @@ categories = ["cryptography"]
[dependencies] [dependencies]
byteorder = "1.2.3" byteorder = "1.2.3"
errno = "0.2.4"
failure = "0.1" failure = "0.1"
init_with = "1.1.0" init_with = "1.1.0"
log = "0.4.1" log = "0.4.1"
memsec = "0.5.4"
pairing = { version = "0.14.2", features = ["u128-support"] } pairing = { version = "0.14.2", features = ["u128-support"] }
rand = "0.4.2" rand = "0.4.2"
rand_derive = "0.3.1" rand_derive = "0.3.1"

@ -1,5 +1,7 @@
//! Crypto errors. //! Crypto errors.
use errno::Errno;
/// A crypto error. /// A crypto error.
#[derive(Clone, Eq, PartialEq, Debug, Fail)] #[derive(Clone, Eq, PartialEq, Debug, Fail)]
pub enum Error { pub enum Error {
@ -7,6 +9,32 @@ pub enum Error {
NotEnoughShares, NotEnoughShares,
#[fail(display = "Signature shares contain a duplicated index")] #[fail(display = "Signature shares contain a duplicated index")]
DuplicateEntry, DuplicateEntry,
#[fail(
display = "Failed to `mlock` {} bytes starting at address: {}",
n_bytes,
addr
)]
MlockFailed {
// The errno set by the failed `mlock` syscall.
errno: Errno,
// The address for the first byte in the range of memory that was attempted to be locked.
addr: String,
// The number of bytes that were attempted to be locked.
n_bytes: usize,
},
#[fail(
display = "Failed to `munlock` {} bytes starting at address: {}",
n_bytes,
addr
)]
MunlockFailed {
// The errno set by the failed `munlock` syscall.
errno: Errno,
// The address for the first byte in the range of memory that was attempted to be unlocked.
addr: String,
// The number of bytes that were attempted to be unlocked.
n_bytes: usize,
},
} }
unsafe impl Send for Error {} unsafe impl Send for Error {}

@ -5,11 +5,13 @@
#[cfg(test)] #[cfg(test)]
extern crate bincode; extern crate bincode;
extern crate byteorder; extern crate byteorder;
extern crate errno;
#[macro_use] #[macro_use]
extern crate failure; extern crate failure;
extern crate init_with; extern crate init_with;
#[macro_use] #[macro_use]
extern crate log; extern crate log;
extern crate memsec;
extern crate pairing; extern crate pairing;
extern crate rand; extern crate rand;
#[macro_use] #[macro_use]
@ -26,19 +28,47 @@ pub mod serde_impl;
use std::fmt; use std::fmt;
use std::hash::{Hash, Hasher}; use std::hash::{Hash, Hasher};
use std::ptr::write_volatile; use std::mem::size_of_val;
use std::ptr::{copy_nonoverlapping, write_volatile};
use byteorder::{BigEndian, ByteOrder}; use byteorder::{BigEndian, ByteOrder};
use errno::errno;
use init_with::InitWith; use init_with::InitWith;
use memsec::{memzero, mlock, munlock};
use pairing::bls12_381::{Bls12, Fr, G1, G1Affine, G2, G2Affine}; use pairing::bls12_381::{Bls12, Fr, G1, G1Affine, G2, G2Affine};
use pairing::{CurveAffine, CurveProjective, Engine, Field}; use pairing::{CurveAffine, CurveProjective, Engine, Field};
use rand::{ChaChaRng, OsRng, Rng, SeedableRng}; use rand::{ChaChaRng, OsRng, Rng, Rand, SeedableRng};
use tiny_keccak::sha3_256; use tiny_keccak::sha3_256;
use error::{Error, Result}; use error::{Error, Result};
use into_fr::IntoFr; use into_fr::IntoFr;
use poly::{Commitment, Poly}; use poly::{Commitment, Poly};
/// Marks a type as containing one or more secret prime field elements.
pub(crate) trait ContainsSecret {
/// Calls the `mlock` system call on the region of memory allocated for the secret prime field
/// element or elements. This results in that region of memory not being being copied to disk,
/// either in a swap to disk or core dump. This method is called on every created instance of
/// a secret type.
///
/// # Errors
///
/// An `Error::MlockFailed` is returned if we failed to `mlock` the secret data.
fn mlock_secret_memory(&self) -> Result<()>;
/// Undoes the `mlock` on the secret region of memory via the `munlock` system call.
///
/// # Errors
///
/// An `Error::MunlockFailed` is returned if we failed to `munlock` the secret data; this
/// method is called on each secret type when it goes out of scope.
fn munlock_secret_memory(&self) -> Result<()>;
/// Overwrites the secret prime field element or elements with zeros; this method is called on
/// each each secret type when it goes out of scope.
fn zero_secret_memory(&self);
}
/// Wrapper for a byte array, whose `Debug` implementation outputs shortened hexadecimal strings. /// Wrapper for a byte array, whose `Debug` implementation outputs shortened hexadecimal strings.
pub struct HexBytes<'a>(pub &'a [u8]); pub struct HexBytes<'a>(pub &'a [u8]);
@ -192,47 +222,170 @@ impl fmt::Debug for SignatureShare {
} }
} }
/// A secret key. /// A secret key; wraps a single prime field element. The field element is
#[derive(Clone, PartialEq, Eq, Rand)] /// heap allocated to avoid any stack copying that result when passing
pub struct SecretKey(Fr); /// `SecretKey`s between stack frames.
#[derive(PartialEq, Eq)]
pub struct SecretKey(Box<Fr>);
impl fmt::Debug for SecretKey { /// Creates a `SecretKey` containing the zero prime field element.
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { ///
let uncomp = self.public_key().0.into_affine().into_uncompressed(); /// # Panics
let bytes = uncomp.as_ref(); ///
write!(f, "SecretKey({:?})", HexBytes(bytes)) /// Panics if we have hit the system's locked memory limit when `mlock`ing the new instance of
/// `SecretKey`.`
impl Default for SecretKey {
fn default() -> Self {
let mut fr = Fr::zero();
match SecretKey::from_mut_ptr(&mut fr as *mut Fr) {
Ok(sk) => sk,
Err(e) => panic!("Failed to create default `SecretKey`: {}", e),
}
} }
} }
impl Default for SecretKey { /// Creates a random `SecretKey`.
fn default() -> Self { ///
SecretKey(Fr::zero()) /// # Panics
///
/// Panics if we have hit the system's locked memory limit when `mlock`ing the new instance of
/// `SecretKey`.
impl Rand for SecretKey {
fn rand<R: Rng>(rng: &mut R) -> Self {
let mut fr = Fr::rand(rng);
match SecretKey::from_mut_ptr(&mut fr as *mut Fr) {
Ok(sk) => sk,
Err(e) => panic!("Failed to create random `SecretKey`: {}", e),
}
}
}
/// Creates a new `SecretKey` by cloning another key's prime field element.
///
/// # Panics
///
/// Panics if we have hit the system's locked memory limit when `mlock`ing the new instance of
/// `SecretKey`.
impl Clone for SecretKey {
fn clone(&self) -> Self {
let mut fr = *self.0;
match SecretKey::from_mut_ptr(&mut fr as *mut Fr) {
Ok(sk) => sk,
Err(e) => panic!("Failed to clone a new `SecretKey`: {}", e),
}
} }
} }
// A volatile overwrite of the prime field element's memory.
//
// # Panics
//
// Panics if we were unable to `munlock` the prime field element memory after it has been cleared.
impl Drop for SecretKey { impl Drop for SecretKey {
fn drop(&mut self) { fn drop(&mut self) {
let ptr = self as *mut Self; self.zero_secret_memory();
if let Err(e) = self.munlock_secret_memory() {
panic!("Failed to drop `SecretKey`: {}", e);
}
}
}
/// A debug statement where the secret prime field element is redacted.
impl fmt::Debug for SecretKey {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "SecretKey(...)")
}
}
impl ContainsSecret for SecretKey {
fn mlock_secret_memory(&self) -> Result<()> {
let ptr = &*self.0 as *const Fr as *mut u8;
let n_bytes = size_of_val(&*self.0);
let mlock_succeeded = unsafe { mlock(ptr, n_bytes) };
if mlock_succeeded {
Ok(())
} else {
let e = Error::MlockFailed {
errno: errno(),
addr: format!("{:?}", ptr),
n_bytes,
};
Err(e)
}
}
fn munlock_secret_memory(&self) -> Result<()> {
let ptr = &*self.0 as *const Fr as *mut u8;
let n_bytes = size_of_val(&*self.0);
let munlock_succeeded = unsafe { munlock(ptr, n_bytes) };
if munlock_succeeded {
Ok(())
} else {
let e = Error::MunlockFailed {
errno: errno(),
addr: format!("{:?}", ptr),
n_bytes,
};
Err(e)
}
}
fn zero_secret_memory(&self) {
let ptr = &*self.0 as *const Fr as *mut u8;
let n_bytes = size_of_val(&*self.0);
unsafe { unsafe {
write_volatile(ptr, SecretKey::default()); memzero(ptr, n_bytes);
} }
} }
} }
impl SecretKey { impl SecretKey {
/// Creates a secret key from an existing value /// Creates a new `SecretKey` given a mutable raw pointer to a prime
pub fn from_value(f: Fr) -> Self { /// field element. This constructor takes a pointer to avoid any
SecretKey(f) /// unnecessary stack copying/moving of secrets. The field element will
/// be copied bytewise onto the heap, the resulting `Box` is then
/// stored in the `SecretKey`.
///
/// *WARNING* this constructor will overwrite the pointed to `Fr` element
/// with zeros after it has been copied onto the heap.
///
/// # Errors
///
/// Returns an `Error::MlockFailed` if we have reached the systems's
/// locked memory limit.
#[cfg_attr(feature = "cargo-clippy", allow(not_unsafe_ptr_arg_deref))]
pub fn from_mut_ptr(fr_ptr: *mut Fr) -> Result<Self> {
let mut boxed_fr = Box::new(Fr::zero());
unsafe {
copy_nonoverlapping(fr_ptr, &mut *boxed_fr as *mut Fr, 1);
write_volatile(fr_ptr, Fr::zero());
}
let sk = SecretKey(boxed_fr);
sk.mlock_secret_memory()?;
Ok(sk)
}
/// Creates a new random instance of `SecretKey`. This is used
/// as a wrapper around: `let sk: SecretKey = rand::random();`.
///
/// # Panics
///
/// Panics if we have hit the system's locked memory limit when
/// `mlock`ing the new instance of `SecretKey`.
pub fn random() -> Self {
use rand::thread_rng;
let mut rng = thread_rng();
SecretKey::rand(&mut rng)
} }
/// Returns the matching public key. /// Returns the matching public key.
pub fn public_key(&self) -> PublicKey { pub fn public_key(&self) -> PublicKey {
PublicKey(G1Affine::one().mul(self.0)) PublicKey(G1Affine::one().mul(*self.0))
} }
/// Signs the given element of `G2`. /// Signs the given element of `G2`.
pub fn sign_g2<H: Into<G2Affine>>(&self, hash: H) -> Signature { pub fn sign_g2<H: Into<G2Affine>>(&self, hash: H) -> Signature {
Signature(hash.into().mul(self.0)) Signature(hash.into().mul(*self.0))
} }
/// Signs the given message. /// Signs the given message.
@ -246,9 +399,18 @@ impl SecretKey {
return None; return None;
} }
let Ciphertext(ref u, ref v, _) = *ct; let Ciphertext(ref u, ref v, _) = *ct;
let g = u.into_affine().mul(self.0); let g = u.into_affine().mul(*self.0);
Some(xor_vec(&hash_bytes(g, v.len()), v)) Some(xor_vec(&hash_bytes(g, v.len()), v))
} }
/// Generates a non-redacted debug string. This method differs from
/// the `Debug` implementation in that it *does* leak the secret prime
/// field element.
pub fn reveal(&self) -> String {
let uncomp = self.public_key().0.into_affine().into_uncompressed();
let bytes = uncomp.as_ref();
format!("SecretKey({:?})", HexBytes(bytes))
}
} }
/// A secret key share. /// A secret key share.
@ -264,9 +426,21 @@ impl fmt::Debug for SecretKeyShare {
} }
impl SecretKeyShare { impl SecretKeyShare {
/// Creates a secret key share from an existing value /// Creates a secret key share from an existing value. This constructor
pub fn from_value(f: Fr) -> Self { /// takes a pointer to avoid any unnecessary stack copying/moving of
SecretKeyShare(SecretKey::from_value(f)) /// secrets. The field element will be copied bytewise onto the heap,
/// the resulting `Box` is then stored in the `SecretKey` which is then
/// wrapped in a `SecretKeyShare`.
///
/// *WARNING* this constructor will overwrite the pointed to `Fr` element
/// with zeros once it has been copied into a new `SecretKeyShare`.
///
/// # Errors
///
/// Returns an `Error::MlockFailed` if we have reached the systems's
/// locked memory limit.
pub fn from_mut_ptr(fr_ptr: *mut Fr) -> Result<Self> {
SecretKey::from_mut_ptr(fr_ptr).map(SecretKeyShare)
} }
/// Returns the matching public key share. /// Returns the matching public key share.
@ -294,7 +468,16 @@ impl SecretKeyShare {
/// Returns a decryption share, without validating the ciphertext. /// Returns a decryption share, without validating the ciphertext.
pub fn decrypt_share_no_verify(&self, ct: &Ciphertext) -> DecryptionShare { pub fn decrypt_share_no_verify(&self, ct: &Ciphertext) -> DecryptionShare {
DecryptionShare(ct.0.into_affine().mul((self.0).0)) DecryptionShare(ct.0.into_affine().mul(*(self.0).0))
}
/// Generates a non-redacted debug string. This method differs from
/// the `Debug` implementation in that it *does* leak the secret prime
/// field element.
pub fn reveal(&self) -> String {
let uncomp = self.0.public_key().0.into_affine().into_uncompressed();
let bytes = uncomp.as_ref();
format!("SecretKeyShare({:?})", HexBytes(bytes))
} }
} }
@ -411,10 +594,9 @@ impl From<Poly> for SecretKeySet {
impl SecretKeySet { impl SecretKeySet {
/// Creates a set of secret key shares, where any `threshold + 1` of them can collaboratively /// Creates a set of secret key shares, where any `threshold + 1` of them can collaboratively
/// sign and decrypt. /// sign and decrypt.
pub fn random<R: Rng>(threshold: usize, rng: &mut R) -> Self { pub fn random<R: Rng>(threshold: usize, rng: &mut R) -> Result<Self> {
SecretKeySet { let poly = Poly::random(threshold, rng)?;
poly: Poly::random(threshold, rng), Ok(SecretKeySet { poly })
}
} }
/// Returns the threshold `t`: any set of `t + 1` signature shares can be combined into a full /// Returns the threshold `t`: any set of `t + 1` signature shares can be combined into a full
@ -424,9 +606,9 @@ impl SecretKeySet {
} }
/// Returns the `i`-th secret key share. /// Returns the `i`-th secret key share.
pub fn secret_key_share<T: IntoFr>(&self, i: T) -> SecretKeyShare { pub fn secret_key_share<T: IntoFr>(&self, i: T) -> Result<SecretKeyShare> {
let value = self.poly.evaluate(into_fr_plus_1(i)); let mut fr = self.poly.evaluate(into_fr_plus_1(i));
SecretKeyShare(SecretKey(value)) SecretKeyShare::from_mut_ptr(&mut fr as *mut Fr)
} }
/// Returns the corresponding public key set. That information can be shared publicly. /// Returns the corresponding public key set. That information can be shared publicly.
@ -438,8 +620,9 @@ impl SecretKeySet {
/// Returns the secret master key. /// Returns the secret master key.
#[cfg(test)] #[cfg(test)]
fn secret_key(&self) -> SecretKey { fn secret_key(&self) -> Result<SecretKey> {
SecretKey(self.poly.evaluate(0)) let mut fr = self.poly.evaluate(0);
SecretKey::from_mut_ptr(&mut fr as *mut Fr)
} }
} }
@ -546,25 +729,47 @@ mod tests {
#[test] #[test]
fn test_threshold_sig() { fn test_threshold_sig() {
let mut rng = rand::thread_rng(); let mut rng = rand::thread_rng();
let sk_set = SecretKeySet::random(3, &mut rng); let sk_set = SecretKeySet::random(3, &mut rng).expect("Failed to create `SecretKeySet`");
let pk_set = sk_set.public_keys(); let pk_set = sk_set.public_keys();
let pk_master = pk_set.public_key();
// Make sure the keys are different, and the first coefficient is the main key. // Make sure the keys are different, and the first coefficient is the main key.
assert_ne!(pk_set.public_key(), pk_set.public_key_share(0).0); assert_ne!(pk_master, pk_set.public_key_share(0).0);
assert_ne!(pk_set.public_key(), pk_set.public_key_share(1).0); assert_ne!(pk_master, pk_set.public_key_share(1).0);
assert_ne!(pk_set.public_key(), pk_set.public_key_share(2).0); assert_ne!(pk_master, pk_set.public_key_share(2).0);
// Make sure we don't hand out the main secret key to anyone. // Make sure we don't hand out the main secret key to anyone.
assert_ne!(sk_set.secret_key(), sk_set.secret_key_share(0).0); let sk_master = sk_set
assert_ne!(sk_set.secret_key(), sk_set.secret_key_share(1).0); .secret_key()
assert_ne!(sk_set.secret_key(), sk_set.secret_key_share(2).0); .expect("Failed to create master `SecretKey`");
let sk_share_0 = sk_set
.secret_key_share(0)
.expect("Failed to create first `SecretKeyShare`")
.0;
let sk_share_1 = sk_set
.secret_key_share(1)
.expect("Failed to create second `SecretKeyShare`")
.0;
let sk_share_2 = sk_set
.secret_key_share(2)
.expect("Failed to create third `SecretKeyShare`")
.0;
assert_ne!(sk_master, sk_share_0);
assert_ne!(sk_master, sk_share_1);
assert_ne!(sk_master, sk_share_2);
let msg = "Totally real news"; let msg = "Totally real news";
// The threshold is 3, so 4 signature shares will suffice to recreate the share. // The threshold is 3, so 4 signature shares will suffice to recreate the share.
let sigs: BTreeMap<_, _> = [5, 8, 7, 10] let sigs: BTreeMap<_, _> = [5, 8, 7, 10]
.into_iter() .iter()
.map(|i| (*i, sk_set.secret_key_share(*i).sign(msg))) .map(|&i| {
let sig = sk_set
.secret_key_share(i)
.unwrap_or_else(|_| panic!("Failed to create `SecretKeyShare` #{}", i))
.sign(msg);
(i, sig)
})
.collect(); .collect();
// Each of the shares is a valid signature matching its public key share. // Each of the shares is a valid signature matching its public key share.
@ -578,8 +783,14 @@ mod tests {
// A different set of signatories produces the same signature. // A different set of signatories produces the same signature.
let sigs2: BTreeMap<_, _> = [42, 43, 44, 45] let sigs2: BTreeMap<_, _> = [42, 43, 44, 45]
.into_iter() .iter()
.map(|i| (*i, sk_set.secret_key_share(*i).sign(msg))) .map(|&i| {
let sig = sk_set
.secret_key_share(i)
.unwrap_or_else(|_| panic!("Failed to create `SecretKeyShare` #{}", i))
.sign(msg);
(i, sig)
})
.collect(); .collect();
let sig2 = pk_set.combine_signatures(&sigs2).expect("signatures match"); let sig2 = pk_set.combine_signatures(&sigs2).expect("signatures match");
assert_eq!(sig, sig2); assert_eq!(sig, sig2);
@ -612,18 +823,21 @@ mod tests {
#[test] #[test]
fn test_threshold_enc() { fn test_threshold_enc() {
let mut rng = rand::thread_rng(); let mut rng = rand::thread_rng();
let sk_set = SecretKeySet::random(3, &mut rng); let sk_set = SecretKeySet::random(3, &mut rng).expect("Failed to create to `SecretKeySet`");
let pk_set = sk_set.public_keys(); let pk_set = sk_set.public_keys();
let msg = b"Totally real news"; let msg = b"Totally real news";
let ciphertext = pk_set.public_key().encrypt(&msg[..]); let ciphertext = pk_set.public_key().encrypt(&msg[..]);
// The threshold is 3, so 4 signature shares will suffice to decrypt. // The threshold is 3, so 4 signature shares will suffice to decrypt.
let shares: BTreeMap<_, _> = [5, 8, 7, 10] let shares: BTreeMap<_, _> = [5, 8, 7, 10]
.into_iter() .iter()
.map(|i| { .map(|&i| {
let ski = sk_set.secret_key_share(*i); let dec_share = sk_set
let share = ski.decrypt_share(&ciphertext).expect("ciphertext is valid"); .secret_key_share(i)
(*i, share) .unwrap_or_else(|_| panic!("Failed to create `SecretKeyShare` #{}", i))
.decrypt_share(&ciphertext)
.expect("ciphertext is valid");
(i, dec_share)
}) })
.collect(); .collect();

@ -17,32 +17,74 @@
//! polynomials (in two variables) over a field `Fr`, as well as their _commitments_ in `G`. //! polynomials (in two variables) over a field `Fr`, as well as their _commitments_ in `G`.
use std::borrow::Borrow; use std::borrow::Borrow;
use std::fmt::{self, Debug, Formatter};
use std::hash::{Hash, Hasher}; use std::hash::{Hash, Hasher};
use std::ptr::write_volatile; use std::mem::{size_of, size_of_val};
use std::{cmp, iter, ops}; use std::{cmp, iter, ops};
use errno::errno;
use memsec::{memzero, mlock, munlock};
use pairing::bls12_381::{Fr, G1, G1Affine}; use pairing::bls12_381::{Fr, G1, G1Affine};
use pairing::{CurveAffine, CurveProjective, Field}; use pairing::{CurveAffine, CurveProjective, Field};
use rand::Rng; use rand::Rng;
use super::IntoFr; use super::{ContainsSecret, Error, IntoFr, Result};
/// A univariate polynomial in the prime field. /// A univariate polynomial in the prime field.
#[derive(Clone, Debug, Serialize, Deserialize, PartialEq, Eq)] #[derive(Serialize, Deserialize, PartialEq, Eq)]
pub struct Poly { pub struct Poly {
/// The coefficients of a polynomial. /// The coefficients of a polynomial.
#[serde(with = "super::serde_impl::field_vec")] #[serde(with = "super::serde_impl::field_vec")]
pub(super) coeff: Vec<Fr>, pub(super) coeff: Vec<Fr>,
} }
/// Creates a new `Poly` with the same coefficients as another polynomial.
///
/// # Panics
///
/// Panics if we have hit the system's locked memory limit when `mlock`ing the new instance of
/// `Poly`.
impl Clone for Poly {
fn clone(&self) -> Self {
match Poly::new(self.coeff.clone()) {
Ok(poly) => poly,
Err(e) => panic!("Failed to clone `Poly`: {}", e),
}
}
}
/// A debug statement where the `coeff` vector of prime field elements has been redacted.
impl Debug for Poly {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
write!(f, "Poly {{ coeff: ... }}")
}
}
/// # Panics
///
/// Panics if we hit the system's locked memory limit or if we fail to unlock memory that has been
/// truncated from the `coeff` vector.
#[cfg_attr(feature = "cargo-clippy", allow(suspicious_op_assign_impl))]
impl<B: Borrow<Poly>> ops::AddAssign<B> for Poly { impl<B: Borrow<Poly>> ops::AddAssign<B> for Poly {
fn add_assign(&mut self, rhs: B) { fn add_assign(&mut self, rhs: B) {
let len = cmp::max(self.coeff.len(), rhs.borrow().coeff.len()); let len = self.coeff.len();
self.coeff.resize(len, Fr::zero()); let rhs_len = rhs.borrow().coeff.len();
if rhs_len > len {
self.coeff.resize(rhs_len, Fr::zero());
let n_coeffs_added = rhs_len - len;
if let Err(e) = self.extend_mlock(n_coeffs_added) {
panic!(
"Failed to extend `Poly` memory lock during add-assign: {}",
e
);
}
}
for (self_c, rhs_c) in self.coeff.iter_mut().zip(&rhs.borrow().coeff) { for (self_c, rhs_c) in self.coeff.iter_mut().zip(&rhs.borrow().coeff) {
self_c.add_assign(rhs_c); self_c.add_assign(rhs_c);
} }
self.remove_zeros(); if let Err(e) = self.remove_zeros() {
panic!("Failed to unlock `Poly` memory during add-assign: {}", e);
}
} }
} }
@ -63,6 +105,10 @@ impl<B: Borrow<Poly>> ops::Add<B> for Poly {
} }
} }
/// # Panics
///
/// Panics if we hit the system's locked memory limit or if we fail to unlock memory that has been
/// truncated from the `coeff` vector.
impl<'a> ops::Add<Fr> for Poly { impl<'a> ops::Add<Fr> for Poly {
type Output = Poly; type Output = Poly;
@ -70,10 +116,15 @@ impl<'a> ops::Add<Fr> for Poly {
if self.coeff.is_empty() { if self.coeff.is_empty() {
if !rhs.is_zero() { if !rhs.is_zero() {
self.coeff.push(rhs); self.coeff.push(rhs);
if let Err(e) = self.extend_mlock(1) {
panic!("Failed to extend `Poly` memory lock during add: {}", e);
}
} }
} else { } else {
self.coeff[0].add_assign(&rhs); self.coeff[0].add_assign(&rhs);
self.remove_zeros(); if let Err(e) = self.remove_zeros() {
panic!("Failed to unlock `Poly` memory during add: {}", e);
}
} }
self self
} }
@ -87,14 +138,30 @@ impl<'a> ops::Add<u64> for Poly {
} }
} }
/// # Panics
///
/// Panics if we hit the system's locked memory limit or if we fail to unlock memory that has been
/// truncated from the `coeff` vector.
impl<B: Borrow<Poly>> ops::SubAssign<B> for Poly { impl<B: Borrow<Poly>> ops::SubAssign<B> for Poly {
fn sub_assign(&mut self, rhs: B) { fn sub_assign(&mut self, rhs: B) {
let len = cmp::max(self.coeff.len(), rhs.borrow().coeff.len()); let len = self.coeff.len();
self.coeff.resize(len, Fr::zero()); let rhs_len = rhs.borrow().coeff.len();
if rhs_len > len {
self.coeff.resize(rhs_len, Fr::zero());
let n_coeffs_added = rhs_len - len;
if let Err(e) = self.extend_mlock(n_coeffs_added) {
panic!(
"Failed to extend `Poly` memory lock during sub-assign: {}",
e
);
}
}
for (self_c, rhs_c) in self.coeff.iter_mut().zip(&rhs.borrow().coeff) { for (self_c, rhs_c) in self.coeff.iter_mut().zip(&rhs.borrow().coeff) {
self_c.sub_assign(rhs_c); self_c.sub_assign(rhs_c);
} }
self.remove_zeros(); if let Err(e) = self.remove_zeros() {
panic!("Failed to unlock `Poly` memory during sub-assign: {}", e);
}
} }
} }
@ -134,14 +201,19 @@ impl<'a> ops::Sub<u64> for Poly {
} }
} }
/// # Panics
///
/// Panics if we hit the system's locked memory limit or if we fail to unlock memory that has been
/// truncated from the `coeff` vector.
// Clippy thinks using any `+` and `-` in a `Mul` implementation is suspicious. // Clippy thinks using any `+` and `-` in a `Mul` implementation is suspicious.
#[cfg_attr(feature = "cargo-clippy", allow(suspicious_arithmetic_impl))] #[cfg_attr(feature = "cargo-clippy", allow(suspicious_arithmetic_impl))]
impl<'a, B: Borrow<Poly>> ops::Mul<B> for &'a Poly { impl<'a, B: Borrow<Poly>> ops::Mul<B> for &'a Poly {
type Output = Poly; type Output = Poly;
fn mul(self, rhs: B) -> Self::Output { fn mul(self, rhs: B) -> Self::Output {
let coeff = (0..(self.coeff.len() + rhs.borrow().coeff.len() - 1)) let coeff: Vec<Fr> = (0..(self.coeff.len() + rhs.borrow().coeff.len() - 1))
.map(|i| { .map(|i| {
// TODO: clear these secrets from the stack.
let mut c = Fr::zero(); let mut c = Fr::zero();
for j in i.saturating_sub(rhs.borrow().degree())..(1 + cmp::min(i, self.degree())) { for j in i.saturating_sub(rhs.borrow().degree())..(1 + cmp::min(i, self.degree())) {
let mut s = self.coeff[j]; let mut s = self.coeff[j];
@ -151,7 +223,11 @@ impl<'a, B: Borrow<Poly>> ops::Mul<B> for &'a Poly {
c c
}) })
.collect(); .collect();
Poly { coeff }
match Poly::new(coeff) {
Ok(poly) => poly,
Err(e) => panic!("Failed to create a new `Poly` duing muliplication: {}", e),
}
} }
} }
@ -169,11 +245,19 @@ impl<B: Borrow<Self>> ops::MulAssign<B> for Poly {
} }
} }
/// # Panics
///
/// This operation may panic if: when multiplying the polynomial by a zero field element, we fail
/// to munlock the cleared `coeff` vector.
impl<'a> ops::Mul<Fr> for Poly { impl<'a> ops::Mul<Fr> for Poly {
type Output = Poly; type Output = Poly;
fn mul(mut self, rhs: Fr) -> Self::Output { fn mul(mut self, rhs: Fr) -> Self::Output {
if rhs.is_zero() { if rhs.is_zero() {
self.zero_secret_memory();
if let Err(e) = self.munlock_secret_memory() {
panic!("Failed to unlock `Poly` during multiplication: {}", e);
}
self.coeff.clear(); self.coeff.clear();
} else { } else {
self.coeff.iter_mut().for_each(|c| c.mul_assign(&rhs)); self.coeff.iter_mut().for_each(|c| c.mul_assign(&rhs));
@ -190,59 +274,151 @@ impl<'a> ops::Mul<u64> for Poly {
} }
} }
/// # Panics
///
/// Panics if we fail to munlock the `coeff` vector.
impl Drop for Poly { impl Drop for Poly {
fn drop(&mut self) { fn drop(&mut self) {
let start = self.coeff.as_mut_ptr(); self.zero_secret_memory();
unsafe { if let Err(e) = self.munlock_secret_memory() {
for i in 0..self.coeff.len() { panic!("Failed to munlock `Poly` during drop: {}", e);
let ptr = start.offset(i as isize);
write_volatile(ptr, Fr::zero());
} }
} }
} }
impl ContainsSecret for Poly {
fn mlock_secret_memory(&self) -> Result<()> {
let ptr = self.coeff.as_ptr() as *mut u8;
let n_bytes = size_of_val(self.coeff.as_slice());
if n_bytes == 0 {
return Ok(());
}
let mlock_succeeded = unsafe { mlock(ptr, n_bytes) };
if mlock_succeeded {
Ok(())
} else {
let e = Error::MlockFailed {
errno: errno(),
addr: format!("{:?}", ptr),
n_bytes,
};
Err(e)
}
}
fn munlock_secret_memory(&self) -> Result<()> {
let ptr = self.coeff.as_ptr() as *mut u8;
let n_bytes = size_of_val(self.coeff.as_slice());
if n_bytes == 0 {
return Ok(());
}
let munlock_succeeded = unsafe { munlock(ptr, n_bytes) };
if munlock_succeeded {
Ok(())
} else {
let e = Error::MunlockFailed {
errno: errno(),
addr: format!("{:?}", ptr),
n_bytes,
};
Err(e)
}
}
fn zero_secret_memory(&self) {
let ptr = self.coeff.as_ptr() as *mut u8;
let n_bytes = size_of_val(self.coeff.as_slice());
unsafe {
memzero(ptr, n_bytes);
}
}
} }
impl Poly { impl Poly {
/// Creates a random polynomial. /// Creates a new `Poly` instance from a vector of prime field elements representing the
pub fn random<R: Rng>(degree: usize, rng: &mut R) -> Self { /// coefficients of the polynomial. The `mlock` system call is applied to the region of the
Poly { /// heap where the field elements are allocated.
coeff: (0..(degree + 1)).map(|_| rng.gen()).collect(), ///
/// # Errors
///
/// Returns an `Error::MlockFailed` if we have reached the systems's locked memory limit.
pub fn new(coeff: Vec<Fr>) -> Result<Self> {
let poly = Poly { coeff };
poly.mlock_secret_memory()?;
Ok(poly)
} }
/// Creates a random polynomial.
///
/// # Errors
///
/// Returns an `Error::MlockFailed` if we have reached the systems's locked memory limit.
pub fn random<R: Rng>(degree: usize, rng: &mut R) -> Result<Self> {
let coeff: Vec<Fr> = (0..=degree).map(|_| rng.gen()).collect();
Poly::new(coeff)
} }
/// Returns the polynomial with constant value `0`. /// Returns the polynomial with constant value `0`.
pub fn zero() -> Self { ///
Poly { coeff: Vec::new() } /// # Errors
///
/// Returns an `Error::MlockFailed` if we have reached the systems's locked memory limit.
pub fn zero() -> Result<Self> {
Poly::new(vec![])
} }
/// Returns the polynomial with constant value `1`. /// Returns the polynomial with constant value `1`.
pub fn one() -> Self { ///
/// # Errors
///
/// Returns an `Error::MlockFailed` if we have reached the systems's locked memory limit.
pub fn one() -> Result<Self> {
Self::monomial(0) Self::monomial(0)
} }
/// Returns the polynomial with constant value `c`. /// Returns the polynomial with constant value `c`.
pub fn constant(c: Fr) -> Self { ///
Poly { coeff: vec![c] } /// # Errors
///
/// Returns an `Error::MlockFailed` if we have reached the systems's locked memory limit.
pub fn constant(c: Fr) -> Result<Self> {
let ptr = &c as *const Fr as *mut u8;
let res = Poly::new(vec![c]);
unsafe {
memzero(ptr, size_of::<Fr>());
}
res
} }
/// Returns the identity function, i.e. the polynomial "`x`". /// Returns the identity function, i.e. the polynomial "`x`".
pub fn identity() -> Self { ///
/// # Errors
///
/// Returns an `Error::MlockFailed` if we have reached the systems's locked memory limit.
pub fn identity() -> Result<Self> {
Self::monomial(1) Self::monomial(1)
} }
/// Returns the (monic) monomial "`x.pow(degree)`". /// Returns the (monic) monomial "`x.pow(degree)`"
pub fn monomial(degree: usize) -> Self { ///
Poly { /// # Errors
coeff: iter::repeat(Fr::zero()) ///
/// Returns an `Error::MlockFailed` if we have reached the systems's locked memory limit.
pub fn monomial(degree: usize) -> Result<Self> {
let coeff: Vec<Fr> = iter::repeat(Fr::zero())
.take(degree) .take(degree)
.chain(iter::once(Fr::one())) .chain(iter::once(Fr::one()))
.collect(), .collect();
} Poly::new(coeff)
} }
/// Returns the unique polynomial `f` of degree `samples.len() - 1` with the given values /// Returns the unique polynomial `f` of degree `samples.len() - 1` with the given values
/// `(x, f(x))`. /// `(x, f(x))`.
pub fn interpolate<T, U, I>(samples_repr: I) -> Self ///
/// # Errors
///
/// Returns an `Error::MlockFailed` if we have reached the systems's locked memory limit.
pub fn interpolate<T, U, I>(samples_repr: I) -> Result<Self>
where where
I: IntoIterator<Item = (T, U)>, I: IntoIterator<Item = (T, U)>,
T: IntoFr, T: IntoFr,
@ -281,15 +457,26 @@ impl Poly {
} }
/// Removes all trailing zero coefficients. /// Removes all trailing zero coefficients.
fn remove_zeros(&mut self) { ///
/// # Errors
///
/// An `Error::MunlockFailed` is returned if we failed to `munlock` the truncated portion of
/// the `coeff` vector.
fn remove_zeros(&mut self) -> Result<()> {
let zeros = self.coeff.iter().rev().take_while(|c| c.is_zero()).count(); let zeros = self.coeff.iter().rev().take_while(|c| c.is_zero()).count();
let len = self.coeff.len() - zeros; let len = self.coeff.len() - zeros;
self.coeff.truncate(len) self.coeff.truncate(len);
self.truncate_mlock(zeros)
} }
/// Returns the unique polynomial `f` of degree `samples.len() - 1` with the given values /// Returns the unique polynomial `f` of degree `samples.len() - 1` with the given values
/// `(x, f(x))`. /// `(x, f(x))`.
fn compute_interpolation(samples: &[(Fr, Fr)]) -> Self { ///
/// # Errors
///
/// Returns an `Error::MlockFailed` if we hit the system's locked memory limit and failed to
/// `mlock` the new `Poly` instance.
fn compute_interpolation(samples: &[(Fr, Fr)]) -> Result<Self> {
if samples.is_empty() { if samples.is_empty() {
return Poly::zero(); return Poly::zero();
} else if samples.len() == 1 { } else if samples.len() == 1 {
@ -298,23 +485,79 @@ impl Poly {
// The degree is at least 1 now. // The degree is at least 1 now.
let degree = samples.len() - 1; let degree = samples.len() - 1;
// Interpolate all but the last sample. // Interpolate all but the last sample.
let prev = Self::compute_interpolation(&samples[..degree]); let prev = Self::compute_interpolation(&samples[..degree])?;
let (x, mut y) = samples[degree]; // The last sample. let (x, mut y) = samples[degree]; // The last sample.
y.sub_assign(&prev.evaluate(x)); y.sub_assign(&prev.evaluate(x));
let step = Self::lagrange(x, &samples[..degree]); let step = Self::lagrange(x, &samples[..degree])?;
prev + step * Self::constant(y) Self::constant(y).map(|poly| poly * step + prev)
} }
/// Returns the Lagrange base polynomial that is `1` in `p` and `0` in every `samples[i].0`. /// Returns the Lagrange base polynomial that is `1` in `p` and `0` in every `samples[i].0`.
fn lagrange(p: Fr, samples: &[(Fr, Fr)]) -> Self { ///
let mut result = Self::one(); /// # Errors
///
/// Returns an `Error::MlockFailed` if we hit the system's locked memory limit.
fn lagrange(p: Fr, samples: &[(Fr, Fr)]) -> Result<Self> {
let mut result = Self::one()?;
for &(sx, _) in samples { for &(sx, _) in samples {
let mut denom = p; let mut denom = p;
denom.sub_assign(&sx); denom.sub_assign(&sx);
denom = denom.inverse().expect("sample points must be distinct"); denom = denom.inverse().expect("sample points must be distinct");
result *= (Self::identity() - Self::constant(sx)) * Self::constant(denom); result *= (Self::identity()? - Self::constant(sx)?) * Self::constant(denom)?;
}
Ok(result)
}
// Removes the `mlock` for `len` elements that have been truncated from the `coeff` vector.
fn truncate_mlock(&self, len: usize) -> Result<()> {
let n_bytes_truncated = len * size_of::<Fr>();
if n_bytes_truncated == 0 {
return Ok(());
}
unsafe {
let ptr = self.coeff.as_ptr().offset(self.coeff.len() as isize) as *mut u8;
let munlock_succeeded = munlock(ptr, n_bytes_truncated);
if munlock_succeeded {
Ok(())
} else {
let e = Error::MunlockFailed {
errno: errno(),
addr: format!("{:?}", ptr),
n_bytes: n_bytes_truncated,
};
Err(e)
}
}
}
// Extends the `mlock` on the `coeff` vector when `len` new elements are added.
fn extend_mlock(&self, len: usize) -> Result<()> {
let n_bytes_extended = len * size_of::<Fr>();
if n_bytes_extended == 0 {
return Ok(());
}
let offset = (self.coeff.len() - len) as isize;
unsafe {
let ptr = self.coeff.as_ptr().offset(offset) as *mut u8;
let mlock_succeeded = mlock(ptr, n_bytes_extended);
if mlock_succeeded {
Ok(())
} else {
let e = Error::MunlockFailed {
errno: errno(),
addr: format!("{:?}", ptr),
n_bytes: n_bytes_extended,
};
Err(e)
} }
result }
}
/// Generates a non-redacted debug string. This method differs from
/// the `Debug` implementation in that it *does* leak the secret prime
/// field elements.
pub fn reveal(&self) -> String {
format!("Poly {{ coeff: {:?} }}", self.coeff)
} }
} }
@ -395,7 +638,6 @@ impl Commitment {
/// ///
/// This can be used for Verifiable Secret Sharing and Distributed Key Generation. See the module /// This can be used for Verifiable Secret Sharing and Distributed Key Generation. See the module
/// documentation for details. /// documentation for details.
#[derive(Debug, Clone)]
pub struct BivarPoly { pub struct BivarPoly {
/// The polynomial's degree in each of the two variables. /// The polynomial's degree in each of the two variables.
degree: usize, degree: usize,
@ -404,28 +646,106 @@ pub struct BivarPoly {
coeff: Vec<Fr>, coeff: Vec<Fr>,
} }
/// # Panics
///
/// Panics if we have hit the system's locked memory limit when `mlock`ing the new instance of
/// `BivarPoly`.
impl Clone for BivarPoly {
fn clone(&self) -> Self {
let poly = BivarPoly {
degree: self.degree,
coeff: self.coeff.clone(),
};
if let Err(e) = poly.mlock_secret_memory() {
panic!("Failed to clone `BivarPoly`: {}", e);
}
poly
}
}
/// # Panics
///
/// Panics if we fail to munlock the `coeff` vector.
impl Drop for BivarPoly { impl Drop for BivarPoly {
fn drop(&mut self) { fn drop(&mut self) {
let start = self.coeff.as_mut_ptr(); self.zero_secret_memory();
unsafe { if let Err(e) = self.munlock_secret_memory() {
for i in 0..self.coeff.len() { panic!("Failed to munlock `BivarPoly` during drop: {}", e);
let ptr = start.offset(i as isize); }
write_volatile(ptr, Fr::zero()); }
}
/// A debug statement where the `coeff` vector has been redacted.
impl Debug for BivarPoly {
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
write!(f, "BivarPoly {{ degree: {}, coeff: ... }}", self.degree)
}
}
impl ContainsSecret for BivarPoly {
fn mlock_secret_memory(&self) -> Result<()> {
let ptr = self.coeff.as_ptr() as *mut u8;
let n_bytes = size_of_val(self.coeff.as_slice());
if n_bytes == 0 {
return Ok(());
}
let mlock_succeeded = unsafe { mlock(ptr, n_bytes) };
if mlock_succeeded {
Ok(())
} else {
let e = Error::MlockFailed {
errno: errno(),
addr: format!("{:?}", ptr),
n_bytes,
};
Err(e)
}
}
fn munlock_secret_memory(&self) -> Result<()> {
let ptr = self.coeff.as_ptr() as *mut u8;
let n_bytes = size_of_val(self.coeff.as_slice());
if n_bytes == 0 {
return Ok(());
}
let munlock_succeeded = unsafe { munlock(ptr, n_bytes) };
if munlock_succeeded {
Ok(())
} else {
let e = Error::MunlockFailed {
errno: errno(),
addr: format!("{:?}", ptr),
n_bytes,
};
Err(e)
} }
} }
fn zero_secret_memory(&self) {
let ptr = self.coeff.as_ptr() as *mut u8;
let n_bytes = size_of_val(self.coeff.as_slice());
unsafe {
memzero(ptr, n_bytes);
}
} }
} }
impl BivarPoly { impl BivarPoly {
/// Creates a random polynomial. /// Creates a random polynomial.
pub fn random<R: Rng>(degree: usize, rng: &mut R) -> Self { ///
BivarPoly { /// # Errors
///
/// Returns an `Error::MlockFailed` if we have reached the systems's locked memory limit.
pub fn random<R: Rng>(degree: usize, rng: &mut R) -> Result<Self> {
let poly = BivarPoly {
degree, degree,
coeff: (0..coeff_pos(degree + 1, 0)).map(|_| rng.gen()).collect(), coeff: (0..coeff_pos(degree + 1, 0)).map(|_| rng.gen()).collect(),
} };
poly.mlock_secret_memory()?;
Ok(poly)
} }
/// Returns the polynomial's degree: It is the same in both variables. /// Returns the polynomial's degree; which is the same in both variables.
pub fn degree(&self) -> usize { pub fn degree(&self) -> usize {
self.degree self.degree
} }
@ -448,10 +768,16 @@ impl BivarPoly {
} }
/// Returns the `x`-th row, as a univariate polynomial. /// Returns the `x`-th row, as a univariate polynomial.
pub fn row<T: IntoFr>(&self, x: T) -> Poly { ///
/// # Errors
///
/// Returns an `Error::MlockFailed` if we have reached the systems's locked memory limit when
/// creating the new `Poly` instance.
pub fn row<T: IntoFr>(&self, x: T) -> Result<Poly> {
let x_pow = self.powers(x); let x_pow = self.powers(x);
let coeff: Vec<Fr> = (0..=self.degree) let coeff: Vec<Fr> = (0..=self.degree)
.map(|i| { .map(|i| {
// TODO: clear these secrets from the stack.
let mut result = Fr::zero(); let mut result = Fr::zero();
for (j, x_pow_j) in x_pow.iter().enumerate() { for (j, x_pow_j) in x_pow.iter().enumerate() {
let mut summand = self.coeff[coeff_pos(i, j)]; let mut summand = self.coeff[coeff_pos(i, j)];
@ -461,7 +787,7 @@ impl BivarPoly {
result result
}) })
.collect(); .collect();
Poly { coeff } Poly::new(coeff)
} }
/// Returns the corresponding commitment. That information can be shared publicly. /// Returns the corresponding commitment. That information can be shared publicly.
@ -477,6 +803,16 @@ impl BivarPoly {
fn powers<T: IntoFr>(&self, x: T) -> Vec<Fr> { fn powers<T: IntoFr>(&self, x: T) -> Vec<Fr> {
powers(x, self.degree) powers(x, self.degree)
} }
/// Generates a non-redacted debug string. This method differs from the
/// `Debug` implementation in that it *does* leak the the struct's
/// internal state.
pub fn reveal(&self) -> String {
format!(
"BivarPoly {{ degree: {}, coeff: {:?} }}",
self.degree, self.coeff
)
}
} }
/// A commitment to a symmetric bivariate polynomial. /// A commitment to a symmetric bivariate polynomial.
@ -595,14 +931,18 @@ mod tests {
#[test] #[test]
fn poly() { fn poly() {
// The polynomial 5 X³ + X - 2. // The polynomial 5 X³ + X - 2.
let poly = Poly::monomial(3) * 5 + Poly::monomial(1) - 2; let x_pow_3 = Poly::monomial(3).expect("Failed to create monic polynomial of degree 3");
let x_pow_1 = Poly::monomial(1).expect("Failed to create monic polynomial of degree 1");
let poly = x_pow_3 * 5 + x_pow_1 - 2;
let coeff: Vec<_> = [-2, 1, 0, 5].into_iter().map(IntoFr::into_fr).collect(); let coeff: Vec<_> = [-2, 1, 0, 5].into_iter().map(IntoFr::into_fr).collect();
assert_eq!(Poly { coeff }, poly); assert_eq!(Poly { coeff }, poly);
let samples = vec![(-1, -8), (2, 40), (3, 136), (5, 628)]; let samples = vec![(-1, -8), (2, 40), (3, 136), (5, 628)];
for &(x, y) in &samples { for &(x, y) in &samples {
assert_eq!(y.into_fr(), poly.evaluate(x)); assert_eq!(y.into_fr(), poly.evaluate(x));
} }
assert_eq!(Poly::interpolate(samples), poly); let interp = Poly::interpolate(samples).expect("Failed to interpolate `Poly`");
assert_eq!(interp, poly);
} }
#[test] #[test]
@ -616,7 +956,10 @@ mod tests {
// generates random bivariate polynomials and publicly commits to them. In partice, the // generates random bivariate polynomials and publicly commits to them. In partice, the
// dealers can e.g. be any `faulty_num + 1` nodes. // dealers can e.g. be any `faulty_num + 1` nodes.
let bi_polys: Vec<BivarPoly> = (0..dealer_num) let bi_polys: Vec<BivarPoly> = (0..dealer_num)
.map(|_| BivarPoly::random(faulty_num, &mut rng)) .map(|_| {
BivarPoly::random(faulty_num, &mut rng)
.expect("Failed to create random `BivarPoly`")
})
.collect(); .collect();
let pub_bi_commits: Vec<_> = bi_polys.iter().map(BivarPoly::commitment).collect(); let pub_bi_commits: Vec<_> = bi_polys.iter().map(BivarPoly::commitment).collect();
@ -628,7 +971,9 @@ mod tests {
for (bi_poly, bi_commit) in bi_polys.iter().zip(&pub_bi_commits) { for (bi_poly, bi_commit) in bi_polys.iter().zip(&pub_bi_commits) {
for m in 1..=node_num { for m in 1..=node_num {
// Node `m` receives its row and verifies it. // Node `m` receives its row and verifies it.
let row_poly = bi_poly.row(m); let row_poly = bi_poly
.row(m)
.unwrap_or_else(|_| panic!("Failed to create row #{}", m));
let row_commit = bi_commit.row(m); let row_commit = bi_commit.row(m);
assert_eq!(row_poly.commitment(), row_commit); assert_eq!(row_poly.commitment(), row_commit);
// Node `s` receives the `s`-th value and verifies it. // Node `s` receives the `s`-th value and verifies it.
@ -641,7 +986,11 @@ mod tests {
} }
// A cheating dealer who modified the polynomial would be detected. // A cheating dealer who modified the polynomial would be detected.
let wrong_poly = row_poly.clone() + Poly::monomial(2) * Poly::constant(5.into_fr()); let x_pow_2 =
Poly::monomial(2).expect("Failed to create monic polynomial of degree 2");
let five = Poly::constant(5.into_fr())
.expect("Failed to create polynomial with constant 5");
let wrong_poly = row_poly.clone() + x_pow_2 * five;
assert_ne!(wrong_poly.commitment(), row_commit); assert_ne!(wrong_poly.commitment(), row_commit);
// If `2 * faulty_num + 1` nodes confirm that they received a valid row, then at // If `2 * faulty_num + 1` nodes confirm that they received a valid row, then at
@ -655,7 +1004,8 @@ mod tests {
.iter() .iter()
.map(|&i| (i, bi_poly.evaluate(m, i))) .map(|&i| (i, bi_poly.evaluate(m, i)))
.collect(); .collect();
let my_row = Poly::interpolate(received); let my_row =
Poly::interpolate(received).expect("Failed to create `Poly` via interpolation");
assert_eq!(bi_poly.evaluate(m, 0), my_row.evaluate(0)); assert_eq!(bi_poly.evaluate(m, 0), my_row.evaluate(0));
assert_eq!(row_poly, my_row); assert_eq!(row_poly, my_row);
@ -670,9 +1020,11 @@ mod tests {
// The whole first column never gets added up in practice, because nobody has all the // The whole first column never gets added up in practice, because nobody has all the
// information. We do it anyway here; entry `0` is the secret key that is not known to // information. We do it anyway here; entry `0` is the secret key that is not known to
// anyone, neither a dealer, nor a node: // anyone, neither a dealer, nor a node:
let mut sec_key_set = Poly::zero(); let mut sec_key_set = Poly::zero().expect("Failed to create empty `Poly`");
for bi_poly in &bi_polys { for bi_poly in &bi_polys {
sec_key_set += bi_poly.row(0); sec_key_set += bi_poly
.row(0)
.expect("Failed to create `Poly` from row #0 for `BivarPoly`");
} }
for m in 1..=node_num { for m in 1..=node_num {
assert_eq!(sec_key_set.evaluate(m), sec_keys[m - 1]); assert_eq!(sec_key_set.evaluate(m), sec_keys[m - 1]);
@ -680,7 +1032,9 @@ mod tests {
// The sum of the first rows of the public commitments is the commitment to the secret key // The sum of the first rows of the public commitments is the commitment to the secret key
// set. // set.
let mut sum_commit = Poly::zero().commitment(); let mut sum_commit = Poly::zero()
.expect("Failed to create empty `Poly`")
.commitment();
for bi_commit in &pub_bi_commits { for bi_commit in &pub_bi_commits {
sum_commit += bi_commit.row(0); sum_commit += bi_commit.row(0);
} }

Loading…
Cancel
Save