You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
rocksdb/table/cuckoo/cuckoo_table_reader.h

94 lines
3.2 KiB

// Copyright (c) 2011-present, Facebook, Inc. All rights reserved.
// This source code is licensed under both the GPLv2 (found in the
// COPYING file in the root directory) and Apache 2.0 License
// (found in the LICENSE.Apache file in the root directory).
//
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
#pragma once
#ifndef ROCKSDB_LITE
#include <string>
#include <memory>
#include <utility>
#include <vector>
#include "db/dbformat.h"
#include "options/cf_options.h"
#include "rocksdb/env.h"
#include "rocksdb/options.h"
#include "table/table_reader.h"
#include "util/file_reader_writer.h"
namespace rocksdb {
class Arena;
class TableReader;
class CuckooTableReader: public TableReader {
public:
CuckooTableReader(const ImmutableCFOptions& ioptions,
std::unique_ptr<RandomAccessFileReader>&& file,
uint64_t file_size, const Comparator* user_comparator,
uint64_t (*get_slice_hash)(const Slice&, uint32_t,
uint64_t));
~CuckooTableReader() {}
std::shared_ptr<const TableProperties> GetTableProperties() const override {
return table_props_;
}
Status status() const { return status_; }
Status Get(const ReadOptions& readOptions, const Slice& key,
GetContext* get_context, const SliceTransform* prefix_extractor,
bool skip_filters = false) override;
// Returns a new iterator over table contents
// compaction_readahead_size: its value will only be used if for_compaction =
// true
InternalIterator* NewIterator(const ReadOptions&,
const SliceTransform* prefix_extractor,
Arena* arena, bool skip_filters,
TableReaderCaller caller, size_t compaction_readahead_size = 0) override;
Implement Prepare method in CuckooTableReader Summary: - Implement Prepare method - Rewrite performance tests in cuckoo_table_reader_test to write new file only if one doesn't already exist. - Add performance tests for batch lookup along with prefetching. Test Plan: ./cuckoo_table_reader_test --enable_perf Results (We get better results if we used int64 comparator instead of string comparator (TBD in future diffs)): With 100000000 items and hash table ratio 0.500000, number of hash functions used: 2. Time taken per op is 0.208us (4.8 Mqps) with batch size of 0 With 100000000 items and hash table ratio 0.500000, number of hash functions used: 2. Time taken per op is 0.182us (5.5 Mqps) with batch size of 10 With 100000000 items and hash table ratio 0.500000, number of hash functions used: 2. Time taken per op is 0.161us (6.2 Mqps) with batch size of 25 With 100000000 items and hash table ratio 0.500000, number of hash functions used: 2. Time taken per op is 0.161us (6.2 Mqps) with batch size of 50 With 100000000 items and hash table ratio 0.500000, number of hash functions used: 2. Time taken per op is 0.163us (6.1 Mqps) with batch size of 100 With 100000000 items and hash table ratio 0.600000, number of hash functions used: 3. Time taken per op is 0.252us (4.0 Mqps) with batch size of 0 With 100000000 items and hash table ratio 0.600000, number of hash functions used: 3. Time taken per op is 0.192us (5.2 Mqps) with batch size of 10 With 100000000 items and hash table ratio 0.600000, number of hash functions used: 3. Time taken per op is 0.195us (5.1 Mqps) with batch size of 25 With 100000000 items and hash table ratio 0.600000, number of hash functions used: 3. Time taken per op is 0.191us (5.2 Mqps) with batch size of 50 With 100000000 items and hash table ratio 0.600000, number of hash functions used: 3. Time taken per op is 0.194us (5.1 Mqps) with batch size of 100 With 100000000 items and hash table ratio 0.750000, number of hash functions used: 3. Time taken per op is 0.228us (4.4 Mqps) with batch size of 0 With 100000000 items and hash table ratio 0.750000, number of hash functions used: 3. Time taken per op is 0.185us (5.4 Mqps) with batch size of 10 With 100000000 items and hash table ratio 0.750000, number of hash functions used: 3. Time taken per op is 0.186us (5.4 Mqps) with batch size of 25 With 100000000 items and hash table ratio 0.750000, number of hash functions used: 3. Time taken per op is 0.189us (5.3 Mqps) with batch size of 50 With 100000000 items and hash table ratio 0.750000, number of hash functions used: 3. Time taken per op is 0.188us (5.3 Mqps) with batch size of 100 With 100000000 items and hash table ratio 0.900000, number of hash functions used: 3. Time taken per op is 0.325us (3.1 Mqps) with batch size of 0 With 100000000 items and hash table ratio 0.900000, number of hash functions used: 3. Time taken per op is 0.196us (5.1 Mqps) with batch size of 10 With 100000000 items and hash table ratio 0.900000, number of hash functions used: 3. Time taken per op is 0.199us (5.0 Mqps) with batch size of 25 With 100000000 items and hash table ratio 0.900000, number of hash functions used: 3. Time taken per op is 0.196us (5.1 Mqps) with batch size of 50 With 100000000 items and hash table ratio 0.900000, number of hash functions used: 3. Time taken per op is 0.209us (4.8 Mqps) with batch size of 100 Reviewers: sdong, yhchiang, igor, ljin Reviewed By: ljin Subscribers: leveldb Differential Revision: https://reviews.facebook.net/D22167
11 years ago
void Prepare(const Slice& target) override;
// Report an approximation of how much memory has been used.
size_t ApproximateMemoryUsage() const override;
// Following methods are not implemented for Cuckoo Table Reader
Create a BlockCacheLookupContext to enable fine-grained block cache tracing. (#5421) Summary: BlockCacheLookupContext only contains the caller for now. We will trace block accesses at five places: 1. BlockBasedTable::GetFilter. 2. BlockBasedTable::GetUncompressedDict. 3. BlockBasedTable::MaybeReadAndLoadToCache. (To trace access on data, index, and range deletion block.) 4. BlockBasedTable::Get. (To trace the referenced key and whether the referenced key exists in a fetched data block.) 5. BlockBasedTable::MultiGet. (To trace the referenced key and whether the referenced key exists in a fetched data block.) We create the context at: 1. BlockBasedTable::Get. (kUserGet) 2. BlockBasedTable::MultiGet. (kUserMGet) 3. BlockBasedTable::NewIterator. (either kUserIterator, kCompaction, or external SST ingestion calls this function.) 4. BlockBasedTable::Open. (kPrefetch) 5. Index/Filter::CacheDependencies. (kPrefetch) 6. BlockBasedTable::ApproximateOffsetOf. (kCompaction or kUserApproximateSize). I loaded 1 million key-value pairs into the database and ran the readrandom benchmark with a single thread. I gave the block cache 10 GB to make sure all reads hit the block cache after warmup. The throughput is comparable. Throughput of this PR: 231334 ops/s. Throughput of the master branch: 238428 ops/s. Experiment setup: RocksDB: version 6.2 Date: Mon Jun 10 10:42:51 2019 CPU: 24 * Intel Core Processor (Skylake) CPUCache: 16384 KB Keys: 20 bytes each Values: 100 bytes each (100 bytes after compression) Entries: 1000000 Prefix: 20 bytes Keys per prefix: 0 RawSize: 114.4 MB (estimated) FileSize: 114.4 MB (estimated) Write rate: 0 bytes/second Read rate: 0 ops/second Compression: NoCompression Compression sampling rate: 0 Memtablerep: skip_list Perf Level: 1 Load command: ./db_bench --benchmarks="fillseq" --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --statistics --cache_index_and_filter_blocks --cache_size=10737418240 --disable_auto_compactions=1 --disable_wal=1 --compression_type=none --min_level_to_compress=-1 --compression_ratio=1 --num=1000000 Run command: ./db_bench --benchmarks="readrandom,stats" --use_existing_db --threads=1 --duration=120 --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --statistics --cache_index_and_filter_blocks --cache_size=10737418240 --disable_auto_compactions=1 --disable_wal=1 --compression_type=none --min_level_to_compress=-1 --compression_ratio=1 --num=1000000 --duration=120 TODOs: 1. Create a caller for external SST file ingestion and differentiate the callers for iterator. 2. Integrate tracer to trace block cache accesses. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5421 Differential Revision: D15704258 Pulled By: HaoyuHuang fbshipit-source-id: 4aa8a55f8cb1576ffb367bfa3186a91d8f06d93a
6 years ago
uint64_t ApproximateOffsetOf(const Slice& /*key*/,
TableReaderCaller /*caller*/) override {
Create a BlockCacheLookupContext to enable fine-grained block cache tracing. (#5421) Summary: BlockCacheLookupContext only contains the caller for now. We will trace block accesses at five places: 1. BlockBasedTable::GetFilter. 2. BlockBasedTable::GetUncompressedDict. 3. BlockBasedTable::MaybeReadAndLoadToCache. (To trace access on data, index, and range deletion block.) 4. BlockBasedTable::Get. (To trace the referenced key and whether the referenced key exists in a fetched data block.) 5. BlockBasedTable::MultiGet. (To trace the referenced key and whether the referenced key exists in a fetched data block.) We create the context at: 1. BlockBasedTable::Get. (kUserGet) 2. BlockBasedTable::MultiGet. (kUserMGet) 3. BlockBasedTable::NewIterator. (either kUserIterator, kCompaction, or external SST ingestion calls this function.) 4. BlockBasedTable::Open. (kPrefetch) 5. Index/Filter::CacheDependencies. (kPrefetch) 6. BlockBasedTable::ApproximateOffsetOf. (kCompaction or kUserApproximateSize). I loaded 1 million key-value pairs into the database and ran the readrandom benchmark with a single thread. I gave the block cache 10 GB to make sure all reads hit the block cache after warmup. The throughput is comparable. Throughput of this PR: 231334 ops/s. Throughput of the master branch: 238428 ops/s. Experiment setup: RocksDB: version 6.2 Date: Mon Jun 10 10:42:51 2019 CPU: 24 * Intel Core Processor (Skylake) CPUCache: 16384 KB Keys: 20 bytes each Values: 100 bytes each (100 bytes after compression) Entries: 1000000 Prefix: 20 bytes Keys per prefix: 0 RawSize: 114.4 MB (estimated) FileSize: 114.4 MB (estimated) Write rate: 0 bytes/second Read rate: 0 ops/second Compression: NoCompression Compression sampling rate: 0 Memtablerep: skip_list Perf Level: 1 Load command: ./db_bench --benchmarks="fillseq" --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --statistics --cache_index_and_filter_blocks --cache_size=10737418240 --disable_auto_compactions=1 --disable_wal=1 --compression_type=none --min_level_to_compress=-1 --compression_ratio=1 --num=1000000 Run command: ./db_bench --benchmarks="readrandom,stats" --use_existing_db --threads=1 --duration=120 --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --statistics --cache_index_and_filter_blocks --cache_size=10737418240 --disable_auto_compactions=1 --disable_wal=1 --compression_type=none --min_level_to_compress=-1 --compression_ratio=1 --num=1000000 --duration=120 TODOs: 1. Create a caller for external SST file ingestion and differentiate the callers for iterator. 2. Integrate tracer to trace block cache accesses. Pull Request resolved: https://github.com/facebook/rocksdb/pull/5421 Differential Revision: D15704258 Pulled By: HaoyuHuang fbshipit-source-id: 4aa8a55f8cb1576ffb367bfa3186a91d8f06d93a
6 years ago
return 0;
}
void SetupForCompaction() override {}
// End of methods not implemented.
private:
friend class CuckooTableIterator;
void LoadAllKeys(std::vector<std::pair<Slice, uint32_t>>* key_to_bucket_id);
std::unique_ptr<RandomAccessFileReader> file_;
Slice file_data_;
bool is_last_level_;
CuckooTable: add one option to allow identity function for the first hash function Summary: MurmurHash becomes expensive when we do millions Get() a second in one thread. Add this option to allow the first hash function to use identity function as hash function. It results in QPS increase from 3.7M/s to ~4.3M/s. I did not observe improvement for end to end RocksDB performance. This may be caused by other bottlenecks that I will address in a separate diff. Test Plan: ``` [ljin@dev1964 rocksdb] ./cuckoo_table_reader_test --enable_perf --file_dir=/dev/shm --write --identity_as_first_hash=0 ==== Test CuckooReaderTest.WhenKeyExists ==== Test CuckooReaderTest.WhenKeyExistsWithUint64Comparator ==== Test CuckooReaderTest.CheckIterator ==== Test CuckooReaderTest.CheckIteratorUint64 ==== Test CuckooReaderTest.WhenKeyNotFound ==== Test CuckooReaderTest.TestReadPerformance With 125829120 items, utilization is 93.75%, number of hash functions: 2. Time taken per op is 0.272us (3.7 Mqps) with batch size of 0, # of found keys 125829120 With 125829120 items, utilization is 93.75%, number of hash functions: 2. Time taken per op is 0.138us (7.2 Mqps) with batch size of 10, # of found keys 125829120 With 125829120 items, utilization is 93.75%, number of hash functions: 2. Time taken per op is 0.142us (7.1 Mqps) with batch size of 25, # of found keys 125829120 With 125829120 items, utilization is 93.75%, number of hash functions: 2. Time taken per op is 0.142us (7.0 Mqps) with batch size of 50, # of found keys 125829120 With 125829120 items, utilization is 93.75%, number of hash functions: 2. Time taken per op is 0.144us (6.9 Mqps) with batch size of 100, # of found keys 125829120 With 104857600 items, utilization is 78.12%, number of hash functions: 2. Time taken per op is 0.201us (5.0 Mqps) with batch size of 0, # of found keys 104857600 With 104857600 items, utilization is 78.12%, number of hash functions: 2. Time taken per op is 0.121us (8.3 Mqps) with batch size of 10, # of found keys 104857600 With 104857600 items, utilization is 78.12%, number of hash functions: 2. Time taken per op is 0.123us (8.1 Mqps) with batch size of 25, # of found keys 104857600 With 104857600 items, utilization is 78.12%, number of hash functions: 2. Time taken per op is 0.121us (8.3 Mqps) with batch size of 50, # of found keys 104857600 With 104857600 items, utilization is 78.12%, number of hash functions: 2. Time taken per op is 0.112us (8.9 Mqps) with batch size of 100, # of found keys 104857600 With 83886080 items, utilization is 62.50%, number of hash functions: 2. Time taken per op is 0.251us (4.0 Mqps) with batch size of 0, # of found keys 83886080 With 83886080 items, utilization is 62.50%, number of hash functions: 2. Time taken per op is 0.107us (9.4 Mqps) with batch size of 10, # of found keys 83886080 With 83886080 items, utilization is 62.50%, number of hash functions: 2. Time taken per op is 0.099us (10.1 Mqps) with batch size of 25, # of found keys 83886080 With 83886080 items, utilization is 62.50%, number of hash functions: 2. Time taken per op is 0.100us (10.0 Mqps) with batch size of 50, # of found keys 83886080 With 83886080 items, utilization is 62.50%, number of hash functions: 2. Time taken per op is 0.116us (8.6 Mqps) with batch size of 100, # of found keys 83886080 With 73400320 items, utilization is 54.69%, number of hash functions: 2. Time taken per op is 0.189us (5.3 Mqps) with batch size of 0, # of found keys 73400320 With 73400320 items, utilization is 54.69%, number of hash functions: 2. Time taken per op is 0.095us (10.5 Mqps) with batch size of 10, # of found keys 73400320 With 73400320 items, utilization is 54.69%, number of hash functions: 2. Time taken per op is 0.096us (10.4 Mqps) with batch size of 25, # of found keys 73400320 With 73400320 items, utilization is 54.69%, number of hash functions: 2. Time taken per op is 0.098us (10.2 Mqps) with batch size of 50, # of found keys 73400320 With 73400320 items, utilization is 54.69%, number of hash functions: 2. Time taken per op is 0.105us (9.5 Mqps) with batch size of 100, # of found keys 73400320 [ljin@dev1964 rocksdb] ./cuckoo_table_reader_test --enable_perf --file_dir=/dev/shm --write --identity_as_first_hash=1 ==== Test CuckooReaderTest.WhenKeyExists ==== Test CuckooReaderTest.WhenKeyExistsWithUint64Comparator ==== Test CuckooReaderTest.CheckIterator ==== Test CuckooReaderTest.CheckIteratorUint64 ==== Test CuckooReaderTest.WhenKeyNotFound ==== Test CuckooReaderTest.TestReadPerformance With 125829120 items, utilization is 93.75%, number of hash functions: 2. Time taken per op is 0.230us (4.3 Mqps) with batch size of 0, # of found keys 125829120 With 125829120 items, utilization is 93.75%, number of hash functions: 2. Time taken per op is 0.086us (11.7 Mqps) with batch size of 10, # of found keys 125829120 With 125829120 items, utilization is 93.75%, number of hash functions: 2. Time taken per op is 0.088us (11.3 Mqps) with batch size of 25, # of found keys 125829120 With 125829120 items, utilization is 93.75%, number of hash functions: 2. Time taken per op is 0.083us (12.1 Mqps) with batch size of 50, # of found keys 125829120 With 125829120 items, utilization is 93.75%, number of hash functions: 2. Time taken per op is 0.083us (12.1 Mqps) with batch size of 100, # of found keys 125829120 With 104857600 items, utilization is 78.12%, number of hash functions: 2. Time taken per op is 0.159us (6.3 Mqps) with batch size of 0, # of found keys 104857600 With 104857600 items, utilization is 78.12%, number of hash functions: 2. Time taken per op is 0.078us (12.8 Mqps) with batch size of 10, # of found keys 104857600 With 104857600 items, utilization is 78.12%, number of hash functions: 2. Time taken per op is 0.080us (12.6 Mqps) with batch size of 25, # of found keys 104857600 With 104857600 items, utilization is 78.12%, number of hash functions: 2. Time taken per op is 0.080us (12.5 Mqps) with batch size of 50, # of found keys 104857600 With 104857600 items, utilization is 78.12%, number of hash functions: 2. Time taken per op is 0.082us (12.2 Mqps) with batch size of 100, # of found keys 104857600 With 83886080 items, utilization is 62.50%, number of hash functions: 2. Time taken per op is 0.154us (6.5 Mqps) with batch size of 0, # of found keys 83886080 With 83886080 items, utilization is 62.50%, number of hash functions: 2. Time taken per op is 0.077us (13.0 Mqps) with batch size of 10, # of found keys 83886080 With 83886080 items, utilization is 62.50%, number of hash functions: 2. Time taken per op is 0.077us (12.9 Mqps) with batch size of 25, # of found keys 83886080 With 83886080 items, utilization is 62.50%, number of hash functions: 2. Time taken per op is 0.078us (12.8 Mqps) with batch size of 50, # of found keys 83886080 With 83886080 items, utilization is 62.50%, number of hash functions: 2. Time taken per op is 0.079us (12.6 Mqps) with batch size of 100, # of found keys 83886080 With 73400320 items, utilization is 54.69%, number of hash functions: 2. Time taken per op is 0.218us (4.6 Mqps) with batch size of 0, # of found keys 73400320 With 73400320 items, utilization is 54.69%, number of hash functions: 2. Time taken per op is 0.083us (12.0 Mqps) with batch size of 10, # of found keys 73400320 With 73400320 items, utilization is 54.69%, number of hash functions: 2. Time taken per op is 0.085us (11.7 Mqps) with batch size of 25, # of found keys 73400320 With 73400320 items, utilization is 54.69%, number of hash functions: 2. Time taken per op is 0.086us (11.6 Mqps) with batch size of 50, # of found keys 73400320 With 73400320 items, utilization is 54.69%, number of hash functions: 2. Time taken per op is 0.078us (12.8 Mqps) with batch size of 100, # of found keys 73400320 ``` Reviewers: sdong, igor, yhchiang Reviewed By: igor Subscribers: leveldb Differential Revision: https://reviews.facebook.net/D23451
10 years ago
bool identity_as_first_hash_;
bool use_module_hash_;
std::shared_ptr<const TableProperties> table_props_;
Status status_;
uint32_t num_hash_func_;
std::string unused_key_;
uint32_t key_length_;
uint32_t user_key_length_;
uint32_t value_length_;
uint32_t bucket_length_;
uint32_t cuckoo_block_size_;
uint32_t cuckoo_block_bytes_minus_one_;
uint64_t table_size_;
const Comparator* ucomp_;
uint64_t (*get_slice_hash_)(const Slice& s, uint32_t index,
uint64_t max_num_buckets);
};
} // namespace rocksdb
#endif // ROCKSDB_LITE