Summary:
Refactor the classes, APIs and data structures for block cache tracing to allow a user provided trace writer to be used. Currently, only a TraceWriter is supported, with a default built-in implementation of FileTraceWriter. The TraceWriter, however, takes a flat trace record and is thus only suitable for file tracing. This PR introduces an abstract BlockCacheTraceWriter class that takes a structured BlockCacheTraceRecord. The BlockCacheTraceWriter implementation can then format and log the record in whatever way it sees fit. The default BlockCacheTraceWriterImpl does file tracing using a user provided TraceWriter.
`DB::StartBlockTrace` will internally redirect to changed `BlockCacheTrace::StartBlockCacheTrace`.
New API `DB::StartBlockTrace` is also added that directly takes `BlockCacheTraceWriter` pointer.
This same philosophy can be applied to KV and IO tracing as well.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10811
Test Plan:
existing unit tests
Old API DB::StartBlockTrace checked with db_bench tool
create database
```
./db_bench --benchmarks="fillseq" \
--key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 \
--cache_index_and_filter_blocks --cache_size=1048576 \
--disable_auto_compactions=1 --disable_wal=1 --compression_type=none \
--min_level_to_compress=-1 --compression_ratio=1 --num=10000000
```
To trace block cache accesses when running readrandom benchmark:
```
./db_bench --benchmarks="readrandom" --use_existing_db --duration=60 \
--key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 \
--cache_index_and_filter_blocks --cache_size=1048576 \
--disable_auto_compactions=1 --disable_wal=1 --compression_type=none \
--min_level_to_compress=-1 --compression_ratio=1 --num=10000000 \
--threads=16 \
-block_cache_trace_file="/tmp/binary_trace_test_example" \
-block_cache_trace_max_trace_file_size_in_bytes=1073741824 \
-block_cache_trace_sampling_frequency=1
```
Reviewed By: anand1976
Differential Revision: D40435289
Pulled By: akankshamahajan15
fbshipit-source-id: fa2755f4788185e19f4605e731641cfd21ab3282
Summary:
This PR is the first step in enhancing the coroutines MultiGet to be able to lookup a batch in parallel across levels. By having a separate TableReader function for probing the bloom filters, we can quickly figure out which overlapping keys from a batch are definitely not in the file and can move on to the next level.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10432
Reviewed By: akankshamahajan15
Differential Revision: D38245910
Pulled By: anand1976
fbshipit-source-id: 3d20db2350378c3fe6f086f0c7ba5ff01d7f04de
Summary:
Unit tests still haven't been fixed. Also need to add more tests. But I ran some simple fillrandom db_bench and the partitioning feels reasonable.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/10393
Test Plan:
1. Make sure existing tests pass. This should cover some basic sub compaction logic to be correct and the partitioning result is reasonable;
2. Add a new unit test to ApproximateKeyAnchors()
3. Run some db_bench with max_subcompaction = 4 and watch the compaction is indeed partitioned evenly.
Reviewed By: jay-zhuang
Differential Revision: D38043783
fbshipit-source-id: 085008e0f85f9b7c5abff7800307618320efb19f
Summary:
This PR implements a coroutine version of batched MultiGet in order to concurrently read from multiple SST files in a level using async IO, thus reducing the latency of the MultiGet. The API from the user perspective is still synchronous and single threaded, with the RocksDB part of the processing happening in the context of the caller's thread. In Version::MultiGet, the decision is made whether to call synchronous or coroutine code.
A good way to review this PR is to review the first 4 commits in order - de773b3, 70c2f70, 10b50e1, and 377a597 - before reviewing the rest.
TODO:
1. Figure out how to build it in CircleCI (requires some dependencies to be installed)
2. Do some stress testing with coroutines enabled
No regression in synchronous MultiGet between this branch and main -
```
./db_bench -use_existing_db=true --db=/data/mysql/rocksdb/prefix_scan -benchmarks="readseq,multireadrandom" -key_size=32 -value_size=512 -num=5000000 -batch_size=64 -multiread_batched=true -use_direct_reads=false -duration=60 -ops_between_duration_checks=1 -readonly=true -adaptive_readahead=true -threads=16 -cache_size=10485760000 -async_io=false -multiread_stride=40000 -statistics
```
Branch - ```multireadrandom : 4.025 micros/op 3975111 ops/sec 60.001 seconds 238509056 operations; 2062.3 MB/s (14767808 of 14767808 found)```
Main - ```multireadrandom : 3.987 micros/op 4013216 ops/sec 60.001 seconds 240795392 operations; 2082.1 MB/s (15231040 of 15231040 found)```
More benchmarks in various scenarios are given below. The measurements were taken with ```async_io=false``` (no coroutines) and ```async_io=true``` (use coroutines). For an IO bound workload (with every key requiring an IO), the coroutines version shows a clear benefit, being ~2.6X faster. For CPU bound workloads, the coroutines version has ~6-15% higher CPU utilization, depending on how many keys overlap an SST file.
1. Single thread IO bound workload on remote storage with sparse MultiGet batch keys (~1 key overlap/file) -
No coroutines - ```multireadrandom : 831.774 micros/op 1202 ops/sec 60.001 seconds 72136 operations; 0.6 MB/s (72136 of 72136 found)```
Using coroutines - ```multireadrandom : 318.742 micros/op 3137 ops/sec 60.003 seconds 188248 operations; 1.6 MB/s (188248 of 188248 found)```
2. Single thread CPU bound workload (all data cached) with ~1 key overlap/file -
No coroutines - ```multireadrandom : 4.127 micros/op 242322 ops/sec 60.000 seconds 14539384 operations; 125.7 MB/s (14539384 of 14539384 found)```
Using coroutines - ```multireadrandom : 4.741 micros/op 210935 ops/sec 60.000 seconds 12656176 operations; 109.4 MB/s (12656176 of 12656176 found)```
3. Single thread CPU bound workload with ~2 key overlap/file -
No coroutines - ```multireadrandom : 3.717 micros/op 269000 ops/sec 60.000 seconds 16140024 operations; 139.6 MB/s (16140024 of 16140024 found)```
Using coroutines - ```multireadrandom : 4.146 micros/op 241204 ops/sec 60.000 seconds 14472296 operations; 125.1 MB/s (14472296 of 14472296 found)```
4. CPU bound multi-threaded (16 threads) with ~4 key overlap/file -
No coroutines - ```multireadrandom : 4.534 micros/op 3528792 ops/sec 60.000 seconds 211728728 operations; 1830.7 MB/s (12737024 of 12737024 found) ```
Using coroutines - ```multireadrandom : 4.872 micros/op 3283812 ops/sec 60.000 seconds 197030096 operations; 1703.6 MB/s (12548032 of 12548032 found) ```
Pull Request resolved: https://github.com/facebook/rocksdb/pull/9968
Reviewed By: akankshamahajan15
Differential Revision: D36348563
Pulled By: anand1976
fbshipit-source-id: c0ce85a505fd26ebfbb09786cbd7f25202038696
Summary:
Previously, a `ReadOptions` object was stored in every `BlockBasedTableIterator`
and every `LevelIterator`. This redundancy consumes extra memory,
resulting in the `Arena` making more allocations, and iteration
observing worse cache performance.
This PR migrates callers of `NewInternalIterator()` and
`MakeInputIterator()` to provide a `ReadOptions` object guaranteed to
outlive the returned iterator. When the iterator's lifetime will be managed by the
user, this lifetime guarantee is achieved by storing the `ReadOptions`
value in `ArenaWrappedDBIter`. Then, sub-iterators of `NewInternalIterator()` and
`MakeInputIterator()` can hold a reference-to-const `ReadOptions`.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/7210
Test Plan:
- `make check` under ASAN and valgrind
- benchmark: on a DB with 2 L0 files and 3 L1+ levels, this PR reduced `Arena` allocation 4792 -> 4160 bytes.
Reviewed By: anand1976
Differential Revision: D22861323
Pulled By: ajkr
fbshipit-source-id: 54aebb3e89c872eeab0f5793b4b6e42878d093ce
Summary:
The implementation of GetApproximateSizes was inconsistent in
its treatment of the size of non-data blocks of SST files, sometimes
including and sometimes now. This was at its worst with large portion
of table file used by filters and querying a small range that crossed
a table boundary: the size estimate would include large filter size.
It's conceivable that someone might want only to know the size in terms
of data blocks, but I believe that's unlikely enough to ignore for now.
Similarly, there's no evidence the internal function AppoximateOffsetOf
is used for anything other than a one-sided ApproximateSize, so I intend
to refactor to remove redundancy in a follow-up commit.
So to fix this, GetApproximateSizes (and implementation details
ApproximateSize and ApproximateOffsetOf) now consistently include in
their returned sizes a portion of table file metadata (incl filters
and indexes) based on the size portion of the data blocks in range. In
other words, if a key range covers data blocks that are X% by size of all
the table's data blocks, returned approximate size is X% of the total
file size. It would technically be more accurate to attribute metadata
based on number of keys, but that's not computationally efficient with
data available and rarely a meaningful difference.
Also includes miscellaneous comment improvements / clarifications.
Also included is a new approximatesizerandom benchmark for db_bench.
No significant performance difference seen with this change, whether ~700 ops/sec with cache_index_and_filter_blocks and small cache or ~150k ops/sec without cache_index_and_filter_blocks.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6784
Test Plan:
Test added to DBTest.ApproximateSizesFilesWithErrorMargin.
Old code running new test...
[ RUN ] DBTest.ApproximateSizesFilesWithErrorMargin
db/db_test.cc:1562: Failure
Expected: (size) <= (11 * 100), actual: 9478 vs 1100
Other tests updated to reflect consistent accounting of metadata.
Reviewed By: siying
Differential Revision: D21334706
Pulled By: pdillinger
fbshipit-source-id: 6f86870e45213334fedbe9c73b4ebb1d8d611185
Summary:
Context: Index type `kBinarySearchWithFirstKey` added the ability for sst file iterator to sometimes report a key from index without reading the corresponding data block. This is useful when sst blocks are cut at some meaningful boundaries (e.g. one block per key prefix), and many seeks land between blocks (e.g. for each prefix, the ranges of keys in different sst files are nearly disjoint, so a typical seek needs to read a data block from only one file even if all files have the prefix). But this added a new error condition, which rocksdb code was really not equipped to deal with: `InternalIterator::value()` may fail with an IO error or Status::Incomplete, but it's just a method returning a Slice, with no way to report error instead. Before this PR, this type of error wasn't handled at all (an empty slice was returned), and kBinarySearchWithFirstKey implementation was considered a prototype.
Now that we (LogDevice) have experimented with kBinarySearchWithFirstKey for a while and confirmed that it's really useful, this PR is adding the missing error handling.
It's a pretty inconvenient situation implementation-wise. The error needs to be reported from InternalIterator when trying to access value. But there are ~700 call sites of `InternalIterator::value()`, most of which either can't hit the error condition (because the iterator is reading from memtable or from index or something) or wouldn't benefit from the deferred loading of the value (e.g. compaction iterator that reads all values anyway). Adding error handling to all these call sites would needlessly bloat the code. So instead I made the deferred value loading optional: only the call sites that may use deferred loading have to call the new method `PrepareValue()` before calling `value()`. The feature is enabled with a new bool argument `allow_unprepared_value` to a bunch of methods that create iterators (it wouldn't make sense to put it in ReadOptions because it's completely internal to iterators, with virtually no user-visible effect). Lmk if you have better ideas.
Note that the deferred value loading only happens for *internal* iterators. The user-visible iterator (DBIter) always prepares the value before returning from Seek/Next/etc. We could go further and add an API to defer that value loading too, but that's most likely not useful for LogDevice, so it doesn't seem worth the complexity for now.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6621
Test Plan: make -j5 check . Will also deploy to some logdevice test clusters and look at stats.
Reviewed By: siying
Differential Revision: D20786930
Pulled By: al13n321
fbshipit-source-id: 6da77d918bad3780522e918f17f4d5513d3e99ee
Summary:
When dynamically linking two binaries together, different builds of RocksDB from two sources might cause errors. To provide a tool for user to solve the problem, the RocksDB namespace is changed to a flag which can be overridden in build time.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/6433
Test Plan: Build release, all and jtest. Try to build with ROCKSDB_NAMESPACE with another flag.
Differential Revision: D19977691
fbshipit-source-id: aa7f2d0972e1c31d75339ac48478f34f6cfcfb3e
Summary:
Further apply formatter to more recent commits.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5830
Test Plan: Run all existing tests.
Differential Revision: D17488031
fbshipit-source-id: 137458fd94d56dd271b8b40c522b03036943a2ab
Summary:
Right now VerifyChecksum() doesn't do read-ahead. In some use cases, users won't be able to achieve good performance. With this change, by default, RocksDB will do a default readahead, and users will be able to overwrite the readahead size by passing in a ReadOptions.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5713
Test Plan: Add a new unit test.
Differential Revision: D16860874
fbshipit-source-id: 0cff0fe79ac855d3d068e6ccd770770854a68413
Summary:
VersionSet::ApproximateSize doesn't need to create two separate index iterators and do binary search for each in BlockBasedTable. So BlockBasedTable::ApproximateSize was added that creates the iterator once and uses it to calculate the data size between start and end keys.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5693
Differential Revision: D16774056
Pulled By: elipoz
fbshipit-source-id: 53ce262e1a057788243bf30cd9b8aa6581df1a18
Summary:
RocksDB has historically stored uncompression dictionary objects in the block
cache as opposed to storing just the block contents. This neccesitated
evicting the object upon table close. With the new code, only the raw blocks
are stored in the cache, eliminating the need for eviction.
In addition, the patch makes the following improvements:
1) Compression dictionary blocks are now prefetched/pinned similarly to
index/filter blocks.
2) A copy operation got eliminated when the uncompression dictionary is
retrieved.
3) Errors related to retrieving the uncompression dictionary are propagated as
opposed to silently ignored.
Note: the patch temporarily breaks the compression dictionary evicition stats.
They will be fixed in a separate phase.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5584
Test Plan: make asan_check
Differential Revision: D16344151
Pulled By: ltamasi
fbshipit-source-id: 2962b295f5b19628f9da88a3fcebbce5a5017a7b
Summary:
Currently, when the block cache is used for the filter block, it is not
really the block itself that is stored in the cache but a FilterBlockReader
object. Since this object is not pure data (it has, for instance, pointers that
might dangle, including in one case a back pointer to the TableReader), it's not
really sharable. To avoid the issues around this, the current code erases the
cache entries when the TableReader is closed (which, BTW, is not sufficient
since a concurrent TableReader might have picked up the object in the meantime).
Instead of doing this, the patch moves the FilterBlockReader out of the cache
altogether, and decouples the filter reader object from the filter block.
In particular, instead of the TableReader owning, or caching/pinning the
FilterBlockReader (based on the customer's settings), with the change the
TableReader unconditionally owns the FilterBlockReader, which in turn
owns/caches/pins the filter block. This change also enables us to reuse the code
paths historically used for data blocks for filters as well.
Note:
Eviction statistics for filter blocks are temporarily broken. We plan to fix this in a
separate phase.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5504
Test Plan: make asan_check
Differential Revision: D16036974
Pulled By: ltamasi
fbshipit-source-id: 770f543c5fb4ed126fd1e04bfd3809cf4ff9c091
Summary:
This PR adds more callers for table readers. These information are only used for block cache analysis so that we can know which caller accesses a block.
1. It renames the BlockCacheLookupCaller to TableReaderCaller as passing the caller from upstream requires changes to table_reader.h and TableReaderCaller is a more appropriate name.
2. It adds more table reader callers in table/table_reader_caller.h, e.g., kCompactionRefill, kExternalSSTIngestion, and kBuildTable.
This PR is long as it requires modification of interfaces in table_reader.h, e.g., NewIterator.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5454
Test Plan: make clean && COMPILE_WITH_ASAN=1 make check -j32.
Differential Revision: D15819451
Pulled By: HaoyuHuang
fbshipit-source-id: b6caa704c8fb96ddd15b9a934b7e7ea87f88092d
Summary:
Currently the read-ahead logic for user reads and compaction reads go through different code paths where compaction reads create new table readers and use `ReadaheadRandomAccessFile`. This change is to unify read-ahead logic to use read-ahead in BlockBasedTableReader::InitDataBlock(). As a result of the change `ReadAheadRandomAccessFile` class and `new_table_reader_for_compaction_inputs` option will no longer be used.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5431
Test Plan:
make check
Here is the benchmarking - https://gist.github.com/vjnadimpalli/083cf423f7b6aa12dcdb14c858bc18a5
Differential Revision: D15772533
Pulled By: vjnadimpalli
fbshipit-source-id: b71dca710590471ede6fb37553388654e2e479b9
Summary:
BlockCacheLookupContext only contains the caller for now.
We will trace block accesses at five places:
1. BlockBasedTable::GetFilter.
2. BlockBasedTable::GetUncompressedDict.
3. BlockBasedTable::MaybeReadAndLoadToCache. (To trace access on data, index, and range deletion block.)
4. BlockBasedTable::Get. (To trace the referenced key and whether the referenced key exists in a fetched data block.)
5. BlockBasedTable::MultiGet. (To trace the referenced key and whether the referenced key exists in a fetched data block.)
We create the context at:
1. BlockBasedTable::Get. (kUserGet)
2. BlockBasedTable::MultiGet. (kUserMGet)
3. BlockBasedTable::NewIterator. (either kUserIterator, kCompaction, or external SST ingestion calls this function.)
4. BlockBasedTable::Open. (kPrefetch)
5. Index/Filter::CacheDependencies. (kPrefetch)
6. BlockBasedTable::ApproximateOffsetOf. (kCompaction or kUserApproximateSize).
I loaded 1 million key-value pairs into the database and ran the readrandom benchmark with a single thread. I gave the block cache 10 GB to make sure all reads hit the block cache after warmup. The throughput is comparable.
Throughput of this PR: 231334 ops/s.
Throughput of the master branch: 238428 ops/s.
Experiment setup:
RocksDB: version 6.2
Date: Mon Jun 10 10:42:51 2019
CPU: 24 * Intel Core Processor (Skylake)
CPUCache: 16384 KB
Keys: 20 bytes each
Values: 100 bytes each (100 bytes after compression)
Entries: 1000000
Prefix: 20 bytes
Keys per prefix: 0
RawSize: 114.4 MB (estimated)
FileSize: 114.4 MB (estimated)
Write rate: 0 bytes/second
Read rate: 0 ops/second
Compression: NoCompression
Compression sampling rate: 0
Memtablerep: skip_list
Perf Level: 1
Load command: ./db_bench --benchmarks="fillseq" --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --statistics --cache_index_and_filter_blocks --cache_size=10737418240 --disable_auto_compactions=1 --disable_wal=1 --compression_type=none --min_level_to_compress=-1 --compression_ratio=1 --num=1000000
Run command: ./db_bench --benchmarks="readrandom,stats" --use_existing_db --threads=1 --duration=120 --key_size=20 --prefix_size=20 --keys_per_prefix=0 --value_size=100 --statistics --cache_index_and_filter_blocks --cache_size=10737418240 --disable_auto_compactions=1 --disable_wal=1 --compression_type=none --min_level_to_compress=-1 --compression_ratio=1 --num=1000000 --duration=120
TODOs:
1. Create a caller for external SST file ingestion and differentiate the callers for iterator.
2. Integrate tracer to trace block cache accesses.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5421
Differential Revision: D15704258
Pulled By: HaoyuHuang
fbshipit-source-id: 4aa8a55f8cb1576ffb367bfa3186a91d8f06d93a
Summary:
This PR introduces a new MultiGet() API, with the underlying implementation grouping keys based on SST file and batching lookups in a file. The reason for the new API is twofold - the definition allows callers to allocate storage for status and values on stack instead of std::vector, as well as return values as PinnableSlices in order to avoid copying, and it keeps the original MultiGet() implementation intact while we experiment with batching.
Batching is useful when there is some spatial locality to the keys being queries, as well as larger batch sizes. The main benefits are due to -
1. Fewer function calls, especially to BlockBasedTableReader::MultiGet() and FullFilterBlockReader::KeysMayMatch()
2. Bloom filter cachelines can be prefetched, hiding the cache miss latency
The next step is to optimize the binary searches in the level_storage_info, index blocks and data blocks, since we could reduce the number of key comparisons if the keys are relatively close to each other. The batching optimizations also need to be extended to other formats, such as PlainTable and filter formats. This also needs to be added to db_stress.
Benchmark results from db_bench for various batch size/locality of reference combinations are given below. Locality was simulated by offsetting the keys in a batch by a stride length. Each SST file is about 8.6MB uncompressed and key/value size is 16/100 uncompressed. To focus on the cpu benefit of batching, the runs were single threaded and bound to the same cpu to eliminate interference from other system events. The results show a 10-25% improvement in micros/op from smaller to larger batch sizes (4 - 32).
Batch Sizes
1 | 2 | 4 | 8 | 16 | 32
Random pattern (Stride length 0)
4.158 | 4.109 | 4.026 | 4.05 | 4.1 | 4.074 - Get
4.438 | 4.302 | 4.165 | 4.122 | 4.096 | 4.075 - MultiGet (no batching)
4.461 | 4.256 | 4.277 | 4.11 | 4.182 | 4.14 - MultiGet (w/ batching)
Good locality (Stride length 16)
4.048 | 3.659 | 3.248 | 2.99 | 2.84 | 2.753
4.429 | 3.728 | 3.406 | 3.053 | 2.911 | 2.781
4.452 | 3.45 | 2.833 | 2.451 | 2.233 | 2.135
Good locality (Stride length 256)
4.066 | 3.786 | 3.581 | 3.447 | 3.415 | 3.232
4.406 | 4.005 | 3.644 | 3.49 | 3.381 | 3.268
4.393 | 3.649 | 3.186 | 2.882 | 2.676 | 2.62
Medium locality (Stride length 4096)
4.012 | 3.922 | 3.768 | 3.61 | 3.582 | 3.555
4.364 | 4.057 | 3.791 | 3.65 | 3.57 | 3.465
4.479 | 3.758 | 3.316 | 3.077 | 2.959 | 2.891
dbbench command used (on a DB with 4 levels, 12 million keys)-
TEST_TMPDIR=/dev/shm numactl -C 10 ./db_bench.tmp -use_existing_db=true -benchmarks="readseq,multireadrandom" -write_buffer_size=4194304 -target_file_size_base=4194304 -max_bytes_for_level_base=16777216 -num=12000000 -reads=12000000 -duration=90 -threads=1 -compression_type=none -cache_size=4194304000 -batch_size=32 -disable_auto_compactions=true -bloom_bits=10 -cache_index_and_filter_blocks=true -pin_l0_filter_and_index_blocks_in_cache=true -multiread_batched=true -multiread_stride=4
Pull Request resolved: https://github.com/facebook/rocksdb/pull/5011
Differential Revision: D14348703
Pulled By: anand1976
fbshipit-source-id: 774406dab3776d979c809522a67bedac6c17f84b
Summary:
Removed `one_time_use` flag, which removed the need for some
tests, and changed all `NewRangeTombstoneIterator` methods to return
`FragmentedRangeTombstoneIterators`.
These changes also led to removing `RangeDelAggregatorV2::AddUnfragmentedTombstones`
and one of the `MemTableListVersion::AddRangeTombstoneIterators` methods.
Pull Request resolved: https://github.com/facebook/rocksdb/pull/4692
Differential Revision: D13106570
Pulled By: abhimadan
fbshipit-source-id: cbab5432d7fc2d9cdfd8d9d40361a1bffaa8f845
Summary:
Given that index value is a BlockHandle, which is basically an <offset, size> pair we can apply delta encoding on the values. The first value at each index restart interval encoded the full BlockHandle but the rest encode only the size. Refer to IndexBlockIter::DecodeCurrentValue for the detail of the encoding. This reduces the index size which helps using the block cache more efficiently. The feature is enabled with using format_version 4.
The feature comes with a bit of cpu overhead which should be paid back by the higher cache hits due to smaller index block size.
Results with sysbench read-only using 4k blocks and using 16 index restart interval:
Format 2:
19585 rocksdb read-only range=100
Format 3:
19569 rocksdb read-only range=100
Format 4:
19352 rocksdb read-only range=100
Pull Request resolved: https://github.com/facebook/rocksdb/pull/3983
Differential Revision: D8361343
Pulled By: maysamyabandeh
fbshipit-source-id: f882ee082322acac32b0072e2bdbb0b5f854e651
Summary:
Pass in `for_compaction` to `BlockBasedTableIterator` via `BlockBasedTableReader::NewIterator`.
In 7103559f49, `for_compaction` was set in `BlockBasedTable::Rep` via `BlockBasedTable::SetupForCompaction`. In hindsight it was not the right decision; it also caused TSAN to complain.
Closes https://github.com/facebook/rocksdb/pull/4048
Differential Revision: D8601056
Pulled By: sagar0
fbshipit-source-id: 30127e898c15c38c1080d57710b8c5a6d64a0ab3
Summary:
Currently it is not possible to change bloom filter config without restart the db, which is causing a lot of operational complexity for users.
This PR aims to make it possible to dynamically change bloom filter config.
Closes https://github.com/facebook/rocksdb/pull/3601
Differential Revision: D7253114
Pulled By: miasantreble
fbshipit-source-id: f22595437d3e0b86c95918c484502de2ceca120c
Summary:
We need a tool to check any sst file corruption in the db.
It will check all the sst files in current version and read all the blocks (data, meta, index) with checksum verification. If any verification fails, the function will return non-OK status.
Closes https://github.com/facebook/rocksdb/pull/2498
Differential Revision: D5324269
Pulled By: lightmark
fbshipit-source-id: 6f8a272008b722402a772acfc804524c9d1a483b
Summary:
This reverts the previous commit 1d7048c598, which broke the build.
Did a `git revert 1d7048c`.
Closes https://github.com/facebook/rocksdb/pull/2627
Differential Revision: D5476473
Pulled By: sagar0
fbshipit-source-id: 4756ff5c0dfc88c17eceb00e02c36176de728d06
Summary: This uses `clang-tidy` to comment out unused parameters (in functions, methods and lambdas) in fbcode. Cases that the tool failed to handle are fixed manually.
Reviewed By: igorsugak
Differential Revision: D5454343
fbshipit-source-id: 5dee339b4334e25e963891b519a5aa81fbf627b2
Summary:
Now if we have iterate_upper_bound set, we continue read until get a key >= upper_bound. For a lot of cases that neighboring data blocks have a user key gap between them, our index key will be a user key in the middle to get a shorter size. For example, if we have blocks:
[a b c d][f g h]
Then the index key for the first block will be 'e'.
then if upper bound is any key between 'd' and 'e', for example, d1, d2, ..., d99999999999, we don't have to read the second block and also know that we have done our iteration by reaching the last key that smaller the upper bound already.
This diff can reduce RA in most cases.
Closes https://github.com/facebook/rocksdb/pull/2239
Differential Revision: D4990693
Pulled By: lightmark
fbshipit-source-id: ab30ea2e3c6edf3fddd5efed3c34fcf7739827ff
Summary:
- Made RangeDelAggregator's InternalKeyComparator member a reference-to-const so we don't need to copy-construct it. Also added InternalKeyComparator to ImmutableCFOptions so we don't need to construct one for each DBIter.
- Made MemTable::NewRangeTombstoneIterator and the table readers' NewRangeTombstoneIterator() functions return nullptr instead of NewEmptyInternalIterator to avoid the allocation. Updated callers accordingly.
Closes https://github.com/facebook/rocksdb/pull/1548
Differential Revision: D4208169
Pulled By: ajkr
fbshipit-source-id: 2fd65cf
Summary: 1. Range Deletion Tombstone structure 2. Modify Add() in table_builder to make it usable for adding range del tombstones 3. Expose NewTombstoneIterator() API in table_reader
Test Plan: table_test.cc (now BlockBasedTableBuilder::Add() only accepts InternalKey. I make table_test only pass InternalKey to BlockBasedTableBuidler. Also test writing/reading range deletion tombstones in table_test )
Reviewers: sdong, IslamAbdelRahman, lightmark, andrewkr
Reviewed By: andrewkr
Subscribers: andrewkr, dhruba, leveldb
Differential Revision: https://reviews.facebook.net/D61473
Summary:
When a block based table file is opened, if prefetch_index_and_filter is true, it will prefetch the index and filter blocks, putting them into the block cache.
What this feature adds: when a L0 block based table file is opened, if pin_l0_filter_and_index_blocks_in_cache is true in the options (and prefetch_index_and_filter is true), then the filter and index blocks aren't released back to the block cache at the end of BlockBasedTableReader::Open(). Instead the table reader takes ownership of them, hence pinning them, ie. the LRU cache will never push them out. Meanwhile in the table reader, further accesses will not hit the block cache, thus avoiding lock contention.
Test Plan:
'export TEST_TMPDIR=/dev/shm/ && DISABLE_JEMALLOC=1 OPT=-g make all valgrind_check -j32' is OK.
I didn't run the Java tests, I don't have Java set up on my devserver.
Reviewers: sdong
Reviewed By: sdong
Subscribers: andrewkr, dhruba
Differential Revision: https://reviews.facebook.net/D56133
Summary:
When a block based table file is opened, if prefetch_index_and_filter is true, it will prefetch the index and filter blocks, putting them into the block cache.
What this feature adds: when a L0 block based table file is opened, if pin_l0_filter_and_index_blocks_in_cache is true in the options (and prefetch_index_and_filter is true), then the filter and index blocks aren't released back to the block cache at the end of BlockBasedTableReader::Open(). Instead the table reader takes ownership of them, hence pinning them, ie. the LRU cache will never push them out. Meanwhile in the table reader, further accesses will not hit the block cache, thus avoiding lock contention.
When the table reader is destroyed, it releases the pinned blocks (if there were any). This has to happen before the cache is destroyed, so I had to introduce a TableReader::Close(), to guarantee the order of destruction.
Test Plan:
Added two unit tests for this. Existing unit tests run fine (default is pin_l0_filter_and_index_blocks_in_cache=false).
DISABLE_JEMALLOC=1 OPT=-g make all valgrind_check -j32
Mac: OK.
Linux: with D55287 patched in it's OK.
Reviewers: sdong
Reviewed By: sdong
Subscribers: andrewkr, leveldb, dhruba
Differential Revision: https://reviews.facebook.net/D54801
Summary:
When Get() or NewIterator() trigger file loads, skip caching the filter block if
(1) optimize_filters_for_hits is set and (2) the file is on the bottommost
level. Also skip checking filters under the same conditions, which means that
for a preloaded file or a file that was trivially-moved to the bottom level, its
filter block will eventually expire from the cache.
- added parameters/instance variables in various places in order to propagate the config ("skip_filters") from version_set to block_based_table_reader
- in BlockBasedTable::Rep, this optimization prevents filter from being loaded when the file is opened simply by setting filter_policy = nullptr
- in BlockBasedTable::Get/BlockBasedTable::NewIterator, this optimization prevents filter from being used (even if it was loaded already) by setting filter = nullptr
Test Plan:
updated unit test:
$ ./db_test --gtest_filter=DBTest.OptimizeFiltersForHits
will also run 'make check'
Reviewers: sdong, igor, paultuckfield, anthony, rven, kradhakrishnan, IslamAbdelRahman, yhchiang
Reviewed By: yhchiang
Subscribers: leveldb
Differential Revision: https://reviews.facebook.net/D51633
Summary:
Separate a new class InternalIterator from class Iterator, when the look-up is done internally, which also means they operate on key with sequence ID and type.
This change will enable potential future optimizations but for now InternalIterator's functions are still the same as Iterator's.
At the same time, separate the cleanup function to a separate class and let both of InternalIterator and Iterator inherit from it.
Test Plan: Run all existing tests.
Reviewers: igor, yhchiang, anthony, kradhakrishnan, IslamAbdelRahman, rven
Reviewed By: rven
Subscribers: leveldb, dhruba
Differential Revision: https://reviews.facebook.net/D48549
Summary:
Pre-fetching is a common operation performed by data stores for
disk/flash based systems as part of database startup.
This is part of task 5197184.
Test Plan: Run the newly added unit test
Reviewers: rven, igor, sdong
Reviewed By: sdong
Subscribers: dhruba, leveldb
Differential Revision: https://reviews.facebook.net/D33933
Summary:
Intead of passing callback function pointer and its arg on Table::Get()
interface, passing GetContext. This makes the interface cleaner and
possible better perf. Also adding a fast pass for SaveValue()
Test Plan: make all check
Reviewers: igor, yhchiang, sdong
Reviewed By: sdong
Subscribers: leveldb
Differential Revision: https://reviews.facebook.net/D24057
Summary:
Add a DB Property "rocksdb.estimate-table-readers-mem" to return estimated memory usage by all loaded table readers, other than allocated from block cache.
Refactor the property codes to allow getting property from a version, with DB mutex not acquired.
Test Plan: Add several checks of this new property in existing codes for various cases.
Reviewers: yhchiang, ljin
Reviewed By: ljin
Subscribers: xjin, igor, leveldb
Differential Revision: https://reviews.facebook.net/D20733
Summary:
As discussed in our internal group, we don't get much use of seek compaction at the moment, while it's making code more complicated and slower in some cases.
This diff removes seek compaction and (hopefully) all code that was introduced to support seek compaction.
There is one test case that relied on didIO information. I'll try to find another way to implement it.
Test Plan: make check
Reviewers: sdong, haobo, yhchiang, ljin, dhruba
Reviewed By: ljin
Subscribers: leveldb
Differential Revision: https://reviews.facebook.net/D19161
Summary: as title
Test Plan:
db_bench
the initial result is very promising. I will post results of complete
runs
Reviewers: dhruba, haobo, sdong, igor
Reviewed By: sdong
Subscribers: leveldb
Differential Revision: https://reviews.facebook.net/D18867
Summary:
In this patch, try to allocate the whole iterator tree starting from DBIter from an arena
1. ArenaWrappedDBIter is created when serves as the entry point of an iterator tree, with an arena in it.
2. Add an option to create iterator from arena for following iterators: DBIter, MergingIterator, MemtableIterator, all mem table's iterators, all table reader's iterators and two level iterator.
3. MergeIteratorBuilder is created to incrementally build the tree of internal iterators. It is passed to mem table list and version set and add iterators to it.
Limitations:
(1) Only DB::NewIterator() without tailing uses the arena. Other cases, including readonly DB and compactions are still from malloc
(2) Two level iterator itself is allocated in arena, but not iterators inside it.
Test Plan: make all check
Reviewers: ljin, haobo
Reviewed By: haobo
Subscribers: leveldb, dhruba, yhchiang, igor
Differential Revision: https://reviews.facebook.net/D18513
Summary:
also add an override option total_order_iteration if you want to use full
iterator with prefix_extractor
Test Plan: make all check
Reviewers: igor, haobo, sdong, yhchiang
Reviewed By: haobo
CC: leveldb, dhruba
Differential Revision: https://reviews.facebook.net/D17805
Summary:
We are going to expose properties of all tables to end users through "some" db interface.
However, current design doesn't naturally fit for this need, which is because:
1. If a table presents in table cache, we cannot simply return the reference to its table properties, because the table may be destroy after compaction (and we don't want to hold the ref of the version).
2. Copy table properties is OK, but it's slow.
Thus in this diff, I change the table reader's interface to return a shared pointer (for const table properties), instead a const refernce.
Test Plan: `make check` passed
Reviewers: haobo, sdong, dhruba
Reviewed By: haobo
CC: leveldb
Differential Revision: https://reviews.facebook.net/D15999